Lecture 2:

- S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1995, Ch. 1
- Y. Alhassid, Reviews of Modern Physics, Vol. 72, No. 4, October 2000, Section I
- L. P. Kouwenhoven, G. Schön, and L. L. Sohn, in Mesoscopic
electron transport, edited by L. L. Sohn, L. P.
Kouwenhoven, G. Schön, Sections 1.1 and 1.2 (Kluwer Academic
Publishers, 1997).

- Y. Alhassid, Reviews of Modern Physics, Vol. 72, No. 4, October 2000, Section I
- S. Tarucha et. al., Phys. Rev. Lett, 77, 3613 (1996).
- M. L. Mehta, Random Matrices, Elsevier, 3rd edition, 2004,
Ch. 1

- M. L. Mehta, Random Matrices, Elsevier, 3rd edition, 2004,
Ch. 1

- L. D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativisitic Theory, pp. 304-305 (Pergamon Press, Oxford, 1980).

- M. L. Mehta, Random Matrices, Elsevier, 3rd edition, 2004,
Ch. 1, 2

- Y. Alhassid, Reviews of Modern Physics, Vol. 72, No. 4, October 2000
- D. A. Rabson, B. N. Narozhny, A. J. Millis, Physical Review B 69, 054403 (2004)
- D. Bernard and A. LeClair, arXiv:cond-mat/0109552v2

- Derived joint probability density P(H) for matrix elements for Gaussian ensembles, see Mehta, Ch. 2
- Derived averages and 2 point correlation functions of matrix elements, see Alhassid

- Derived joint probability density for eigenvalues for Gaussian ensembles, see Mehta, Ch. 3

- Derived nearest level spacing distribution for N=2 and extrapolated to large N, see Alhassid

- Coulomb gas interpretation of probability density for eigenvalues, Mehta, Ch. 4

- Exact density of states, average density of states, Lecture notes
- Derived Wigner's semicircle rule as a stationary point (mean-field approximation) of Coulomb gas partition function, Lecture notes
- Defined n-point correlation and 2-point cluster functions, quoted the GOE result, see Alhassid
- Derived the relationship between 2-point cluster function and density-density correlation function, Lecture notes

- Dimensionless conductance, energy scales in QDs, disorder averaging, Lecture notes

- Perturbative result for density-density correlation function, comparison with RMT, universal regime, Alhassid p. 914
- Derived eigenvalue statistics for GOE, see T. A. Brody et. al., Rev. Mod. Phys. , Vol. 53, No. 3, July 1981, p. 427

- Derived the universal Hamiltonian, see I. L. Kurland, I. L. Aleiner, B. L. Altshuler, arXiv:cond-mat/0004205v1

- classics: J. Bardeen, L.N. Cooper, and J.R. Schriefer: Phys. Rev. 108 1175 (1957)
- experiments on superconducting grains: D.C. Ralph, C.T. Black, and M. Tinkham: Phys. Rev. Lett. 76, 688 (1996); 78, 4087 (1997)
- blocking effect etc.: J. von Delft: Annalen der Physik (Leipzig), 10, 3, 219-276 (2001), V. G. Soloviev: Mat. Fys. Skrif. Kong. Dan. Vid. Selsk. 1 (1961)
- Eliashberg theory: G. M. Eliashberg: JETP 11, 696 (1960)
- corrections to BCS condensation energy from Eliashberg theory: J. Bardeen and M. Stephen, Phys. Rev. 136, A1485 (1964)

- Anderson pseudospins: P.W. Anderson: Phys. Rev. 112, 1900 (1958)
- Anderson criterion - breakdown of BCS mean-field due to finite size: P. W. Anderson: J. Chem. Solids 11, 26 (1959)
- pairing in nuclei: Bohr A. and Mottelson B. R.: Nuclear Structure, W. A. Benjamin, New York (1969)
- electron-phonon interaction: L. Fetter and J. D. Walecka, "Quantum Theory of Many-Particle Systems", Dover (2003), section 45
- path integral: J. W. Negele and H. Orland, "Quantum
Many-particle Systems", Westview Press (1998); A. Altland and B. D.
Simons, "Condensed Matter Field Theory", Cambridge University Press,
2nd edition (April 30, 2010) (this book also has some nice problems on
applications of path integral to mesoscopics andsuperconductivity)

- Matveev-Larkin parameter: K. A. Matveev and A. I. Larkin, Phys. Rev. Lett. 78, 3749–3752 (1997), arXiv:cond-mat/9701041v1

Please send any comments about this page to eyuzbash at physics.rutgers.edu

Physics 681 main page

Department of Physics and Astronomy Main Page