Lecture 1: Introduction and Basics

Eva Halkiadakis Rutgers University

TASI Summer School 2009 Boulder, CO

Opening Remarks

- During these lectures, I encourage you to interrupt me to ask me questions!
- I hope by the end of these lectures you will have a better understanding of what experimentalists think (worry) about
- And I hope they will help you in having more fruitful discussions with your experimental colleagues!
- Although I am giving you a basic introduction to the LHC experiments, I will often use many general examples from the (still running) Fermilab Tevatron

The Standard Model

THE STANDARD MODEL

The Standard Model is a good "theory"

- Matter: is made out of fermions
- Forces: are mediated by bosons
- Higgs boson: breaks the electroweak symmetry and gives mass to fermions and weak gauge bosons

Experimentally verified its predictions to incredible precision

<u>Almost</u> all particles predicted by SM have been found

But it does not explain everything...

Unsolved Mysteries

How does gravity fit into all of this?

And so on.....

Beyond Standard Model

- Standard Model can not explain many of these mysteries.
- How can we search for new physics beyond the SM?
 - SUSY?
 - Extra space dimensions? (Gravitons)
 - Extra gauge groups? (Z', W')
 - New/excited fermions? (more generations, compositeness)
 - Leptoquarks?
 - Any thing else????
- We need experiments to figure out which theory best describes nature.
- By the end of these lectures I hope you will get a glimpse of how experimentalists plan to search for new physics at the LHC. 5

Particle Accelerators

- Accelerators are shaped in one of two ways:
 - Linac (e.g. SLAC, Future ILC):
 - Charged particles accelerated through a tube by applying RF voltage to separated sections so that the particles feel an accelerating electric field when they pass the gap.
 - Arranged so that particles arrive at the next gap at the right phase of the RF voltage, so they are accelerated again.
 - Circular/synchrotron (e.g. LEP, Tevatron, LHC):
 - Large circular devices where charged particles travel in evacuated pipes under the influence of magnets positioned around circumference of the circle.
 - Acceleration is achieved by applying RF electric fields at RF cavities along the circumference of ring.
 - Magnetic fields increased synchronously with the acceleration to keep the particles on the constant radius path.

Linac vs. Circular

- Linac
 - Examples:
 - SLAC, Future ILC
 - These examples are e⁺ e⁻ colliders
 - Precision measurements
- Circular:
 - Higher energy than Linac
 - Examples:
 - LEP:
 - e+ e- (synchrotron radiation an issue)
 - Precision measurements
 - Tevatron, LHC:
 - Hadron colliders
 - Very high energies make discoveries

Particle Collisions

- Accelerators can be arranged to provide collisions of two types:
 - Fixed target: Shoot a particle at a fixed target.

$$E_{cm} = \sqrt{2E_{beam}m_{t\,\mathrm{arg}\,et}}$$

 Colliding beams: Two beams of particles are made to cross each other.

$$E_{cm} = 2E_{beam}$$

Hadron Colliders

- Tevatron at Fermilab
 - Proton- anti-proton collisions
 - 6.5 km circumference
 - E_{beam} ~ 980 GeV, E_{cm} ~ 2 TeV
 - Run II since 2001-present
- Large Hadron Collider at CERN
 - Proton-proton collisions
 - 27 km circumference
 - E_{beam}=5 TeV, E_{cm} = 10TeV initially
 - E_{beam}=7 TeV, E_{cm} = 14TeV design
 - Also heavy Ion collisions (Pb-Pb)
 - Shorter running periods (~1month/year)
 - E_{cm}= 2.76 TeV per nucleon
 - First collisions expected this fall

The LHC

- Circular tunnel 27 km in circumference.
- The tunnel is buried around 100m underground
- The beams move around the LHC ring inside a continuous vacuum guided by superconducting magnets.
- The beams will be stored at high energy for hours. During this time collisions take place inside the four main LHC experiments.
 - CMS Large "general purpose" experiments.
 - ATLAS J I will focus primarily on these.
 - LHCb → b physics (CP violation, rare decays)
 - ALICE → Heavy Ion experiment (quark-gluon plasma)

50MeV-1.4GeV protons in LINAC/Booster

Let's see this in action ...

LHC Dipole Magnets

- 1232 15-m long, 35 ton dipole magnets positioned around the 27-km circumference of the collider.
- Use niobium-titanium (NbTi) cables, which become superconducting below a temperature of 10 K (–263.2°C).
- In fact, the LHC will operate at the still lower temperature of 1.9 K (–271.3°C), reached by pumping superfluid helium into the magnet systems.
- A current of 11,700 A flows in the dipoles, to create the high magnetic field of 8.3 T, required to bend the 7 TeV beams around the ring.

LHC Dipole Magnets

- Ingenious design!
 - B field points in opposite directions in each pipe

Luminosity

- Important parameters in colliders are
 - the energy of the beams (previous slide)
 - the rate of collisions or the luminosity

Units of Cross Section and Luminosity

- Units of cross section
 - [cross section]=
 [area]

cm²

or

```
1 \text{ barn} = 10^{-24} \text{ cm}^2
```

or

```
mb, μb, nb, pb, fb, ...
```

- Units of luminosity:
 - [instantaneous ∠]=
 1/(cross section x time)=
 1/cm² 1/s
 - [integrated £] =

 unit of 1/cross section =
 1/cm²
 or
 pb⁻¹ or fb⁻¹...

Example 1

- If a hadron collider, like the LHC or the Tevatron, runs for 1 year with an instantaneous luminosity of 10³¹cm⁻²sec⁻¹, how much integrated luminosity will be delivered to the experiments?
 - A year is 3x10⁷ sec, but no accelerator runs every day. Let's assume a good year of running is 10⁷ sec. This is a rough estimate.

$$\int \mathcal{L}dt = 10^{31} cm^{-2} \operatorname{sec}^{-1} \times 10^7 \operatorname{sec}^{-1}$$

$$= 10^{38} cm^{-2} = 10^{14} barns = 100 pb^{-1}$$

Example 2

 In 100pb⁻¹ of data, how many top+anti-top quark pairs (pp→t tbar) will be produced at the LHC at 10TeV?

 The t-tbar pair production cross section @10 TeV is roughly 400 pb

$$N_{\text{events produced}} = \sigma \times \int \mathcal{L}dt$$
$$= 400 \, pb \times 100 \, pb^{-1}$$
$$= 40,000 \, \text{tt} \text{ pairs}$$

How many we observe, depends on our efficiency of observing them in our detector. More on this in lecture 4.

Tevatron Instantaneous \mathcal{L}

Initial Luminosity (× 10³⁰ cm⁻²s⁻¹)

- Peak initial instantaneous luminosity of 3.5x10³² cm⁻² s⁻¹
 - Also, when LHC starts you will see this kind of plot shown at conferences
- Instantaneous luminosity drops as protons (in this case p-pbar) collide

Tevatron Integrated \mathcal{L}

- It's impossible to record every collision at a hadron collider!
 - Trigger more on this in lecture 3
- The difference between the two curves is how efficiently the experiment (in this case CDF) collects the data (integrated \mathcal{L}) that the accelerator delivers
- Remember:

$$N_{\text{events observed}} = \sigma \times \int \mathcal{L}dt \times \varepsilon$$

On Thursday we will find that there are several contributions to this!₂₀

A theorist's view of a hadron collision

A cross section is convolution of Matrix Element and PDFs

- Calculations are done in perturbative QCD
 - Possible due to factorization of hard ME and PDF's
 - Can be treated independently
 - Strong coupling (α_s) is large
 - Higher orders needed
 - Calculations complicated

An experimentalist's view of a hadron collision

- Proton collisions are messy!
 - Hard scattering of partons (PDFs)
 - Initial state radiation (ISR)
 - Final state radiation (FSR)
 - Underlying event (I'll define this in a moment)

- We don't know:
 - Which partons hit each other
 - What their momentum is
 - What the other partons do