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Abstract. The quantum Hall effect is a typical realization of topological effects in condensed
matter physics. In this article, some of the topological aspects of the quantum Hall effect are
reviewed. For the lattice fermions, the Hall conductance of the system is expressed in terms of
two different topological invariants. One is the famous TKNN integer which is related to the
bulk state. The other is the winding number of the edge state on the complex-energy surface
which is generally a high-genus Riemann surface. We will describe them in detail.
Therefore we have two topological expressions for the Hall conductance. Actually these

two expressions give the same integer, although they look quite different. This means that one

can explain the quantum Hall effect by using either the edge states or the bulk states, that is,

edge bulk
Oxy :nyu .

1. Introduction

In the past few decades, topology has played an important role in condensed matter
physics [1]. In many cases, topological invariants have emerged as a consequence of
the quantization of classical mechanics. Dirac’s magnetic monopole [2, 3], the vortex in
type Il superconductors [4], and the Aharonov—Bohm effect [5] are old examples. In these
examples, the quantizations can be discussed in a geometrical language. Once the observable
is written as a discrete topological number, it is stable against a weak perturbation since
small continuous changes cannot modify the physical result discretely.

Recently, the topological discussion of the quantum mechanical phase has again become
a focus in several different fields. Since the discovery of Berry’s phase in an adiabatic
process [6], many studies have been carried out, and they are interpreted using the concept
of the geometrical phasgl].

In the quantum Hall effect (QHE), the Hall conductamnge is quantized with extremely
high accuracy [7]. Therefore it is natural to look for a topological interpretation for the
effect. In this article, we aim to review some of the topological aspects of the QHE.

The effect of the magnetic field on an electronic system is an old problem and several
studies were carried out before the discovery of the QHE. We should mention the pioneering
work by Zak where the topological aspect of the problem is discussed by using magnetic
translation operators [8]. A magnetic field implies a non-local effect, since the physically
important quantity is not the magnetic field but the vector potential that describes the
magnetic field. This is also the origin of the Aharonov—Bohm effect, in which the existence
of a non-zero vector potential gives a physical effect even if the magnetic field is zero [5]

1 E-mail: hatsugai@coral.t.u-tokyo.ac.jp.
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Since the discovery of the QHE, important topological investigations have been
performed. The famous gauge invariance argument of Laughlin [9] is fundamental to the
phenomena, and its relationship with the edge states which are localized near the sample
edges is stressed by Halperin [10]. One might think that the effect on the edges has only a
secondary effect on the physics. However, this is not the case. It is essentially important
in the QHE. One neglects the effect of the edges in a naive thermodynamic limit. Such a
procedure cannot be justified here since the existence of the edges changes the topology of
the system, and this gives completely different physics.

The problem acquires a richer structure when one considers the effect of the magnetic
field on a lattice which can be a model for electrons with a periodic potential. This was
discussed by Azbel [11] and later by Hofstadter [12], and Wannier [13]. The topological
aspect of the QHE with a periodic potential was first discussed by Thouless, Kohmoto,
Nightingale, and den Nijs [14]. In this famous work, the topological character of the system
is described in terms of the bulk state, and a topological expression for the Hall conductance
is given by the bulk state (the “‘TKNN' integer). The Hall conductance is given by the Chern
number over the magnetic Brillouin zone [14, 15]. This is a bulk theory. Recently, the
topological aspect of the edge state on the lattice was also discussed by the present author,
where the Hall conductance is given by using the edge states (the ‘winding number’) [16].
The work is motivated by the work [10] and a trial to find a topological meaning for the
Hall conductance (in terms of edges). This is an edge theory. Thus we have two topological
expressions for the Hall conductance. Here a natural question is that of whether there is
a relationship between the two. This is clarified also. The two topological expressions in
terms of the bulk states and the edge states, which look quite different, actually give the
same integer [17, 18]. We try to explain this in this article.

Now, at the end of this introduction, we mention recent developments in algebraic
aspects of the effects of the magnetic field [19-21]. In addition to the topological aspect,
a mathematically new type of algebraic structure, the ‘quantum group’, is hidden in
the problem. Generators of the quantum group have non-trivial commutation relations,
related to the commutation relations of covariant translations. The quantum group has one
parameter characterizing the algebraic structure which is givel?y whereg is the flux
per plaquette. In this sense, we may say that the geometrical phase of the system also
characterizes the algebraic structure of the system.

The QHE can be divided into two cases: the integer case and the fractional case. The
Hall conductance is quantized at integer values or fractional values, respectively. Although
the discussion in this article is mainly of the integer case, we will briefly comment on the
fractional case, using Jain’s construction or adiabatic heuristic arguments (see references
[22—24]). This argument is also topological, and all of the results for the integer QHE can
be mapped onto the fractional QHE by using it [25].

In section 2, we discuss the symmetries of the system, focusing on the geometrical
aspect of the electronic system in a magnetic field. In section 3, Laughlin’s argument for
the integer QHE is briefly reviewed. Also the importance of the edge state, first stressed
by Halperin, is demonstrated. These can be understood as important topological aspects of
the QHE. When one considers the system on the lattice, topological aspects of the QHE
are clearly demonstrated in interesting ways. In section 4, the Hall conductanoé the
bulk state on a lattice is reviewed and its topological meaning is discussed. oklei®
given by the total vorticity defined as the phase of the Bloch state in the magnetic Brillouin
zone. This is the famous topological invariant (the “‘TKNN’ integer). On the other hand,
when one considers the effect of edges on the lattice, the Hall conductance of the edge
state is also described by another topological invariant. This is defined on the complex-
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energy surface of the problem which is a high-genus Riemann surface in general. On the
surface, the edge states give zero points of the wavefunction and their winding number on
the Riemann surface gives the Hall conductance. This topological description of the Hall

conductance in terms of the edge states is given in section 5. Now the Hall conductance of
the system is described by two topological invariants. One is related to the bulk states and
the other is related to the edge states. Although the two topological invariants are apparently
quite different, they are closely related, as will be discussed in section 6. In section 7, the
adiabatic heuristic argument is briefly reviewed. We include several appendices to make
the review self-contained.

2. Symmetry and the geometrical aspect of an electronic system with a magnetic field

Let us first discuss the symmetries of an electronic system in a magnetic field. The
Hamiltonian of a system with a uniform magnetic figRlis given by

H= %(nﬁ +11%) 1)
I, = —ihd, +eA, (x=x,y) (2)
A=Ay dxy (3)
dA = B dx x dy. )

When the magnetic field is not zero, the momenta alongrxthand y-directions,IT, and
I1,, do not commute with each other:
72

[, ] = i ©)

- (L)l/z. ©)

It is convenient to introduce a bosonic operaiof{a, a'] = 1) via

hnl ( )
x=-—=@—a
Liv2 ™
hl i
y= 772(0 +a')
Then the Hamiltonian (1) is expressed as the equation for a harmonic oscillator, given by
_ 1
H = ho, <aTa + 2) (8)
B
we="" ©)
m

which describes the Landau level with Landau gap.” This two-dimensional Hamiltonian
has other constants of the motiofguiding centre’ operatorsr, ,, commuting with the
Hamiltonian [26]:
[H,R,,]=0 (20)
12

R, =x— ﬁl'[y (11)

12
R),=y~|—ﬁnx. (12)
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In general, each of the guiding centre operai®ys operates non-trivially on the eigenstate
of the Hamiltonian (1) which introduces the Landau degeneracy. Since the guiding centre
operatorsR, and R, do not commute with each other, one can only diagonalize a linear
combination of them. The convenient choice for the linear combination depends on an
explicit gauge choice, and a suitable combination helps in a geometry-dependent discussion.
When one discusses a cylindrical geometry with the Landau gauge B(0, x) (periodic
in y and finite inx), it is useful to diagonalizeR,. On the other hand, when one uses
a disc geometry with a symmetric gaugé, = B(—y, x)/2, it is useful to diagonalize
R?>= R?+ R2.

We focus on two important symmetries of the system. One is the lo¢al gauge
symmetry given by

A = A +dy

i (13)
—i1ho, =—1hoy —edyx.
The invariance of the Hamiltonian (1) is obvious.
Here let us define the covariant translation operafQrs(a) [8]
T,(a) = & (14)
which satisfy
T @) T BTy (0) T (a) = €79/, (15)

Hence, cyclic evolution of the covariant translation operator gives a non-trivial phase:

1 .
P exp<|}_l ?gc dx, l'Ia) = exp(—lizc) (16)

where S¢ is the area enclosed by the curgeand P is a path ordering [8]. When there
is a non-zero magnetic field, a simple translation of a particle is non-trivial and causes a
non-zero phase change of the wavefunction. This phase equation (16) is the geometrical
phase which is the origin of the topological character of the problem.

The other important symmetry is given by the magnetic translation operBtamsd ﬁ
defined as [8, 27]

T, = g*lla (17)
My =My + (B X 7)g (18)
1, =, — By (19)
I, = I, + Bx. (20)

Each of theT, and7, commutes with the Hamiltonian:
[H.T,]=[H,T,] =0 (21)

althoughT, and 7, do not commute with each other7}], 7,] # 0.

These two symmetries (@) and the magnetic translations) are the most important
characteristics of the system. In the following, we try to reformulate the theory for the
lattice while preserving the symmetries. We prefer a lattice theory since there is no ambiguity
related to the cut-off. By taking an appropriate limit, one can always recover the continuum
theory. Therefore, the lattice theory includes more information. Also, physically, the effect
of the lattice can be understood as that of a periodic potential in a crystal. By using a recently
developed experimental technique, these periodic structures can be realized in some realistic
mesoscopic systems (for example, ‘quantum dots’ and ‘super-atoms’). When one considers
the lattice system, it has two fundamental areas. One is the area of the minimum lattice
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plaquette and the other is the magnetic a@feaThe existence of these two quantities can
bring out very rich structures when the ratio is not rational [28].

In a lattice system, electrons in a magnetic field can be described by the tight-binding
Hamiltonian

H=T +Ty+ T/ +T] (22)
whereT, and7, are thecovariant translationoperators defined by

T, = ZCLH’ncm’né‘%" (23)

T, = chn,n-ylcm,né%’" (24)

m,n

wherec,, , is the annihilation operator for an electron at sitg n). The phase factor; ,
andé,, , are related to the flux per plaquettg , at (m, n) by

Oty = A6, , — A0, = 2T P (25)
where the difference operators, and A, operate on a lattice functiof, , as follows:

Ax fnn = futrn = finn (26)

Ay fon = fnt1 = fun- (27)
This lattice HamiltonianH also has a local (1) gauge symmetry, i.e., it is invariant under

¢ — Q¢ (28)

& — 00 (29)

Q=1 Vj = (m,n). (30)

The form of the Hamiltonian above is sometimes interpreted as an approximation, the so-
called Peierls substitution. One might consequently be concerned about the accuracy of the
approximation. However, since the model above has the same symmetry as the continuum
model, the present lattice Hamiltonian has a fundamental importance beyond that of a simple
approximation. In figure 1, the energy spectrum of the lattice system is shown.

This is the famous Hofstadter butterfly diagram which includes a rich structure [12].
In the weak-field limit¢ — 0 and in the low-density limit, the spectrum appears to be
composed of many straight lines. Actually it gives the Landau level in the continuous limit.
(See appendix A.)

Next let us consider the symmetry which is related to the translations of the lattice
system. (See reference [29].) The covariant translatignand 7, do not commute with
each other. For a one-particle state, ,) = cj}w|0> which is localized at the sitén, n),
their operation is as follows:

TyTxl“Ijm,n> = ei271¢,,,(,, Tx T\|"Ijmn> (31)
In the following, we choose a special gauge. In this case, there is an important

symmetry of the Hamiltonian, described by the magnetic translation operﬁ,(tcmad T,
which commute with the Hamiltonian:

They are explicitly given by
fx = X:Cj;hLl,nCma”eix};‘/x (33)

f"), = Z cL’anm’néX’”‘” (34)
m,n
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0.0 o 1.0

Figure 1. The energy spectrum of the lattice Hamiltonian with a uniform magnetic field as a
function of the flux per plaquette.

where the phaseg,; satisfy the relations

AXXI;C‘I,I‘L = Axer)ii,n (35)
Ay Yo = Dibi (= 8305 + 2 D) (36)
AXXI:;JL = A\eén (: A-’Ceii;,n - 2ﬂ¢m7”) (37)

A)'Xrﬁ,n = A)’Qi%,n’ (38)

In the parentheses, we have used equation (26) and equation (27). We can easily solve them
to give
X = O + 27000 (39)
Xfrz,n = er)r;,n - 27Tm¢m.n (40)
which are gauge dependent.
In the following, let us assume that the magnetic field is uniform and rational, that is,
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with mutually prime integerg andg. We select a Landau gauge:

65, =0  6),=2t¢m. (42)

m,n

These do not commute with each other. However, one can explicitly checkthat
and 7, commute with each other. Thus we can have simultaneous eigengtatés)

of H, T and f}., which are specified by the momentum in the magnetic Brillouin zone
(0< ke < 21/q, mod 2t/q, 0 < k, < 27, mod 2r) (the Bloch theorem), as follows:

H|k)mky> = E(kaky)|kaky) (43)
Tk, ky) = €9 |k, k) (44)
Tylky, ky) = €5 Jky, ky). (45)

3. Quantization of the Hall conductance using the gauge invariance: Laughlin’s
theory and Halperin's edge states

The Hall conductance has a fundamental topological meaning, as first pointed out by
Laughlin in his gauge invariance argument [9]. The effect of edges is essential in the
argument which was stressed by Halperin [10]. We review these results briefly.

®B

A ——— -

Vv

X

Figure 2. The cylindrical geometry for using the gauge invariance given by Laughlin. In
addition to the magnetic field, there is an Aharonov—Bohm fluk through the hole.

In a cylindrical geometry (figure 2), the Hall current along the cylindrical direcfion
is given by
JIE
L=
S0
whereE is the total energy of the system addis the Aharonov—Bohm (AB) flux through
the hole of the cylinder [4]. This is known as a Byers—Yang formula. Here let us discretize

(46)
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\—/

Figure 3. A schematic energy diagram for the Landau levels and edge states in a continuous
theory.

this formula as

AE
AD
and take the difference i®, A®, as the flux quantun®y = i/e, where we set = 1

(we use this convention throughout this article). In a physical situation, let us consider an
adiabaticprocess to change the AB flux by just one flux quantiigvery slowly, to keep

the state in the ground state of the snapshot Hamiltonian. Here we assume that the Fermi
energy is in the energy gap or in the energy region of the localized states. When the change
is adiabatically slow (the energy gap is sufficiently large), the systems before and after the
process are gauge equivalent via the so-called ‘large’ gauge transformation (see appendix
B). Therefore the electronic spectrum is unchanged. A possible effect of this process is that
some electrons are carried from the left-hand (right-hand) edge to the right-hand (left-hand)
edge. Such a number of electrons is, of course, an integer (we cannot specify the integral
value, however) and we denote itasThe change of the AB flux can be understood as the
electric field along the transverse directionand we denote the voltage across the cylinder

by V.. Then the energy cost of the process is giverN¥y = neV, (A® = ®g). Therefore

using equation (46), we have for the Hall conductasge= —o, = 1,/ V,:

62

Ory = =1 (48)

By this beautiful argument, the integral quantization of the Hall conductance is demonst-
rated explicitly. We only use the gauge symmetry which is preserved even in the system
with randomness. A necessary condition of the argument is the validity of the adiabatic
assumption used above, which is justified when there is an energy gap between the ground
state and the excited state. Usually in the integer QHE, this energy gap can be identified as
the Landau gap. Therefore this argument is stable unless the randomness is strong enough
to collapse the Landau gap.

This is beautiful and essential in the QHE. However, one cannot obtain the quantized
valuen from this gauge invariance argument, above. In a continuous system, this value is

I, = (47)
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fixed by Halperin as the intege¥.q, Wherengeq is the number of bulk Landau levels which
are below the Fermi energy [10]. This is explained as follows. When one takes the Landau
gauge and diagonalizes the guiding centre alongetd@ection, R,, each one-particle state
is specified by the momentum along thelirection,k,. In this gaugeR, = —/%k, and the
corresponding wavefunction is localized neas (R,) = —/°k, in a stripe shape. For the
bulk states (states witfR,) away from the edges), different states with momenkyrspan
a basis of the Landau level even when there is randomness. On the other hand, localized
states near the edges feel an edge potential and generally have high energies compared
with those of the bulk states. Therefore the Landau levels have finite slopes near the edges
(see figure 3). If the cylinder has a finite length along they-direction, the momentum
ky, = 2mn,/L, is discretized and the AB flux also enters the problem in the form

k4 2r o L gt /%0

®o Ly L,

Therefore, changing the AB flux by one flux quantum shifts theto the neighbouring
one, which corresponds to shifting the state spatiallydy/L,)I? in this gauge. (See the
later discussion for the lattice system.) From figure 3, one can confirm that the number of
states, which are carried form the left to the right during Laughlin’s adiabatic process, is
the number which are filled Landau levetgyeq. Therefore,

e2

Ty = Miiled (50)

This is the explanation of the QHE, in terms of edge states in the continuous system.

This gauge-invariant, edge-dependent argument is one of the topological aspects of the
QHE.

ny: integet (49)

4. The topological meaning of theo, in terms of bulk states: Chern numbers on
the Brillouin zone

The importance of gauge invariance which was revealed by Laughlin [9] and Halperin [10]
is one of the topological effects in the QHE. When one considers the system on a lattice,
another topological meaning of the Hall conductance becomes clear which originates from
the non-commutativity of the magnetic translation operators. Therefore we may say that
the geometrical phase of the system gives another topological aspect of the QHE. This
topological character of the Hall conductance was first established by Thouless, Kohmoto,
Nightingale and den Nijs (TKNN) [14, 15, 30-33] for the bulk state [14], and later its
meaning in relation to the edge states was discovered by the present author [16—18]. In this
section, we will review the TKNN theory and discuss the topological meaning of the Hall
conductance using the bulk state language.

Let us focus on the dc Hall conductaneg,, since we can clearly demonstrate the
topological origin via the adiabatic approximation [30]. (Also we can derive a general
expression for the conductance via the Kubo formula [34, 35]. Itis, however, not topological
in general as shown later.)

We impose a periodic boundary condition onlanx L, lattice. The effect of an external
electric field applied along the-direction is included in the problem vi&, = —dA,/dr.

The AB flux, @, along they-direction is also considered. Then, the Hamiltonian is time
dependent and is given by

. Ex . @1
H(t, &) =T.exp| —i2r—t )+ Tyexp|i2r—— | + HC (51)
(O : dq Ly
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where®qy = h/e is the flux quantum.
The current operator along thedirection is given by
oH i€ 1

v =50 T FL, e 52)

In the Landau gaugé;’, = 0, 6;,, = 2r$m, the Hamiltonian and the current operators
are written in the momentum representation as

T dk, [T dk,
H(, &) =L, L, 5 Hkt, @
(1, ) on S H1, @) (53)

H(k,t, ®) = exp(i <kx + an;‘r»cf(k)c(k)
0

. o 1
+ exp(—l (ky - h))&(k + Ak)c(k) 4+ He (54)
do L,
where Ak = (2r¢,0). Here we have used the fact that there are two translational
symmetries, in both the- and y-directions. (This is not the case when there is an edge.)
Since

ad 1le
—H(k,t,® o Hk,t,®)=——_0 H(k,t, P 55
gg k1 @) = —g T d Hik. 1, @) = — 7 2 Hk. 1, @) (55)
we have another expression for the current operator:
/ / —= O H(k, 1, D). (56)
= vl

To obtain the ground statéG (¢)), of the time-dependent Hamiltonia# (¢, ), using the
adiabatic approximation, let us expaj@(r)) in a complete set of the eigenstatest)) of
the snapshot Hamiltonian

H(t, ®)|a(r)) = Eq(#)|a()) (57)

as
G() —exp( / dr' Eg(t >)Zaa(t>|a(t> (58)

When E,(¢) is energetically well separated from the rest of the spectrurff @f ®), we
can approximately integrate the Sétimger equation to obtain the coefficiemtsr). The
result is written as

|G (1)) = €7eem exp( / dr’ E,( )> <|g(t) +ih Z |ag) (3(_0?%(;))) (59)
aFtg

iVBerry = / dr (a|a) (60)

whereg(¢) is the lowest eigenstate of the snapshot Hamiltonianygad, is the Berry phase
associated with the present adiabatic process [3&L« is not important in the following
argument.)

To justify the adiabatic approximation, the existence of an energy gap is crucial. The
ground state has to be separated for the rest of the eigenstates by a finite energy gap.
Alternatively, the matrix element could be negligible, which is the case when the Fermi
energy is in the energy region of the localized states. We assume that the flux per plaquette
¢ is rational,¢ = p/q, with coprime integerg andg. Then the energy spectrum consists of
g energy bands. Each energy band corresponds to the Landau level in the continuous limit.
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(See appendix A.) Then equation (57) is reduced go<a; matrix eigenvalue equation with
parameters = (k,, k,):

J

whoselth eigenvalue gives the energy of tha bande’(k, ). Now the parameterk, and
ky runink, € [0, 27 /q] andk, € [0, 2], which defines the magnetic Brillouin pde]s (-0
We assume that the Fermi energy is in tie energy gap. Then the ground stgér)) is
explicitly written as

q
hij(k, Y] (k, 1) = €' (k, Y] (k, 1) (61)
=1

J
1g0) =] . 0I0) (62)
k =1
q
(k) =) wic (ke + 27m/q, ky) (63)
m=1

wherexpf is a coefficient of the eigenvector in equation (61).
The current along the-direction in the ground state is evaluated within the adiabatic
approximation as

(Iy) = (GII,|G) — (gl1ylg) (64)

. o’k o, H 0 — {0 o H

_Lxle/ Y (g0, Hla) (] 8) — (9 glor) (|, H|g) )

Tiez (2m) atg E, — Eg
_ Exine / d2k Z <g|3k‘H|Ol><Ol|3kxg> - <3kkg|05)(oz|8k‘H|g) (66)
2rdo Jrz,, praryd E, — E,

e 1 ’

= foi./ dok Z<g|3k}.a)<0{|8k,xg) + (akxgl(){) (a|8kyg) (67)
h 27i Y oyt
e 1 5

= foi‘/‘ d k (<8kYg|ak)g> - (3k‘g|3/gg)) (68)
h 2mi T

where we have used the relatiois= E.L,, 3, H = —21n(E, /®o) 9, H and{«|dy, H|B) =
(Eg — Eq) (|3, B). Since the Hall conductance satisfies = —o,,, we obtain

ol Pk = —%2% - dk; x dk; (0, g1k g) (69)
e 1
=~ o " dk, dky (Vi x (8IVkg)).. (70)
Since the ground statg) is a filled Fermi sea belowE, it also can be written as
. 2 J
o )_C]},mek == 121: C (71)
C = —leﬂ [ /T dk, dk, [V x Al (k)]. (72)
with
Al(k) = f vl (k) Vi, (K). (73)

m=1
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This is the formula obtained by TKNN [14, 15, 30]. Now let us discuss the topological
meaning of the above expression.

An important observation here is that the magnetic Brillouin zfigg, is topologically
a torus rather than a rectangle [15]. Since a torus does not have a boundary, an application
of Stokes’s theorem to equation (72) would giwg, = 0 if A’(k) were well defined on
the entire torusTy2,,. A possible non-zero value ef,, is a consequence of a non-trivial
topology of A/ (k). In order to better understand the relevant topology, let us examine the
effect of a phase transformation of the wavefunction:

Yl (k) =Pyl (k) (74)

where f (k) is an arbitrary smooth function d&f over the Brillouin zone. The corresponding
‘gauge’ transformation ford! (k) is

Al(k) = Al(k) +iV, f (k) (75)

which leaveso,, invariant. The non-trivial topology arises when the phase of the wave-
function cannot be determined uniquely and smoothly over the entire Brillouin zone. The
gauge transformation defined above implies that the overall phase of the wavefunction can be
chosen arbitrarily. It can be determined, for example, by demanding thatht@mponent

of |k, I) be real. However, this is not enough to fix the phase over the Brillouin zone, when
wé(k) vanishes at some points. Let us denote these zerdsg yith s = 1,..., N, and

define small regions around the zeros Ry = {k € Tijg, Ik — k¥| < €, W] (k) = 0},

€ > 0. We may adopt a different phase conventionkinso that another component, for
example,w{(k), is real. (We denote it afk,l)’.) Then the overall phase is uniquely
determined over the entire Brillouin zorf&,. At the boundariesy R, we have a phase
mismatch:

k1) =/ ® k. 1). (76)
By using the above formulae for gauge transformation, equations (74), (75), we have [15]
N
aiy =— Zns (77)
s=1
1
ng=_—@¢ Vfk). (78)
27T IR,

Here then,s must be integers since all of the state vectors must fit together when we complete
full closed paths around eadty. This implies that the zeros of a certain component of the
Bloch function define vortices in the Brillouin zone, whose integral vorticities contribute to
the Hall conductance. While the phase of the wavefunction depends on the phase convention
(gauge choice), the total vorticity is a gauge-invariant quantity. In this way, in principle,
counting the total vorticity of the (1) phase of the Bloch wavefunction gives the bulk Hall
conductance. We use the above expression later to discuss the relationship between the bulk
Hall conductances* and the edge Hall conductanc§’®

Before closing this section, we comment on the frequency-dependent conductance,
including the longitudinal one. General expressions for the conductance tensors can be
obtained by using the Kubo formula. We simply cite the results here [35]. (Some of the
results are also obtained in reference [34].) They are expressed as

oy (@) = agp + (fxsy (w) (79)
1
top _ _— 2 /
o= | §l k)Y x (K, [V ]k, 1) (80)
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frke) — f1(k) how
(El'(k) — E"(k))2 hw — 0+ E' (k) — El(k)’
(81)

Sinceo},(w = 0) = 0, the static Hall conductivity is given by:” which is given by a
topological invariant. The longitudinal conductivity., (w) is given by

o (@) = ol () + 0 (v) (82)

1 , ,
s _ a2k U ol (K
o, (@) 211 e ];l/ v, (R)vy' (k)

D _ - 2 gy 2 ol

O (@) = o MBZol k lelvx R)|8(Ep — E'(k)) =0 (83)
S () — i/ 2 w2 fk) — fl(k) ho

@ =g ) d > 1 (k)] E R — BV b2 ie 0+ B — By Y

I

whereo? (w) is the so-called Drude term ang (w) is the contribution from interband
scattering processes. The real parts are evaluated as

Reol (w) = D(q)8(hw) (85)
D(q) = % /M ~ &k ; ! (k) *8 (Ef — E' (k)
1 }5 dk |v"’m(k)|2; (Er is in themth band)
=1 2Jpnw=kr ! IVE™ (k)|
0 (EF is in the energy gap).
(86)
and

1 P2 _ , 1
Reo! (@) = 3 / &k Y RS ) — [N + E' () — E' (k)

MBZ e
1 ) 1
. f de v’ k) o . (87)
he |, g s pr T E 0O~ (=Fo IV (E (k) — EF (k)]

where f!(k) = 6(Er — E'(k)). Only the zero-frequency Hall conductance has any topo-
logical meaning.

5. The topological meaning of theo,,, in terms of edge states: winding numbers on
the complex-energy surface

The topological meaning of the Hall conductance of the Bloch states (bulk state) is clear,
as discussed in the previous section. The Bloch state is defined in the periodic system. One
can also define it when the system size is infinite. In any case, the system does not have
a boundary. In this sense, the Bloch state is considered as a bulk state. In the discussion
of the quantized Hall effect, however, the importance of edge states was pointed out at the
beginning [10].

The Hall conductance can be expressed in terms of the edge states on the lattice system,
as has been done by Halperin for the continuous system. Then the natural question is that
of whether or not the Hall conductance of the edge state has topological meaning. In this
section, we give the answer to this questionddeshave a topological meaning, which is
completely different from the bulk one (TKNN) [16].
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5.1. Setting up the cylindrical system

To realize the system with edges on a lattice, let us consider a cylindrical system (figure 4).
This geometry has been treated numerically by several authors [36—40]. We try to discuss
the problem analytically as far as possible.
In this section, let us start from the tight-binding Hamiltonian written in the following
form:
L,—2 Ly . .
- Z Z[txcinﬂ,ncm.n + tye'(znq’/%)/L"'cjn’nﬂézwmcm.n] +Hc. (88)
m=1 n=1
We assume that the system sizd.isalong they-direction and impose a periodic boundary
condition in they-direction. The factor ‘&7 ®/®)/Ly represents the flus (in units of flux
quanta,®g = hc/e) through the hole (figure 4).
We use a momentum representation in thdirection:

1 ‘
Cnon = —F7— Z elk’vncm (kV) (89)
VL G
wherek, takes the discrete valugs = 27n,/L,,n, = 1,..., L,. Then the Hamiltonian
is given as
H= Z H (ky) (90)
ky

H(ky) = —t, Z [e, 41 Gky)em(Ky) + chy (e 2 (k)]

—21, Z cos(k o 2n¢m>cjn(ky)c,,, (ky). (91)

For a one-particle stat@ (k,, ®)) = ), W (ky, d))cfn (k,)|0), the Schodinger equation
H|V) = E|V) is reduced to that of a one-dimensional problem with paraméteasid :

b Ws1(ky, D) + W,y (ky, D)} — 21, cos<ky —om o - 27r¢m> W, (ky, ®)
oLy
= EV,(k,, D). (92)

It is the Harper equation which has been discussed in various different contexts [41, 12, 13].
The boundary condition for realizing the cylindrical geometry is

Wo=w, =0. (93)

The energy spectrum of the system is determined by equation (92) and equation (93). We
solve this eigenvalue equation using a transfer matrix. Let us write equation (92) in the
following matrix form:

Wpiale by, @) - W, (e, ky, @)
( U, (e by, ©) ) = Mnle by, T) (wml(e,ky, cb)) (°4)
W (e, by, @) = (—e — 2r cogk, — 271r<1>/c1>0Ly — 27 pm) —01> (95)

wheree = E/t, is a reduced energy and= r,/t, represents the anisotropy of hopping.
(We do not explicitly write in thek,- and ®-dependence in the following.) We assume that
the system size along thedirection is commensurate with the flux; that is, we assume
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(,Ly), (LAL)

(1,1) (L-1,1)

Figure 4. The Laughlin—Halperin geometry. We assume that the system is on a square lattice.
The system is periodic along thedirection and there are two edges= 1 andx = L, — 1,
along thex-direction.

L, = ¢l for some integel. This assumption is needed just for technical reasons. Then,
we get a reduced form of the transfer matrix:

Wy o1(e) ) 1 W1
( v, (€) )_[M(E)] (%) (99)

M(©) = My (€)M, 1(€) -~ Ma(e) My (€) = (%zgg %z;g) (97)

where M11(€), M12(€), Mo1(e) and Moy(e) are polynomials ire of degreeg, g —1,q — 1
andgq — 2, respectively.

All of the solutions of equation (92) with various boundary conditions are obtained
for various choices ofly and W;. The eigenvalue problem equation (92) is replaced by
an algebraic equation using this transfer matrix. When the boundary conditions along the
x-direction are¥y = 0 and ¥, = 0, we can choos&, = 0 (andW¥; = 1 to fix the
normalization). Then, the energy eigenvalues are determinedMiy)’),, = 0, since
U, (€) = (M(¢e)")21. From a direct calculation, we know tha¥ (¢)"),; is a polynomial in
¢ of degreeL, — 1 and hasl, — 1 real roots, since they are eigenvalues of the Hermitian
Hamiltonian.

By this procedure, the problem of two-dimensional electrons in a uniform magnetic field
is reduced to a one-dimensional problem with the parameéteesid ®. This is related to
the discrete Hill equation, and several studies have been done in the context of non-linear
lattice theory [42—45].
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5.2. Analytic continuation of the energy: the energy band and the edge state

In this section, we investigate the spectrum of the one-dimensional problem given by the
previous section, paying special attention to the edge states. The boundary condition of our
problem is

v, =Yy=0. (98)

The spectrum of the problem is discrete and is given by the roots @f;the- 1)th algebraic
equation

(M(€))21 = 0. (99)
First we point out that solutions of
M2z1(e) =0 (100)

satisfy equation (99), since a product of tri-diagonal matrices is also tri-diagonal. We write
the solutions of equation (100) as (u; < uj,i < j) [46], which are energies of edge
states as we see below.

In fact, equation (100) determines the energies of the edge states. Whene-sét
andW¥; = 1 in equation (96), we get

Woprr(p)) = [Mu(u]*. (101)

If we use the usual normalized wavefunction [43[(_;, _; |¥.|?> = 1) and the number
of sites L, — 1 is sufficiently large, this means that the state is exponentially localized at
the edges:

[M11(1)| < 1: localized atx ~ 1 (left-hand edge) (102)
[M11(uj)| > 1: localized atv ~ L, — 1 (right-hand edge) (103)
This proves thaj; is the energy of the edge state. (Whe#h ()| = 1, the edge state is
degenerate with the bulk state. However, this does not occur generally. This phenomenon

is important in its relation to the bulk topological discussion.) Equation (100) means that
the wavefunction satisfies
v, =0 v, =0. (104)

This is a boundary condition of g-sites(g = ¢ — 1) problem with equation (92). The
eigenvalues of thg x g matrix determine the energies of the edge states in this way.

There is an important relationship between the spectrum of this fixed-boundary system
and that of the infinite periodic system [42, 43]. If we consider the system as infinite
along thex-direction instead of having edges, the one-dimensional Hamiltonian (92) has
a translational invariance of periad Then the Bloch (Floquet) theorem requires that the
wavefunction of this infinite-size system satisfies

Wiq(€) = p(€) Wy, (€) lp(e)] = 1. (105)

This should be compared with equation (104). By applying this equatiom fer0 and 1,
one obtains thap is an eigenvalue oM and thatp is a solution of

P> —A©)p+1=0 (106)
where

A(e) =TrM = Mji(€) + Mao(e). (207)
We have used the fact that

detM (€) = Mia(€)Maz(e) — Maz(e) Mz (e) = 1 (108)
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since det,, (¢) = 1 for all m.
There have been many investigations of the spectrum of this periodic problem and we
know that it consists of the energy bands (continuous spectrum) [14, 30, 11-13, 48, 49]

€ €[rg, Ao, ., [hojo1, A2l oo, [Aog—1, A2g] (A < Aj,0 < j). (109)
These energy bands are determined by the condition
[A@©] < 4 (110)

On the other hand, the energies of the edge sjatestisfy M11M», = 1 by equation (100)
and equation (108). Then we have, by equation (107),

1 2

[Aw))? = <M11+ ) > 4. (111)
M

This means thaf; lies in the energy gaps or at the band edges. Furthermore, we can show

that each gap has only one edge state [42, 43]:

Wi € [A2j, Aajqa] j=1...,8(=q-1 (112)

where py;, A2j11] is the jth energy gap from below. (See appendix C.)

Notice that the boundary condition of our problem is not equation (104), but equation
(98). Equation (98) has many solutions other than the solutions of equation (100). But we
can show that these extra solutions are in the energy band regions. Therefore they are not
the edge states, but are bulk states if the system is sufficiently large.

In the above discussion, we considered the infinite system with peri@®ut it is also
possible to consider the infinite system with period(= I¢g). In this picture, the spectrum
is composed of., bands [50]:

[5‘1» 5\2]1 ey [5\,2]‘,1, 5\-2j]7 ey [XZfol» 5‘21”]' (113)

However, the whole spectrum should remain unchanged. Thus, succdeloamgls
touch each other and compose one band:

A2(i—1+2 = A2i-1)+3

Aali-1+2) = Aaa(-1)+2)
2A(i-1)+2) 2A(-D+2j+1 (114)

5\21(1‘—1)-&-21—2 = 5\2](1‘—1)-&-21—1
i=1...,gqandj=1,...,] -1

Using the same argument for equation (112), the energies of our boundary condition,
equation (98), are given by these degenerate eneﬁgj,@smzj, i =1...,9,] =
1,...,1 — 1 (which are in the energy bands and of the bulk states) and the energies of
the edge stategs;, j = 1,...,¢ (= ¢ —1). Counting the number of roots, the above are

all of the solutions of our boundary condition, equation (98), and all of the edge states are
given byu;, j=1,...,8.

When L, is sufficiently large, the discrete spectrum for the fixed boundary condition
converges to a continuous energy band plus the edge states. Thus the spectrum is asymp-
totically given by the energy band equation (109) and the edges gtaiesthe L, — oo
limit.
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@

Figure 5. (a) Two Riemann sheets (Riemann spheres) with ¢ + 1 cuts which correspond

to the energy bands of the system. The Riemann surface of the Bloch function is obtained by
gluing the two spheres along the arrows near the cuts. (b) Gluing two Riemann spheres with
g = g + 1. (c) The Riemann surface of the Bloch function under the rational dlux p/q.

The number of gaps, is the genus of the Riemann surfaeg.and g; are the canonical loops
(generators of the fundamental group) on the Riemann surface.

5.3. The winding number of the edge state on the Riemann surface (complex-energy
surface)

Here let us consider the Bloch function at site The Bloch function is obtained via a
different choice ofly andW; from those for the fixed boundary condition discussed above.
For the Bloch function'(¥g, W) is an eigenvector off with the eigenvalug (see equation
(105)). From equation (106), we gét = ¢)

1
p(z) = é(A(z)—vA(z)2—4). (115)
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(b)

Figure 5. (Continued)

When we setW; = 1, the Bloch function at sitg is given by

M11(z) + Maa(z) — V/A()2 — 4
—M11(z) + M2x(2) + \/m

Here we use a Riemann surface of an analytical function

0=vVA@?2—4=/(z— 2@ —22) (2 — Agy_1)(z — A2y) (117)
or a hyperelliptic curvep? = A(z)?> — 4, to define the square root consistently. In the
above expression, we write the energys a complex variable. In this way, the Bloch
wavefunction is defined on the gengs= ¢ — 1) Riemann surface (which is a complex-
energy surface).

The branch cuts of this function are specified by ¢henergy bands (equation (109)),
and we have to use two sheets, or Riemann sphé&tésafd R™), to define the Riemann
surface. (The Riemann spheres are obtained by compactify#ago to one point.)

The Riemann surface is obtained by gluing the two sheets at thes#s along the
arrows (see figure 5). The genus of the Riemann surfage=ig; — 1, which is the number
of energy gaps.

The branch of the function is specified by requiring

VA@)?2-4>0 (z = —oo on the real axis oR™). (118)

V,(z) = — M>1(2). (116)
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@: p=2q=7; r=1.0

0.0 ky o

Figure 6. Asymptotic energy spectra of the two-dimensional tight-binding electrons with edges
under the rational fluxp = p/q. The number of sites along thedirection isL, — 1 ~ oo

but we assume that the size is commensurate with thegfluk, = ¢!, I: integer. The shaded
areas indicate the energy bands (asymptoticdlly,— oo) and the lines indicate the spectra

of the edge states. A solid line indicates that the energy of the edge state is on the upper
Riemann surfac&k™ (the state is localized near~ 1) and a dotted line indicates that it is on

the lower Riemann surfack~ (the state is localized near~ L, — 1). (a)¢ = 2/7,r = 1.0;

Cu) ~ B> Cua) ~ B3, Cpa) ~ P32, Clua) ~ BZ, Clus) ~ Bs*, Clue) ~ B

(b) ¢ =3/7,r = 1.0; C(ur) ~ B2, C(p2) ~ B3, C(ua) ~ B3, Clua) ~ B, Clus) ~ B3>,

Clue) ~ BE; (€) ¢ = 2/5,r = 1.0; C(ua) ~ By 2, Clu2) ~ B3, Clug) ~ B3, Clua) ~ B3,

d) ¢ = 1/6,r = 10; C(ua) ~ B}, C(ua) ~ BZ, C(ua) ~ B3, x =2, C(na) ~ B;7,

C(us) ~ /35’1 (in the third gap, the gap closes at some valueg,ofthen the topology of

the Riemann surface changes and we cannot define the winding number without ambiguity);
(e) ¢ = 3/7,r = 0.5; compare with (b).

Then if z lies in the jth gap from below on the real axis (note that there are two real axes),

a(—1)7/A(Z)2-4>0 z: real onR* (@ = +, —). (119)
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(b): p= 3,q9=7; r=1.0

0.0 ky om

Figure 6. (Continued)

At the energies of the edge states, M11M» = 1+ M1oM>; = 1 by equation (100) and
A% — 4 = (My1 + Mp)? — 4 = (M11 — M»y)?. By equation (119), this means that

VAW)? = 4= a(=1) |M1a(1;) — M) (nj € R a0 =+, -). (120)
By equations (116), (119) and (120), we get
M1y + Mo — a(=1)! | M1y — M)
—Ma1 + Moz + a(—1)/ [M11 — Ma)|
where|d| « 1.
From a simple calculation, we can also show that
< -2 j: odd
A(e) = My1(e) + Maa(e) € € [A2j, Agj41] (ON R¥) (122)
>2 j: even

when the energy is in the jth gap. From equations (102), (103), (121) and (122), we get
important results.

W, (uj +8) ~ — My (1; € R™) (121)
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(c): p=2,g=5; r=1.0

3.0}

0.0 Ky o

Figure 6. (Continued)

The energy of the edge state gives a zero point of the Bloch function on the genus-

g (¢ = p/q,g = g — 1) Riemann surface. When the zero is on the upper sheet of the
Riemann surface, the edge state is localized near the left-hard], edge. When the zero

is on the lower sheet of the Riemann surface, the edge state is localized near the right-hand,
x ~ L, — 1, edge[51].

The above considerations are all for fixedand ®. As seen from equation (92), the
spectrum is a function of, — 27 ®/L,. Actually, the allowed values of, are discrete
since our system is finite in the-direction. But we can change it almost continuously when
L, is sufficiently large. Even iiL, is small, we can extrapolate between differépg by
changing®. Keeping this point in mind, we considéf as a continuous variable for the
time being.

In figures 6, we show asymptotic energy spectra of the two-dimensional tight-binding
electrons with two edges under the rational fllix= p/q. The shaded areas indicate the
asymptotic £, — oo) energy band regions and the lines indicate the spectra of the edge
states. A solid line indicates that the edge state is localized =t 1 and a dotted line
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(d): p= 1,9= 6; r=1.0

Figure 6. (Continued)

indicates that it is localized at ~ L, — 1 (equation (102) and equation (103)).

The Riemann surface of the Bloch function is given by the fikedBy changing the
ky, let us consider a family of Riemann surfaces. The surface can be modified by changing
ky; however, the topology of the Riemann surface cannot be changed unless the energy
gaps close. In other words, the topology of the Riemann surface does not change if there
existg = ¢ — 1 energy gaps in the two-dimensional problem of tight-binding electrons in a
magnetic fieldwithout boundariesWe know that there is a degeneracy at the zero mode in
theq = even case [31, 30, 48, 49]. Furthermore, the gap-closing phenomenon occurs when
we include nearest-neighbour hoppings [49]. In these cases, the topology of the Riemann
surface changes at some valugpfand that introduces an ambiguity in the quantized Hall
conductance,,, sinceoy, is given by a topological number on this Riemann surface as we
show in the following. For example, we show the result for ghe 6 case in figure 6(d).
It clearly shows the degeneracies at zero energy [48, 30, 49]. At these degenerate points,
one of the holes of the Riemann surface collapses and the topology of the Riemann surface
changes. We will discuss the effect of this topology change in relation,tdater.
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p= 3q=7; r=0.5

Figure 6. (Continued)

First of all, the spectrum is a periodic function &f with the period 2. This implies
that the zero point o/, that is, the energy of the edge stgig, forms a closed loo@ (u;)
on the Riemann surface on changingfrom 0 to 2r. Whenu; moves to a different sheet
of the Riemann surface, we glfi1(u;) = Mo(u;) = %1, that is,u; has to be at the band
edge. Using the above discussions, we can follow the movement oh the Riemann
surface using figures 6. The interesting fact is that this movement on the Riemann surface
is not always monotonic (for example, s€€us) in figures 6(a) and 6(b).)

On the genug Riemann surface, all kinds of closed loop (the first homotopy group)
are generated by theg2canonical loops (generatorsy; and g;, j = 1,..., g, with the
defining relation]_[f:l(ajﬂjaj‘lﬂj‘l) = 1. Herel means that the loop can be collapsed by
continuous change. See figure 5(c). The intersection number of these curves (including
directions; see figure 8) [42, 44)(«;, Bi) is given by

I(aj, Br) = djk. (123)
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Figure 7. The edge state energy moves on the Riemann surface. The movement is not necessarily

monotonic.
A A
I(A,B) = +1 I(A,B) = -1

I(A,B) = -1+1-1=-1

Figure 8. The intersection numbef(A, B) of two curvesA and B. The intersection points
contribute+1 or —1 according to the direction.

All of the closed loops on the surface are spannedrpwnd ;. We can observe that
w; movest times around thgth hole for some integer, that is, homotopically
Cuj) = ,3; (t: integep. (124)
This means that

I (o, C(pj)) = 18y (125)
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even if the movement oft; is not monotonic. Clearly this intersection number is a
topological number on the Riemann surface [44]. It is also a winding number of the
edge state around thgh hole.

Here also, we get interesting results.

The winding number of the edge statg which is given by the number of intersections
I(aj, C(uj)) between the canonical loap; on the Riemann surface and the trace.gf
C(u;), gives the quantized Hall conductaneg when the Fermi energy lies in thygh gap:

62
Oxy = _Zl(ajv C(,LL/)) (126)

The quantized Hall conductance is expressed in terms of a new topological number
on the Riemann surface. This will be understood from the following example using the
Laughlin—Halperin geometry [9, 10, 52]. Let us imagine that the Fermi energy lies in a gap
as shown in figure 9.

Figure 9. A schematic diagram of the edge states in the energy gap. The circles in the figure
denote allowedk,-points of the edge states. In the left-hand panel, the state is in the ground
state. On changing the central flux threading the hole of the system adiabatically from O to 1,
the ground state is connected to the excited state as shown in the right-hand panel. The solid
lines indicate where the state is localized near the left-hand edgel and the dotted lines
indicate where it is localized near the right-hand edge L, — 1. We can count how many
states are transported during the process by investigating the figure. This number is also related
to the intersection number (winding number) of the curves (see the text).

In the following, we consider the discreteness of the alloweexplicitly. In the ground
state, some of the edge states are occupied (black circles) and some of them are not occupied
(white circles) (see the left-hand panel of figure 9). Then let us increase the centrd flux
in the system adiabatically from 0 to 1. All of the states, including edge states and bulk
states, are labelled with their values /of. During the adiabatic process, the stateis
shifted to the staté&, — 27 ®/PoL,. For the initial and final states, the spectrum is the
same due to the (large) gauge invariance. However, the state has not necessarily returned
to the original state. In fact, the bulk states do return to the original states since the Fermi
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energy is in the energy gap. But the edge states do not return to the original state as seen
from the right-hand panel of figure 9.

In this example, we see two states carried from the right-hand edge to the left-hand
edge, but one state carried from the left to the right. As a result, just one state is carried
from the right to the left. (The winding number or the intersection numlder, C(;))
in this example is 1.) From this example, it is evident how one can reach a conclusion for
general cases. In general, when the Fermi energy lies iitthenergy gap, thaet resultis
that 7 («;, C(u;)) states are carried from the right-hand edge=(L, — 1) to the left-hand
edge ¢ = 1). Thus the energy of the processA¥ = (—I(«;j, C(u;))(—e)V, whereV,
is a voltage along the-direction. By the Byers and Yang formula, the Hall currépntis
given by [4, 9, 10]

AE
T AD
Thus we get the expression feg, given as equation (126).

The Hall conductance of the bulk system, is given by the first Chern number of
the U(1) fibre bundle on a torus (the magnetic Brillouin zone) [15] and it is a topological
invariant [31]. Here we can express, as a different topological numbef(«;, C(u;)),
on the Riemann surface of the Bloch function by investigating the edge states.

Now let us study several examples numerically. For an infinite system, we know that
oyy IS given by the solution of the following Diophantine equation for an integer

j=tp lt] < ¢/2 (modg). (128)

In this equation, we assume that the Fermi energy lies injthegap [53, 54]. Then the
Hall conductance is quantized as(e?/h) [14, 30]. Here we have obtained another method
for calculatingo,,, by calculating the winding number of the edge state. This means that
I(aj, C(p))) satisfies the Diophantine equation

j=1(.Cu)p  (modq) (129)

(see table 1).

We have performed extensive calculations for many cages (13) and confirmed
that the integers that we obtained from counting the intersection numbers are the same as
those given by the Diophantine equation. The Diophantine equation was originally derived
in the anisotropic limit using perturbation theory [14, 30]. For this anisotropic case, we
also performed several numerical calculations. In figure 6(e), we show one example for the
anisotropic case. Comparing it with the isotropic case (b), we see that the winding number is
the same. Furthermore, we see that the movement of the zero point on the Riemann surface
is monotonic. The Diophantine equation is also derived in the edge state picture [16].

=0y, Ve = —0y Vs (227)

y

5.4. Gap closing and Dirac fermions

Here, we comment on a gap closing which occurs in some situations [30, 48, 49]. One
example is they = 1/6 case (see figure 6(d)). Except for the third gap, we can define the
winding number without ambiguity. For the third gap, however, one ofgtiie- 5) holes
of the Riemann surface collapses at the degenerate points. At these points, the topology of
the Riemann surface changes and the winding number is not well defined. (See figure 10.)
This corresponds to the ambiguity of tleg,. At the degenerate points, two energy
bands are degenerate and the energies of the edge state are pinched by the energy bands
and also degenerate [55]. If we include next-nearest-neighbour hopping, the degeneracies
are removed and we get a well defined winding number for this case [56, 49, 57, 58].
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Table 1. Solutions of the Diophantine equation corresponding to figures 6. Compare these with
the winding numbers in figures §.= sq + p.

d=p/qg jthgap ¢t ox = (?/h)

o =2/7 -3
1
—2
2
-1
3
)
3
1
-1
-3
2
-2
1
-1
2
1
2
?
-2
-1

[

¢ =3/7
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¢ =2/5

o =1/6
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Figure 10. The Riemann surface of the Bloch function tbe= 1/6; (a) at a generdl, and (b) at
ky=2m(n+1/2)/6,n =0, 1, 2,3, 4, and 5, where the third gap collapses at the momenta and
the corresponding hole of the Riemann surface closes. Therefore the winding number of the
edge state in the third gap (around the third hole) is ambiguous when chagdirmm 0 to 2r.

In general, when the gap closes, two-dimensional Dirac fermions appear near the gap-
closing points. This is discussed in detail in another article [58].

5.5. Effects of randomness

As is well known, the existence of randomness is necessary for explaining the QHE
[9, 59, 10, 16, 60]. However, it is very difficult to include the effects of the randomness
completely in a large system. Here we rather artificially introdwee-dimensional
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randomnessn a two-dimensional system. The Hamiltonian is given by

equation(88) + Z V(m)c, ,cmn (130)

n,m

where we assume th&t(m) is a uniform random number in the interval V.4, V,.4]. This
potential is random along the-direction but uniform in they-direction. Bulk properties

such as the localization depend crucially on the dimensionality. However, as far as the edge
states are concerned, we hope that the artificial one-dimensional randomness still includes
some effects of the true two-dimensional randomness. In this case, we can perform a
Fourier transformation along thedirection, and the spectrum of the system is obtained by
diagonalizing the one-dimensional system with the paranigter

We show the spectrum of the system joe= 2, ¢ = 5, andL, = 125, with randomness
Vina = 0.5¢,, in figure 11. (With realistic randomness, our naive speculation is that we lose
the quantum numbel, and we cannot specify the state by givikg but that the spectrum
and the many-body wavefunction remain similar.)

Let us compare figure 11 with figure 6(c). It seems that there still exist edge states in
this random system. For the second and third gaps, we can clearly distinguish the edge
states from the bulk states. When the Fermi energy lies in these gaps, we can repeat the
argument of the previous section and obtain the quantized value of the Hall conductance.

In the first and the fourth energy gaps, however, there are several level crossings. Thus
we cannot perform the adiabatic process discussed in the previous section. This means that
oy, is not well quantized when the Fermi energy is in these energy gaps. By this argument,
we believe that the quantization is more accurate when the Fermi energy lies in the larger
energy gap.

The essential point of the above argument is that we have to treat one (macroscopic)
Schibdinger equation even if there is randomness in the system. The usual averaging
procedures for randomness are not suitable for the quantized Hall conductance, especially
for the edge state effects.

The bulk state argument discussed in the previous section is only applicable for an ideal
clean system and it is not easy to justify the argument for a realistic system. The occurrence
of the Anderson localization makes the situation quite subtle. On the other hand, the edge
states cannot localize in a macroscopic system, since the overlaps of the two edge states
at two different edges are exponentially small even in a random system. Therefore, one
anticipates that the edge states argument is stable against the effect of the randomness.

Another important comment is that two energy levels of the edge states at different
edges can cross (not repel) in suitable geometry (cylindrical) when one considers a spectral
flow in a macroscopic system. This can be understood as a realization of a new symmetry
in a random macroscopic system.

6. The relationship between the two topological numbers

As discussed in sections 4 and 5, the quantization of the Hall conductance can be explained
topologically in two ways. One is in terms of the bulk states and the other is in terms of
the edge states. Therefore we have two topological expressions for the Hall conductance.
Their topological meanings are apparently quite different. However, there should be some
relationship between the two. This relationship was made clear in [17, 18]. In this section,
we will explain it, following these references.

The two topological expressions for the Hall conductance, when the Fermi energy is in
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p= 2,q= 5,n= 124 rnd.pot.=0.50

Figure 11. The energy spectrum of the two-dimensional tight-binding electrons with two edges
under the rational fluxp = p/q where we include the effect of a ‘one-dimensional’ random
potential (t, = t, =1, V,,q = 05,p =2, =5, and L, = 125). See the text, and compare
with figure 6(c).

the jth energy gap, are

' 2 J
ol = — pe! (131)
=1
1
C=— / dk, dk, [V, x A'(k)], (132)
2t ) i,
and
. ez
o £ = —;I(aj, C(1))). (133)

The bulk expression is given by the integral over the magnetic Brillouin zone and the
edge expression is given by the winding number of the zero of the edge state energy on
the Riemann surface. To discuss the relationship between the two, we need to clarify the
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Figure 12. (a) A schematic energy spectrum. The shaded areas indicate the energies of the bulk
state and the lines indicate those of the edge states. (b) The shaded areas in (a) actually indicate
tubes parametrized by, . (c) The tubes in (b) are actualltori which constitute the magnetic

Brillouin zone forg energy bands.

relationship between the magnetic Brillouin zone and the Riemann surface (a complex-
energy surface).

Let us consider two different systems, with (cylindrical) and without (infinite or periodic)
edges. In both cases, let the system be periodic inytdaection. Therefore, by Fourier
transforming along the-direction, one obtains a one-dimensional Sclimger equation:

_t{\pnl+1(k)v) + qjm—l(ky)} -2 Coiky - 27T¢m)\ljm (k\) = E(k\)\ym (ky) (134)

Without edges, that is, if the system is infinite, this one-dimensional system has a
period ¢ when¢ = p/q, and the Bloch theorem tells us that the functidy satisfies
W, (ky, ky) = €5, (ky, ky) Wherei, ., (k) = i, (k) andk, € [0, 2r/q].

In this case, the vector potential in the magnetic Brillouin zoAék) is given by
Al (k) = ' (k)| Vilul(k)) = {ul (k)}*(k) Viul (k) and u!, is obtained fromi!, via
the normalization(u! (k)|u'(k)) = 1. When the Fermi energy lies in thgh gap, the
Hall conductance of the system is given @Ll%ﬁy- The wavefunctionu/(k)) forms
a U(1) fibre bundle on the magnetic Brillouin zone and the integral equation (132) is
the Chern number which is a topological invariant of th¢l)lUbundle [14, 15, 30].
This gives a topological meaning to the Hall conductance in the infinite system (without
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Energy

(b)

Figure 12. (Continued)

edges). In equation (132), there is a gauge freedom which arises frophdse ambiguity
of |u(k)). One can use another gauge to calculatg via the gauge transformation
v/ (k) = €/ ®ui (k) (f: real. _

As discussed in section 4, we dividg,, into several regions. We require théf, (k)
be an analytical function of, andk, in the magnetic Brillouin zone and choos€ = 1;
i.e., ii; = e'%. By using a geometry with edges, we give below an explicit construction
for Wy, (k) that satisfies these requirements . This convention is not compatible with the
periodicity of the magnetic Brillouin zone. However, we avoid this difficulty in the following
by using the freedom of the gauge transformation.

We denote the zero points of thé&; (k) in the magnetic Brillouin zone by =

1.---. ky,. Atthese pointsy, (k) = 0 also. Then we divide the whole magnetic Brillouin
zoneT3g, into N; + 1 parts as follows:
RS = {k € T, ||k — k]| <€, ¥/ (k) =0} (135)
N;
Ro=Tigz \ U RS (136)
s=1
wheres = 1,..., N;, ande <« 1. In the local regionsk¢, we use a phase convention for

|U7 (k)) to calculateAy (k): that U,{l(_k:) = uy (k). In the regionRy, we use another phase
convention forlV/ (k)) to calculateA, (k): thatV;/ (k) is real and positive. This convention
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Figure 12. (Continued)

for Rp is compatible with the periodicity of the magnetic Brillouin zone, provided that we
chooseV,, (k) = uy(k)e ¥® where&(k) = Im Inu)(k) = Im Ini) (k). This is well
defined sincela{(k) = e“i"xﬁq(k:) # 0 in R{. Then using Stokes’s theorem in each region,
we get from equation (132)

N,

. / 1 . .
i — (AT J
ol = ;:1 = 7%,?; dk - (A, (k) — Al (k)

N, N;
i1 i1

=_§ o dk - VE&(k) = — —% dk - VIm Iny, (k) 137
S=127T IR, S ;27-[ IR, q ( )

where we us¢f,, dk-V Im In€4* = 0 in the last line. Since the zero of the wavefunction

atk = k! gives a vortex-like structurey, is obtained as the sum of the vorticities in the
magnetic Brillouin zone [15].

Now let us consider a system in a strip geometry with edges, i.e., the system size is
infinite in the y-direction and finite in thex-direction [16]. We apply the transfer-matrix
method of the previous section. The boundary condition for the strip geometry is

W (ky) = W7 (k,) =0 (with edges. (138)

We assume thak, is commensurate with the flug, that is, L, = ¢/ with some integer
[. Mathematically, the difference between systems with and without edges corresponds to
a difference in boundary conditions. For the system without edges, the condition follows
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from the Bloch theorem:
W (ky) = pW® (ky) p = dik (ke € [0, 27/q)) (without edgek
(139)

As discussed before, the energy of the edge statg =1, ..., g) is determined by a
boundary condition of thg-site problem [16]:

Ma(p)) = Wi (i) = 0. (140)

On the other hand, the Bloch function (without edges) satisfies equation (139). Therefore
W; and ¥, form an eigenvector oM with the eigenvalue:

v, w,71(6) v,
M(e) (wéb) = l;;;,) © = p(e) \y(()b) . (141)
In equation (141), the energyrepresents a real variable and we can analytically continue

€ to a complex energy in order to discuss the wavefunction of the edge state.
We get from equation (141)

1
p(z) = Q(A(Z) -VA@)?2-4 (142)
) _ _,0M21(Z) _ 1 2
V.7 (z) = Mar—p 7M12(’0 pMa) (143)

where A(z) = Tr M(z) and we impose an initial conditiom{b) = 1 which is compatible
with the above requirements. To consider the wavefunction as a single-valued function of
the energy, we need to use the Riemann surfagé,) of w(z) = /A(z)? — 4.

Now we calculate the Hall conductance in equation (137) by using the explicit

wavefunction given as equation (143). When we restrict the complex energy to the real axis,
we obtain the Bloch function for thgth band ¥ (e, k,) in the magnetic Brillouin zone.
The energy of the energy band lies on thyecirclesSjl,j =1,...,q, which are explicitly
defined onX,(k,) (see figure 5). This is a kind of on-shell condition. These circles
are parametrized by, throughp = €7, Using the relation—2isin(gk,) = vVAZ — 4
and taking into consideration the branch convention«fak2 — 4, we can get an explicit
parametrization of the circIeSJ.l(kx). This parametrization oijl(kx) is crucial for the
discussion. Therefore, shaded areas in figure 12(a) are acydllipes, as shown in
figure 12(b). Sincé, = 0 andk, = 27 should be identified, we have to glue the boundaries
of the tubes together. After that they becomori (figure 12(c)).

The momentunk, also lies on the circles(k,) and the produchl(kx) x S1(ky) is the

magnetic Brillouin zone for each energy bandThe Bloch functiorﬂl,{ (¢, ky) is analytical
in € andk,, ande is analytical ink, andk,. ThereforeW; (k,, k,) is also an analytical

function of bothk,, andk, and W] = 1. This Bloch function satisfies the requirements
discussed earlier for calculatirg,.

Moreover one can see that the zeros of the Bloch funcﬁ'élokx, k,) are given by
the zeros ofM»1, sincep is always non-zero in the magnetic Brillouin zone aVfg, is a
polynomial in the energy variable. The zero Mb4(¢) is given by the energy of the edge
state and always lies in energy gaps or at band ed@bsrefore the zeros ob " (k,, ky)
are given by the points where the edge state is degenerate with the bulk state at the band
edges.(See figures 13.) '

Near the degenerate poikt = (k}, k), we expand the¥/, up to linear order in

8ky =k, — k% andék, =k, — k;, to calculates,,. For example, consider the contribution
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Fpik)

right edge § left edge
: J-th gap

left edge right edge

‘::"- i (k_\,.l J-1 th gap

Edge State in the 2-nd gap

Edge State in the 1-st gap

(b)

Figure 13. (a) A typical example for the degeneracy of the edge state with the bulk state. (b) A
schematic picture of the edge states and the magnetic Brillouin zones for each energy band.
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Figure 14. Anyons on the lattice. A9-anyon is represented by a hard-core boson carrying a
string with strengttp. (The boson carries @ flux tube.) When another anyon cuts the string
(in the right-pointing direction) from below, it gives a phasé @ the system.

yﬂ

2nd

Figure 15. Hard-core bosons with the uniform magnetic figln the lattice. The effect of the
magnetic field is expressed as strings on each plaquette.

from the jth energy bandj odd) and focus on the degenerate point at the banditag
shown in figure 13. Nead, u; moves from the upper Riemann surfage to the lower
Riemann surfac&® . In the jth energy gap for odd, one can show tha¥fy1(u;(ky)) < O
andky = m/q [16]. Therefore we obtair-1 < Mi1(u;(ky)) whenk, < k; (on the solid
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line in the gap), andvlll(uj(k;f)) = —1 and M11(p(ky)) < -1 whenk; < k, (on the
dotted line). (See figures 6 and 13.)

Near the band edgé; = /g, the energy deviation ik, is proportional to(sk,)?.
ThereforeMy; ~ —1 — Cék,,C > 0 andp ~ —1 — ig 8k, up to linear terms irSk, and
8ky. Then from equation (143); (k. k) is given asW; (k, ky) ~ C'(—C 8k, + iq 8k,).
From the expression, we obtait/2r7) §, dk - VIm InW, = +1. Wheny; moves from
the lower Riemann surfack~ to the upper Riemann surfad&", the vorticity is—1. On
the other hand, when the degeneracy is at the band bottom (Bamfigure 13), one can
obtain similarly (1/2r) §, dk - VIm In¥, = —1. Near B, ; moves fromR™ to R*.
Whenyu; moves fromR™ to R, it gives+1. This consideration is for the odidease, and
a similar approach is also applied to the eveoase.

In this way, we can derive a formula for the general case. The sum of the vorticities at
the band top is written a&(C;) by using the winding number of the edge state, and that at
the band bottom is-7(C;_1). Therefore the Hall conductance for the fillgth band is

2
. e .
ok = = H(C) = 1G] = o;ed0 (144)

becausd (Cp) = 0.

This expression shows the relationship between the TKNN number for the bulk state
and the winding number of the edge state. It clarifies the relationship between the two
interpretations of the Hall conductance with and without edges. The non-trivial contribution
to the Hall conductance in the TKNN formula comes from the degeneracy of the edge states
with the bulk state. We establish a direct connection between the Hall conductance in the
bulk system and that due to the edge states.

One can say that the TKNN integer is a total vorticity in the magnetic Brillouin zone
and that the vortex lines are given by the edge states. This edge state (vortex line) can
be understood as an analogue of the Dirac strings in the discussion of the quantization of
magnetic monopoles [2, 3]. (See figure 13(b).)

7. Topological aspects of the adiabatic heuristic argument: the fractional QHE from
composite fermions

We have discussed several topological aspects of the integer QHE. All of the discussion can
be extended to the fractional QHE by using Jain’s construction of the fractional quantum
Hall state (composite fermions). The main idea has been clearly summarized by Wilczek as
an adiabatic heuristic principle. Finally, in this section, we will briefly discuss the adiabatic
heuristic principle and Jain’s construction. We discuss them for the lattice.

First we need to construct anyons on the lattice. This construction has been investigated
by several groups [61-63]. Our preference is to view the anyon as a hard-core boson carrying
a 'string’ [63]. For an anyon obeyingstatistics, the phase change of the system acquires
a phase factor'&® when two anyons are interchanged. We set the strength of the string as
0 in this case. When another anyon cuts a string with a right-pointing arrow from below,
for example, the system gains a pha¥e €See figure 14.)

As is easily checked from the figure, when anydrgoes around anyoB, anyon A
cuts the string of anyo® and anyonB also cuts the string of anyoA, both in the same
direction. This means that the process involving the anyon pair gives a phase change of
e,

Now let us introduce a mean-field approximation for anyons, which is the key idea in
the following discussion. Under this approximation, the phase change of the many-anyon
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system under a certain process is replaced by the geometrical phase from the magnetic field
dqv (the flux per plaquette) of the hard-core boson.

When one anyon goes around the asemeasured in units of the plaquette area, the
phase change of the system is approximately given by

20Sp (145)

wherep is the anyon density anp is the average number of anyons inside afe&Vhen

the flux of the uniform magnetic field (the mean fieldyis per plaquette, the geometrical
phase of the process isrd,,S. If we try to replace the phase of the anyon system by that
of the geometrical phase, we have@,,S = 20S5p. Therefore we have

0
Gav(p,0) = —p. (146)
T

The original system of the anyons is mapped onto a system of hard-core bosons in a
uniform magnetic fieldp,,. The system in a uniform magnetic field is also represented by
strings, by assigning a string to each plaquette. (See figure 15.) We restate the mean-field
condition given as equation (14&he total strength of strings going out from the total system
should not be changed by the approximatidn other words, the long-range behaviour of
the vector potential should be the same after the approximation.

Now let us express the adiabatic heuristic principle [24]. When anyons with density
p are in a real uniform magnetic field (per plaguette), the claim is that the low-energy
physics of the system cannot change under an adiabatic process obeying

Adrotal = 0 (147)
drotal = @ + Pav- (148)

From these expressions, one can relate the fractional QHE to the integer QHE
[64, 22, 24]. Here let us discuss this for the lattice system. If equation (147) is integrated, it
gives a series of adiabatically connected systems characterized by the integration constant.
However, this adiabatic assumption has to be be checked; if the energy gap remains stable
during the process, it can be justified adiabatically. When the integration constant is set to
be zero, we have

b = —?. (149)

7T Iy
This series includes important systems. It starts fdme= 0 and¢ — 0. It is a free
hard-core boson. On taking the limigs— 0 andp — O keepingv = p/¢ constant (see
appendix A), we obtain

b = 1 . (150)

g Vv
This is the complete filled Landau level= 1 with & = —x which is adiabatically connected
to the free hard-core bosons. Sinte= —m simply means that the particles are the usual
fermions, it is the integer quantum Hall state. This series also includesl/m with an
odd integerm, 6 = —mmx. Since thed = —mm anyon is again just a usual fermion, this
is the fractional quantum Hall state. The restriction to integearises from the fact that
the particles are fermionsufr = 7, mod 2t). By using the arguments, the fractional QHE
with the filling factor I/m is adiabatically connected to the integer QHE (and also to the
free hard-core boson). Here the fermion is represented by the hard-core bosonmwith
flux tubes.
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Appendix A. The recovery of the Landau level in the Hofstadter diagram

Here we comment on how the Landau level of the continuous theory is recovered from the
lattice description.

Let us consider a system & = L, x L, lattice sites withM electrons (the electron
density isp = M/N) and assume that the flux per plaquettepis= 1/q (¢ — o0).
This corresponds to the weak-field limit in the Hofstadter diagram given as figure 1. For
simplicity we also assume thdt, and L, are multiples ofg and sufficiently large. Then
energy eigenvalues are grouped imtagroups which converge tg energy bands when
L., — oo. Here let us take it that the band width of thith energy band isB;. The
Jjth group hasvV, = N/q states and the energy separatioBjsaroundE; (j =1, ..., q).
From figure 1, we can see that ~ C + wj¢ when j « ¢ for some constan€ and w.
(The spectrum is linear i when j <« g and¢ ~ 0.) The continuum limit is recovered
by taking the limits

¢ —0 (A1)

p—0 (A2)
and keeping

v=M/Ny = p/¢ = constant (A3)

which is the filling factor of the Landau level in the continuum limit. The energy
spectrum is scaled a&;/¢ = constant wj where » gives the Landau gap. Since
B;j/¢ = qB; — 0 (¢ — o0), the band width goes to zero [65]. This gives the Landau
degeneracy in the continuum limit.

Appendix B. The large gauge transformation

For simplicity, let us consider the Hamiltonia#({6,,}) of a one-dimensional ring wittv
sites:
N-1 ) )
H({6,)) = Z cjnﬂe"?"’ Cm + cie'chN + HC. (B1)
m=1

Now let us consider a gauge transformati®fix,.}) given by

Cm —> Cp = chm

Qm - ei27rxm . (Bz)
Then the Hamiltonian is transformed as follows:
H{6,}) > H({0u}) (B3)

where
éinzem_zn(Xerl_Xm) (mod 2r) A<m<N-1

Oy =6y — 27 (x1 — xn) (Mod 27).
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Since we have_"N_ 6,, = >"¥_.4,, (mod 2r), let us set

N N
2 =D 6w =) b (B4)
m=1 m=1
for some integer (the winding number). Therefore we can rewrig as
énz:em_zn m — Xm 1<m<N—1
(Xm+1 = Xm) ( ) (85)

Oy = On — 21 (x1 — xn) — 271

where 6,, = 60, — 27 (Xms1 — Xm) — 21l, (m = 1,...,N) for some integerd,,,
2N_, 1, =n), and we defingg, = xm + Y15 k.

The gauge transformatio®({x..}, n) is characterized byy,,} and the winding humber
n. Whenn =0, G{xn}, n = 0), which we call a ‘local’ or ‘small’ gauge transformation,
is continuously connected to the identity operator. On the other hand, whemot a
multiple of N, one cannot connect the gauge transformation to the identity operator via a
continuous change. This is the so-called a ‘large’ or ‘global’ gauge transformation. When
n = Ns for some integes, the effect of the winding number is absorbed by defining
Xm = xm + ms. (Note that changing,, is defined mod 1.) Thereforé({x,},n = Ns)
is also a small gauge transformation. The origin of the global character is the non-trivial
topological structure of the system (the system is a ‘ring’).

Note that since the gauge transformatignis just a unitary transformation, the
Hamiltonian remains unchanged. Therefore the spectrum is the same. In general, however,
an eigenstate is transformed into a different eigenstate by the large gauge transformation.
(The set of all of the eigenstates is the same.) In contrast to the large gauge transformation,
the small gauge transformation preserves the eigenstate, since each opgregorains
unchanged.

Appendix C. Each energy gap has one edge state

We used the fact that each energy gap has one and only one edge state when the lattice size
along thex-direction is commensurate with the flux per plaquette. In this appendix, we will
give an idea of the proof. Let us consider two sets of wavefunctjgr}d'} generated by

the transfer matrix (95) with initial conditions

Lwy=0,v; =1 (C1)
0wl =1, 9 =0 (C2)
From (96) and (97),
Myy(e) = W} () (C3)
May(€) = W, () (C4)
Maa(€) = W1 (€) (C5)
Maa(€) = W) (€). (C6)
Next we write down a Scldinger equation (92) with two different energies as
V1 = V1 —a, ¥, = €V, (C7)
i1 — W,y —a, b, =&V, (C8)

(o}
a, =2r COS(ky — ZJTL— — 271¢n>. (C9)

y



Topological aspects of the quantum Hall effect 2547

Ae)

Figure Al. The behaviour of the function (¢). The thick lines denote the energy band regions.

Multiplying (C7) by ¥, and (C8) byw, and taking the difference, we have

q
— W10, + W0+ Wy W, — Ul = (e — &) YW, ¥, (C10)
n=1
where summation over is performed. Then by taking the limit— ¢ and setting¥,, and
U, to be one of thel'!!'s, we obtain the following four equations:

q
MMy, — MaMy; = ) ¥, (C11)
n=1
q
MiaMy, — MasMip = ) |, 2 (C12)
n=1
q
MuMy, — MaMp, =) ¥, ) (C13)
n=1
q
M1oMyy — MopMyy =Y W, W) (C14)
n=1

where we have used (C2), (C6) and siet= M11M», — M12M2; = 1. Finally calculating
the sum (C1Lx (—Mi2) + (C12 x (M21) + (C13) x (—=M2p) + (C14) x (M11), we get

dA , , 4 _ \IJI
4 = M+ M) = Do) wHE <\yﬁ ) (C15)
n=1 n

E= M2 (M2 — M11)/2
T ((Mzz — M1y)/2 — Moy, > : (C16)
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By diagonalizing&, we get

dAa S T
w =Ea WP +e) 19 (C17)
n=1 n=1
A% -4

&1& = detE = — 2 (C18)
E14+ & =TrE = M — Mp. (C19)

Also we mention the relation
1
M1oMp1 = Z(AZ — 4 — (M1 — M2)?) (C20)

(A = M11+ My). As discussed in the text, when the enekgys in the energy band
regions B, ¢ € B satisfiesA(e)> — 4 < 0. Therefore in the regiomB, && > 0 and
sign&; , = —sign M,1. Now we have

sgn C(ITA = —sgn M>;. (C21)
€

Since A(e) is a monotonic function in the energy band regiBncounting the degree of

€ in A(e)), we see thaiM,; has to change its sign in the energy gap region. Counting the
degree ofM>;(¢), we see thabl,; changes sign only once in each energy gap region. (See
figure Al.) This means that each energy gap has one and only one edge state (i.e. the zero
of Mz]_).
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