Lecture 2: Particle Interactions with Matter (Part I)

> Eva Halkiadakis Rutgers University

TASI Summer School 2009 Boulder, CO

Some review from last time

- Linac and circular colliders
 - Linac
 - Examples:
 - SLAC, Future ILC
 - These examples are e⁺ e⁻ colliders
 - Precision measurements
 - Circular:
 - Higher energy than Linac
 - Examples:
 - LEP:
 - e+ e- (synchrotron radiation an issue)
 - Precision measurements
 - Tevatron, LHC:
 - Hadron colliders
 - Very high energies make discoveries

Question about LHC Dipole Magnets

- Ingenious design
 - B field points in opposite directions in each pipe

A theorist's view of a hadron collision

A cross section is convolution of Matrix Element and PDFs

- Calculations are done in perturbative QCD
 - Possible due to factorization of hard ME and PDF's
 - Can be treated independently
 - Strong coupling (α_s) is large
 - Higher orders needed
 - Calculations complicated

An experimentalist's view of a hadron collision

- Proton collisions are messy!
 - Hard scattering of partons (PDFs)
 - Initial state radiation (ISR)
 - Final state radiation (FSR)
 - Underlying event (I'll define this in a moment)

- We don't know:
 - Which partons hit each other
 - What their momentum is
 - What the other partons do

Proton Composition

- What is a proton?
 - There are three quarks in a proton
 - False!
 - Each quark carries on average 1/3 the momentum of the proton.
 - False!
 - There are only u and d quarks in a proton (not s, c, b, t)
 - False!
 - The quarks are confined inside the proton and can never escape it.
 - False!
- Answer:
 - It's complicated!
 - Valence quarks, Gluons, Sea quarks
 - Exact mixture depends on:
 - Q²: ~(M²+p_T²)
 - Björken-x = fraction or proton momentum carried by parton

Parton Distribution Functions (I)

- PDFs describe *quark* and *gluon* content of the proton.
- PDFs are essential input to perturbative calculations at hadron colliders
 - Important for signal and background processes
 - Uncertainties can be large
- Measured in many experiments
 - mostly come from DIS data (yellow in the plot)

Parton Distribution Functions (II)

- Parton densities rise dramatically towards low x
 - gluons dominate at x < 0.1</p>
 - u, d quarks dominate at x > 0.1
- Example:
 - Higgs: M~100 GeV
 - TeV: <x>=100/2000≈0.05
 - LHC: <x>=100/14000≈0.007
 - Results in larger cross sections a the LHC, e.g. at 14TeV
 - factor ~100 for t-tbar
 - factor ~40 for Higgs
 - factor ~10 for W's

[http://durpdg.dur.ac.uk/hepdata/pdf3.html]

PDF fitting groups: CTEQ and MRST (now MSTW)

PDF Uncertainties

- PDF uncertainties of 2-30% or more (e.g. gluon PDF uncertainties blow up)
- This quantifies our understanding of:
 - The parton content of the proton
 - The cross sections of processes
- Uncertainties mean we cannot predict well-understood processes perfectly
- Extrapolation to LHC cross section calculations can vary a lot

[http://durpdg.dur.ac.uk/hepdata/pdf3.html]

The Underlying Event

- Everything except the hard scatter is called the **underlying event**
- It includes
 - initial state, final state radiation
 - Interactions of other partons in proton (remnants of the beam particles)
- Additional pp interactions do occur!!
 - On average 20 at design luminosity of LHC
 - Currently ~8 at the Tevatron (@ ~3x10³²)

ISR/FSR

 Initial state and final state radiation can be very important even for the (apparently) simplest of processes:

The Reality

P. Wittich

Cross Sections at Tevatron and LHC

- Dramatic increase of some cross sections from Tevatron to LHC (figure shows line for 14TeV)
 - Improved discovery potential at LHC
- A lot more "uninteresting" than "interesting" processes at design luminosity (L=10³⁴ cm⁻ ²s⁻¹) at 14TeV
 - Any event: 10⁹ / second
 - W boson: 150 / second
 - Top quark: 8 / second
 - Higgs (150 GeV): 0.2 / second
- This is a needle-in-haystack type of science
 - The next lectures focus on how we overcome these challenges

Colliding Beams

14

Collisions

Relative beam sizes around IP1 (Atlas) in collision

- 2808 bunches of protons per beam.
- 100 billion protons per bunch and will be about a few cm. long
- Squeeze the beam size down as much as possible at the collision point to increase the chances of a collision.
 - squeeze down to *tens* of microns (about the width of a human hair) at the interaction point
 - around 20 collisions per crossing!
- The bunches cross every 25 nanoseconds
- Around 600 million collisions per second
- Most protons miss each other and continue around the ring. The beams will keep circulating for hours.

The LHC vs. The Tevatron

	LHC	Tevatron
	(design)	(achieved)
Center-of-mass energy	14 TeV	1.96 TeV
Number of bunches	2808	36
Bunch spacing	25 ns	396 ns
Energy stored in beam	360 MJ	1 MJ
Peak Luminosity	10 ³³ -10 ³⁴ cm ⁻² s ⁻¹	3.5 x 10 ³² cm ⁻² s ⁻¹
Integrated Luminosity / year	10-100 fb ⁻¹	>2 fb ⁻¹ in 2008

- Factor of ~1000 more powerful than Tevatron
 - 7 times more energy
 - Factor 3-30 times more luminosity
 - Physics cross sections factor 10-1000 larger (we saw this in the figure at the end of last lecture!)
- First collisions expected Fall 2009 at $\sqrt{s}=10 \text{ TeV}$

Luminosity Revisited

- Recall, that the event rate in a collider is: $R = \mathcal{L}\sigma$
- If two bunches containing n₁ and n₂ particles collide with frequency f, the luminosity is

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi\sigma_x \sigma_y} \approx f \frac{n_b N_p^2}{4\pi\sigma_x \sigma_y}$$

- where σ_x and σ_y characterize the size of transverse beam (RMS assuming Gaussian spot size)
- n_b is the number of bunches
- And N_p is the number of particles (protons) per bunch

17

Example

$$\mathcal{L} \approx f \frac{n_b N_p^2}{4\pi\sigma_x \sigma_y}$$

- What size beam spot is needed for $\mathcal{L}=1x10^{34}$ cm⁻²sec⁻¹?
 - LHC machine frequency f = c/27km = 11kHz
 - n_b=2808 bunches
 - N_p=1x10¹¹ protons per bunch

$$\sigma_{x,y} \approx \sqrt{11kHz} \frac{2808(10^{11})^2}{4\pi(10^{34} cm^{-2} \sec^{-1})} = 1.5 \times 10^{-3} cm = 15 \mu m$$

- So we will need approximately 15micron beam size
- For comparison, the Tevatron beam size is \sim 35 μ m

Definitions

- Now some definitions that every HEP physicist should know
 - Both theorists and experimentalists

Kinematical Definitions: η

- Natural coordinates are cylindrical around the beampipe
 - θ polar angle, φ azimuthal angle
- Polar angle θ is not Lorentzinvariant
- Pseudorapidity is a function of polar angle
 - $\eta \equiv -\log \tan(\theta/2)$
 - $\theta = 0 \ (\eta \ge 1)$ forward
 - θ = π (η ≤ -1) backward
 - $\theta = \pi/2$ ($\eta = 0$) central

Kinematical Definitions: y

• **Rapidity** is a function of E, p_z

$$y = \frac{1}{2}\log\frac{E + p_z}{E - p_z} = \tanh^{-1}(\frac{p_z}{E})$$

- ∆y is Lorentz-invariant under boosts along the beam direction
- For a massless (or nearly massless particles where p>>m) particle y=η
- Note: we can calculate η without knowing the mass of the particle!

Kinematical Definitions: ΔR

• Experimentalists use ΔR as a measure of "distance":

$$\Delta R = \sqrt{\left(\Delta\eta\right)^2 + \left(\Delta\phi\right)^2}$$

- We use it to determine separation in direction between particles
- We use "cones" of ∆R to group particles with each other in "jet" reconstruction (more on this on Wed.)

Transverse Quantities I

- Experimentalists focus on the transverse plane
 - opposite of "forward"

Invariant under z-boosts

 p_{7}

Particles that escape detection (forward) have p_T≈0

 $p_T = p \sin \theta$

- "Visible" transverse momentum conserved
- Transverse Energy $E_T = E \sin \theta$ • Transverse Mass m^2 E_T^2
 - $m_T^2 = \sqrt{E_T^2 p_Z^2}$

• etc...

Transverse Quantities II

• Missing transverse energy, or MET, is defined as

$$\mathbb{E}_T = -\sum_i E_T^i \hat{n}_i = -\sum_{all \text{ visible}} \vec{E}_T$$

- where nhat_i is the component in the transverse plane of a unit vector that points from the interaction point to the ith calorimeter detector tower (this will become clearer later)
- It's an event-wide z-boost-invariant quantity
- It's one of the most interesting and most difficult quantities for experimentalists!
- It is also interesting to look at the measure of the scale of the visible p_T

$$H_T = \sum_{i=objects} \left| \vec{p}_{i,T} \right|$$

- Definition varies: which objects (leptons, jets, MET) to include in the sum
- Also an event-wide z-boost-invariant quantity

Why the transverse plane?

- Question: why don't we look for missing p_z or missing E?
 - In hadron collisions you don't know the initial state
 - Remember, the proton is not what scatters!
 - Particles that scatter (underlying event) and escape detection have large p_z
 - Visible p_z is not conserved and is therefore not a useful variable
 - So, to good a approximation $\sum_i p_T^i \approx 0$
 - We have momentum conservation in transverse plane

More on MET

- A lot of careful work needed to understand MET
- Anything going wrong produces MET! (more on Wed.)
- Lessons learned at the Tevatron:

CMS and ATLAS Detectors

Compact Muon Solenid (CMS)

- Size: 21 m long, 15 high m and 15 m wide.
- Weight: 12 500 tons!
- Location: Cessy, France

A Toroidal LHC ApparatuS (ATLAS)

- Size: 46 m long, 25 m high and 25 m wide
- Weight: 7000 tons!
- Location: Meyrin, Switzerland.

Fun facts and figures:

http://public.web.cern.ch/public/en/LHC/Facts-en.html

These are large (~2K people) international (~40 countries) collaborations!

A person!

The ATLAS cavern could hold the nave of Notre Dam cathedral!

CMS

CMS weighs around the same as 30 jumbo jets or 2,500 African elephants!

Detectors and Particle Interactions

- Understanding the LHC detectors (and their differences) requires a basic understanding of the interaction of high energy particles and matter
- Also required for understanding how experimentalists identify particles and make physics measurements/discoveries
- Particles can interact with:
 - atoms/molecules
 - atomic electrons
 - nucleus
- Results in many effects:
 - Ionization (inelastic)
 - Elastic scattering (Coulomb)
 - Energy loss (Bremsstrahlung)
 - Pair-creation

- Important to understand interactions of:
- Charged Particles
 - Light: Electrons
 - Heavy: All Others (π, μ, K, etc.)
- Neutral Particles
 - Photons
 - Neutrons

• etc.

Lot's of sources. Main one used here is the PDG: pdg.lbl.gov

Energy Loss of Charged Heavy Particles

- Moderately relativistic heavy charged particles lose energy in matter primarily by *ionization* and *atomic excitation*.
- Average rate of energy loss is:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- This is known as the Bethe-Bloch equation.
- Also called the "stopping power"

Bethe-Bloch

- Ionization (dE/dx)
 - expressed in terms of MeV/(g/cm²)
 - depends on material density
- Minimum at βγ ~ 3 independent of target
- Minimum ionizing particles or MIPs

Example

- How much energy loss for a MIP in silicon?
- dE/dx:
 - 1.6 MeV/(g/ cm²) x 2.33 g/cm³ = 3.7 MeV/cm
- This is not very much!
 - This value determines the minimal detector thickness
 - We will see later, silicon detectors are very thin

Multiple Scattering

- As high energy charged particles ionize materials, they change their direction with each interaction
 - Multiple Coulomb scattering off nuclei

• Distribution dominated by gaussian of width θ_0

PDG

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

- But large non-gaussian tails from high angle scattering
- Important for relatively low-energy particles (~ few GeV)

Energy Loss of Electrons

- Electrons loose energy by bremsstrahlung at a rate nearly proportional to its energy (see next slide)
- Ionization loss rate rises logarithmically.
- The critical energy is the energy at which the two loss rates are equal, and depends strongly on the absorbing material (e.g. 9.5 MeV for Pb shown above).

Radiation Length

• The radiation length (X₀) is th characteristic length that describes the energy decay of a beam of electrons:

$$X_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1)\ln(287/\sqrt{Z})}$$

- Distance over which the electron energy is reduced by a factor of 1/e due to radiation losses only
- Radiation loss is approx. independent of material when thickness expressed in terms of X₀
- Higher Z materials have shorter radiation length
 - want high-Z material for an EM calorimeter
 - want as little material as possible in front of calorimeter
- Example:

lead: $\rho = 11.4 \text{ g/cm}^3 \text{ so } X_0 = 5.5 \text{ mm}$

The energy loss by brem is:

 $-\frac{dE}{dx} = \frac{E}{X_0}$

material	X ₀ g/cm ²
H ₂	63
AI	24
Fe	13.8
Pb	6.3

Symbol	Definition	Units or Value	
α	Fine structure constant	1/137.035 999 11(46)	
	$(e^2/4\pi\epsilon_0\hbar c)$		
M	Incident particle mass	MeV/c^2	
E	Incident part. energy γMc^2	MeV	
T	Kinetic energy	MeV	
$m_e c^2$	Electron mass $\times c^2$	0.510 998 918(44) MeV	
r_e	Classical electron radius	2.817 940 325(28) fm	
	$e^2/4\pi\epsilon_0 m_e c^2$		
N_A	Avogadro's number	$6.0221415(10) \times 10^{23} \text{ mol}^{-1}$	
ze	Charge of incident particle		
Z	Atomic number of absorber		
A	Atomic mass of absorber	$g \text{ mol}^{-1}$	
K/A	$4\pi N_A r_e^2 m_e c^2/A$	$0.307075 \text{ MeV g}^{-1} \text{ cm}^2$	
		for $A = 1 \text{ g mol}^{-1}$	
Ι	Mean excitation energy	eV (Nota bene!)	
$\delta(\beta\gamma)$	Density effect correction to ionization energy loss		
$\hbar \omega_p$	Plasma energy	$28.816 \sqrt{\rho \langle Z/A \rangle} eV^{(a)}$	
	$(\sqrt{4\pi N_e r_e^3} m_e c^2/\alpha)$		
N_c	Electron density	(units of r_e) ⁻³	
w_j	Weight fraction of the j th element in a compound or mixture		
n_j	\propto number of <i>j</i> th kind of atoms in a compound or mixture		
	$4\alpha r_e^2 N_A / A$ (716.408)	$g \text{ cm}^{-2})^{-1}$ for $A = 1 \text{ g mol}^{-1}$	
X_0	Radiation length	$g \text{ cm}^{-2}$	
E_c	Critical energy for electrons	MeV	
$E_{\mu c}$	Critical energy for muons	GeV	
E_s	Scale energy $\sqrt{4\pi/\alpha} m_e c^2$	21.2052 MeV	
R_M	Molière radius	$\rm g~cm^{-2}$	

Table 27.1: Summary of variables used in this section. The kinematic variables β and γ have their usual meanings.

 $^{(a)}$ For ρ in g cm $^{-3}.$