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Some review from last time
• Linac and circular colliders

 Linac
• Examples:

 SLAC, Future ILC
• These examples are e+ e- colliders
• Precision measurements

 Circular:
• Higher energy than Linac
• Examples:

 LEP:
• e+ e- (synchrotron radiation an issue)
• Precision measurements

 Tevatron, LHC:
• Hadron colliders
• Very high energies - make discoveries
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Question about LHC
Dipole Magnets

• Ingenious design
  B field points in opposite

directions in each pipe



4

A theorist’s view of a hadron collision
A cross section is convolution of Matrix Element and PDFs

• Calculations are done in perturbative QCD
 Possible due to factorization of hard

ME and PDF’s
• Can be treated independently

 Strong coupling (αs) is large
• Higher orders needed
• Calculations complicatedB. Heinemann
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An experimentalist’s view of a hadron collision

• Proton collisions are messy!
 Hard scattering of partons (PDFs)
 Initial state radiation (ISR)
 Final state radiation (FSR)
 Underlying event (I’ll define this in

a moment)
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• We don’t know:
 Which partons hit each other
 What their momentum is
 What the other partons do

R. Field
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Proton Composition
• What is a proton?

 There are three quarks in a proton
• False!

 Each quark carries on average 1/3
the momentum of the proton.

• False!
 There are only u and d quarks in a

proton (not s, c, b, t)
• False!

 The quarks are confined inside the
proton and can never escape it.

• False!
• Answer:

 It’s complicated!
• Valence quarks, Gluons, Sea quarks

 Exact mixture depends on:
• Q2: ~(M2+pT

2)
• Björken-x = fraction or proton momentum carried by parton
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Parton Distribution Functions (I)

• PDFs describe quark and gluon
content of the proton.

• PDFs are essential input to
perturbative calculations at hadron
colliders
 Important for signal  and

background processes
 Uncertainties can be large

• Measured in many experiments
 mostly come from DIS data

(yellow in the plot)

TEVATRON

Proton interacts as a single particle

Proton composite,
valence quarks
dominate

Gluon and sea quark
PDFs dominate
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Parton Distribution Functions (II)

• Parton densities rise dramatically
towards low x
 gluons dominate at x < 0.1
 u, d quarks dominate at x > 0.1

• Example:
 Higgs: M~100 GeV

• TeV: <x>=100/2000≈0.05
• LHC: <x>=100/14000≈0.007

 Results in larger cross sections at
the LHC, e.g. at 14TeV
• factor ~100 for t-tbar
• factor ~40 for Higgs
• factor ~10 for W’s

[http://durpdg.dur.ac.uk/hepdata/pdf3.html]

PDF fitting groups:
CTEQ and MRST
(now MSTW)
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PDF Uncertainties

• PDF uncertainties of 2-30% or more
(e.g. gluon PDF uncertainties blow up)

• This quantifies our understanding of:
 The parton content of the proton
 The cross sections of processes

• Uncertainties mean we cannot predict
well-understood processes perfectly

• Extrapolation to LHC cross section
calculations can vary a lot

[http://durpdg.dur.ac.uk/hepdata/pdf3.html]
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The Underlying Event

• Everything except the hard scatter is called the underlying event
• It includes

 initial state, final state radiation
 Interactions of other partons in proton (remnants of the beam particles)

• Additional pp interactions do occur!!
 On average 20 at design luminosity of LHC
 Currently ~8 at the Tevatron (@ ~3x1032)
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ISR/FSR

• Initial state and final state radiation can be
very important even for the (apparently)
simplest of processes:
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The Reality

P. Wittich
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Cross Sections at Tevatron and LHC

• Dramatic increase of some cross sections
from Tevatron to LHC (figure shows line for
14TeV)
 Improved discovery potential at LHC

• A lot more “uninteresting” than “interesting”
processes at design luminosity (L=1034 cm-
2s-1) at 14TeV
 Any event:            109 / second
 W boson:             150 / second
 Top quark:               8 / second
 Higgs (150 GeV): 0.2 / second

• This is a needle-in-haystack type of science
 The next lectures focus on how we

overcome these challenges
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Colliding Beams

Build your detector here
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Collisions

• 2808 bunches of protons per beam.
• 100 billion protons per bunch and will be about a few cm. long
• Squeeze the beam size down as much as possible at the collision point

to increase the chances of a collision.
 squeeze down to tens of microns (about the width of a human hair)

at the interaction point
 around 20 collisions per crossing!

• The bunches cross every 25 nanoseconds
• Around 600 million collisions per second
• Most protons miss each other and continue around the ring. The beams

will keep circulating for hours.
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The LHC vs. The Tevatron

• Factor of ~1000 more powerful than Tevatron
 7 times more energy
 Factor 3-30 times more luminosity
 Physics cross sections factor 10-1000 larger

(we saw this in the figure at the end of last
lecture!)

• First collisions expected Fall 2009 at √s=10 TeV

362808Number of bunches

10-100 fb-1

1033-1034 cm-2s-1

360 MJ
25 ns

14 TeV

LHC
(design)

>2 fb-1 in 2008Integrated Luminosity / year
3.5 x 1032 cm-2s-1Peak Luminosity

1 MJEnergy stored in beam
396 nsBunch spacing

1.96 TeVCenter-of-mass energy

Tevatron
(achieved)
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Luminosity Revisited

• Recall, that the event rate in a collider is:

• If two bunches containing n1 and n2 particles
collide with frequency f , the luminosity is

• where σx and σy characterize the size of
transverse beam (RMS assuming Gaussian spot
size)

• nb is the number of bunches
• And Np is the number of particles (protons) per

bunch
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Example

• What size beam spot is needed for L=1x1034cm-2sec-1?
 LHC machine frequency f = c/27km = 11kHz
 nb=2808 bunches
 Np=1x1011 protons per bunch

• So we will need approximately 15micron beam size
• For comparison, the Tevatron beam size is ~35µm
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Definitions

• Now some definitions that every HEP
physicist should know
 Both theorists and experimentalists
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Kinematical Definitions: η

• Natural coordinates are
cylindrical around the
beampipe
 θ polar angle, φ azimuthal

angle
• Polar angle θ is not Lorentz-

invariant
• Pseudorapidity is a

function of polar angle
 η ≡ − log tan(θ/2)

• θ = 0 (η ≥ 1) forward
• θ = π (η ≤ -1)

backward
• θ = π/2 (η =0) central

z

y

x

Interaction point
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Kinematical Definitions: y

• Rapidity is a function of E, pz

 Δy is Lorentz-invariant under boosts along the
beam direction

 For a massless (or nearly massless particles
where p>>m) particle y=η

 Note: we can calculate η without knowing the
mass of the particle!

! 

y =
1

2
log
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E " pz
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Kinematical Definitions: ΔR
• Experimentalists use ΔR as a measure of “distance”:

• We use it to determine separation in direction between
particles

• We use “cones” of ΔR to group particles with each other in
“jet” reconstruction (more on this on Wed.)! 

"R = ("#)2 + ("$)2

J. Conway
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Transverse Quantities I
• Experimentalists focus on the transverse plane

 opposite of “forward”

• Transverse Momentum
 Invariant under z-boosts
 Particles that escape detection (forward) have pT≈0
 “Visible” transverse momentum conserved

• Transverse Energy
• Transverse Mass
• etc…

! 

E
T

= E sin"
! 

pT = psin"

! 

mT

2
= ET

2
" pT
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Transverse Quantities II
• Missing transverse energy, or MET, is defined as

 where nhati is the component in the  transverse plane of a unit
vector that points from the interaction point to the ith calorimeter
detector tower (this will become clearer later)

 It’s an event-wide z-boost-invariant quantity
 It’s one of the most interesting and most difficult quantities for

experimentalists!
• It is also interesting to look at the measure of the scale of the visible pT

 Definition varies: which objects (leptons, jets, MET) to include in
the sum

 Also an event-wide z-boost-invariant quantity
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Why the transverse plane?

• Question: why don’t we look for missing pz or missing E?
 In hadron collisions you don’t know the initial state

• Remember, the proton is not what scatters!
 Particles that scatter (underlying event) and escape

detection have large pz
 Visible pz is not conserved and is therefore not a useful

variable
 So, to good a approximation ∑i pT

i≈0
• We have momentum conservation in transverse

plane



26

More on MET
• A lot of careful work needed to understand MET
• Anything going wrong produces MET! (more on Wed.)
• Lessons learned at the Tevatron:

This is where new physics may sit
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CMS and ATLAS Detectors

A Toroidal LHC ApparatuS (ATLAS)
• Size: 46 m long, 25 m high and 25 m wide
• Weight: 7000 tons!
• Location: Meyrin, Switzerland.

Compact Muon Solenid (CMS)
• Size: 21 m long, 15 high m and 15 m wide.
• Weight: 12 500 tons!
• Location: Cessy, France

These are large (~2K people) international (~40 countries) collaborations!

Fun facts and figures:
http://public.web.cern.ch/public/en/LHC/Facts-en.html
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A person!

ATLAS

The ATLAS cavern could hold the
nave of Notre Dam cathedral!
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People!

CMS

CMS weighs around the
same as 30 jumbo jets or
2,500 African elephants!
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Detectors and Particle Interactions

• Understanding the LHC detectors (and their differences) requires a basic
understanding of the interaction of high energy particles and matter

• Also required for understanding how experimentalists identify particles
and make physics measurements/discoveries

• Particles can interact with:
 atoms/molecules
 atomic electrons
 nucleus

• Results in many effects:
 Ionization (inelastic)
 Elastic scattering (Coulomb)
 Energy loss (Bremsstrahlung)
 Pair-creation
 etc.

Important to understand interactions of:
•  Charged Particles

 Light: Electrons
 Heavy: All Others (π, µ, K, etc.)

•  Neutral Particles
 Photons
 Neutrons

Lot’s of sources. Main one used here
is the PDG: pdg.lbl.gov
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Energy Loss of
Charged Heavy Particles

• Moderately relativistic heavy charged particles
lose energy in matter primarily by ionization and
atomic excitation.

• Average rate of energy loss is:

• This is known as the Bethe-Bloch equation.
• Also called the “stopping power”
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Bethe-Bloch
• Ionization (dE/dx)

 expressed in terms of
MeV/(g/cm2)

 depends on material density
• Minimum at βγ ~ 3 independent of

target
• Minimum ionizing particles or MIPs

PDG
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Example

• How much energy loss for a MIP
in silicon?

• dE/dx:
1.6 MeV/(g/ cm2) x 2.33 g/cm3 =
3.7 MeV/cm

• This is not very much!
 This value determines the

minimal detector thickness
 We will see later, silicon

detectors are very thin
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Multiple Scattering
•  As high energy charged particles ionize

materials, they change their direction
with each interaction
 Multiple Coulomb scattering

off nuclei

• Distribution dominated by gaussian
of width θ0

• But large non-gaussian tails from high angle scattering
• Important for relatively low-energy particles (~ few GeV)

PDG



35

Energy Loss of Electrons

• Electrons loose energy by bremsstrahlung at a rate nearly
proportional to its energy (see next slide)

• Ionization loss rate rises logarithmically.
• The critical energy is the energy at which the two loss rates are

equal, and depends strongly on the absorbing material (e.g. 9.5
MeV for Pb shown above).

J.Conway

PDG
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Radiation Length
• The radiation length (X0) is th characteristic length that describes the energy

decay of a beam of electrons:

• Distance over which the electron energy is reduced by a factor of 1/e due to
radiation losses only

• Radiation loss is approx. independent of material when thickness expressed
in terms of X0

• Higher Z materials have shorter radiation length
 want high-Z material for an EM calorimeter
 want as little material as possible in front of calorimeter

• Example:
lead: ρ = 11.4 g/cm3 so X0 = 5.5 mm

• The energy loss by brem is:

! 

"
dE

dx
=
E

X
0
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Backup
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