
LETTERS

Fractional quantum Hall effect and insulating phase
of Dirac electrons in graphene
Xu Du1{, Ivan Skachko1, Fabian Duerr1, Adina Luican1 & Eva Y. Andrei1

In graphene, which is an atomic layer of crystalline carbon, two of
the distinguishing properties of the material are the charge carriers’
two-dimensional and relativistic character. The first experimental
evidence of the two-dimensional nature of graphene came from the
observation of a sequence of plateaus in measurements of its trans-
port properties in the presence of an applied magnetic field1,2.
These are signatures of the so-called integer quantum Hall effect.
However, as a consequence of the relativistic character of the charge
carriers, the integer quantum Hall effect observed in graphene is
qualitatively different from its semiconductor analogue3. As a third
distinguishing feature of graphene, it has been conjectured that
interactions and correlations should be important in this material,
but surprisingly, evidence of collective behaviour in graphene is
lacking. In particular, the quintessential collective quantum beha-
viour in two dimensions, the fractional quantum Hall effect
(FQHE), has so far resisted observation in graphene despite intense
efforts and theoretical predictions of its existence4–9. Here we report
the observation of the FQHE in graphene. Our observations are
made possible by using suspended graphene devices probed by
two-terminal charge transport measurements10. This allows us to
isolate the sample from substrate-induced perturbations that
usually obscure the effects of interactions in this system and to
avoid effects of finite geometry. At low carrier density, we find a
field-induced transition to an insulator that competes with the
FQHE, allowing its observation only in the highest quality samples.
We believe that these results will open the door to the physics of
FQHE and other collective behaviour in graphene.

The description of graphene in terms of a two-dimensional (2D)
zero-bandgap semiconductor with low energy excitations repre-
sented by non-interacting Dirac fermions is surprisingly successful3.
Indeed, most experimental results thus far are captured by this single
particle picture, in which collective effects and interactions are
assumed to be negligibly small. In particular, scanning tunnelling
spectroscopy in a transverse magnetic field, B, revealed a sequence
of Landau levels with energy En~sign(n)
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, providing the
most direct evidence of the non-interacting Dirac fermion picture11.
(Here n 5 0,61,62, e is the elementary charge, " 5 h/2p where h is
Planck’s constant and vF is the Fermi velocity3). Sweeping the field or
carrier density, ns, through these Landau levels in a magneto-trans-
port measurement reveals quantum-Hall conductance plateaus (the
integer quantum Hall effect) at values Gxy~n e2
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for filling factors
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~4(nz1=2) where all available states up to the nth Landau

level are occupied. Here 4 is due to the spin and valley degeneracy3

and the 6 signs reflect the electron–hole symmetry. The 1
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absent in non-relativistic 2D electron systems (2DES), is a result of
the special status of the n 5 0 Landau level for the massless Dirac
fermions: half of its states are hole states, and the other half are
electron states. This picture is expected to fail when interactions

lift the degeneracy, resulting in new integer plateaus outside this
sequence12–15. Furthermore, strong correlations between the elec-
trons are expected to give rise to plateaus at fractional filling factors,
reflecting the condensation into new ground states4–9.

Thus far, magneto-transport experiments on non-suspended gra-
phene samples show no evidence of interactions or correlations for
fields below ,25 T. In higher fields16, the appearance of quantum Hall
effect plateaus at n 5 0,61,64 suggests that interaction effects do exist
in graphene, but only become observable when their energy scale
exceeds that of the fluctuations due to random potentials induced
by external sources. Similarly, the insulating state at n 5 0 observed
in some non-suspended samples in strong magnetic fields17 but not in
others18 suggests that extrinsic effects play an important role in
obscuring the underlying intrinsic physics of the charge carriers in
graphene. Therefore in order to understand the role of correlations in
the low density phases and to solve the long-standing mystery of
whether graphene can support an FQHE, it is necessary to better
control sample quality.

Recently, a significant improvement in transport properties was
demonstrated in suspended graphene samples where substrate-
induced perturbations were eliminated10,19. The combination of bal-
listic transport and low carrier density achieved in suspended gra-
phene is particularly well suited for studying the intrinsic properties
of this system. To ensure mechanical and structural integrity of the
sample, the suspended devices are quite small, with typical dimen-
sions of length L < 0.5–1 mm and width W < 1.5–3 mm. Surprisingly,
in these small devices the standard Hall-bar measurement geometry
fails to yield the expected quantum Hall effect features19. A possible
cause, which we discuss in detail elsewhere, is that the proximity
between voltage and current leads in such small samples shorts out
most of the Hall voltage. This is a consequence of the peculiar potential
distribution at large Hall angles (the case of plateaus in the quantum
Hall effect) where most of the potential drop, roughly equal to the Hall
voltage, occurs at opposite corners of the sample close to the current
leads20, also known as hot spots in the Hall effect literature. A metallic
lead placed within this region necessarily shorts out the Hall voltage.
As suspended graphene devices (typically of micrometre size) are too
small to allow the voltage leads to be placed outside the hot spot
regions, shorting the Hall voltage is almost unavoidable19. This prob-
lem is circumvented in the two-terminal lead configuration10 used in
the present work (Fig. 1a). We note that the classical contact resistance
of the two-terminal devices discussed here is negligible compared to
the quantum resistance, as indicated by the very small deviation of the
two-terminal resistance at the quantum Hall effect plateaus from the
standard values, described below.

All the suspended graphene samples studied here are in the ballistic
regime, as measured by the density dependence of the zero field
conductivity. In the hole-carrier sector, we find the mean-free-path
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lmfp < L/2 and the conductivity s!n1=2
s , as expected for ballistic

transport (Fig. 1b, c). Furthermore the lowest carrier density, typi-
cally ns0 < (2–10) 3 109 cm22, is more than an order of magnitude
below that achieved in non-suspended samples, attesting to a much
smaller density inhomogeneity10. For non-ballistic samples (gra-
phene as well as 2DES in semiconductors), the sample quality is
usually characterized by the carrier mobility. In ballistic graphene
samples however, the value of mobility is meaningful only when it
is associated with the carrier density at which it is measured. For the
sample studied here, the Drude mobility, mD~s=nse, at ns < 1010 cm22

is 260,000 cm2 V21 s21, and exhibits the !ns
{1=2 dependence on

carrier density expected for ballistic devices (the field effect mobility
at the same density is mfe~

1
e

ds
dns

<200,000 cm2V{1s{1).

We studied the two-terminal magneto-transport in suspended
graphene samples at temperatures ranging from 1.2 K to 80 K and
fields up to 12 T. The relation between magneto-resistance oscilla-
tions and the quantum Hall effect measured in two-terminal devices
is now well understood. It has been shown theoretically21 that, for
clean samples and low temperatures, the two-terminal conductance
displays plateaus at values G~n e2

h
that are precisely the same as the

quantum Hall effect plateaus in the Hall conductance. In between
the plateaus the conductance is non-monotonic, depending on the
sample aspect ratio, W/L. In our devices where W . L, the conduc-
tance is expected to overshoot between plateaus, as is indeed
observed (Fig. 1d). Our two-terminal measurements reveal well-
defined plateaus associated with the anomalous quantum Hall effect
that appear already in fields below 1 T. Above 2 T additional plateaus
develop at n 5 21 and at n 5 3, reflecting interaction-induced lifting
of the spin and valley degeneracy (Figs 2a and 3c). At low tempera-
tures and above 2 T, we observe a FQHE plateau at n 5 21/3 which
becomes better defined with increasing field (Fig. 2a). When plotting
G versus n, the curves for all values of B collapse together (Fig. 2b),
and the plateaus at n 5 21/3, 21 and 22 show accurate values of the
quantum Hall conductance.

The FQHE in semiconductor based 2DES reflects the formation of
an incompressible condensate, which can be described by a Laughlin
wavefunction22. In the composite-fermion generalization of the
FQHE4,23, a strongly correlated electron liquid in a magnetic field
can minimize its energy when the filling factor belongs to the series
n~ p

2sp+1
(with s and p integers) by forming weakly interacting com-

posite particles consisting of an electron and an even number of
captured magnetic flux lines. In this picture, the FQHE with
n 5 1/3 corresponds to the integer quantum Hall effect with n 5 1
for the composite particles consisting of one electron and two flux
lines. Excitations out of this state would produce fractionally charged
quasiparticles q* 5 e/3, at an energy cost of the excitation gap, D1/3,
which provides a measure of the state’s robustness. It is not obvious a
priori that the correlated state leading to the FQHE for the relativistic
charge carriers in graphene is the same as that for the 2DES in semi-
conductors. In fact, several competing mechanisms have been dis-
cussed in the theoretical literature4–9, involving states that break
SU(4) symmetry as well as possible compressible, composite fermion
Fermi sea states7. Interestingly, despite the qualitative difference in
Landau level spectra between Dirac fermions in graphene and the
non-relativistic electrons in semiconductors, the n 5 1/3 state is
formally expected to be the same in both cases4,5 but with the pseu-
dospin in graphene playing the role of the traditional electron spin in
the non-relativistic case. In order to distinguish experimentally
between the various mechanisms, it is useful to study the quasipar-
ticle excitation energy. In multi-lead transport measurements, such
as the Hall bar configuration, this can be obtained from the temper-
ature dependence of the longitudinal resistance. However, in a two-
terminal measurement it is not possible to separate the longitudinal
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Figure 1 | Characteristics of the suspended graphene devices. a, False-
colour scanning electron microscopy image of a typical suspended graphene
device. The two centre pads are used for both current and voltage leads, while
the outer pads are for structural support. The lead separation is L 5 0.7mm,
and the typical graphene width is 1.5–3 mm. b, Carrier density dependence of
the resistivity of a suspended graphene device in zero field. The sharp gate
control of resistivity near the Dirac point indicates a low level of
perturbation from random potentials. c, Carrier density dependence of the
mean free path, lmfp~

s h
2e2(pns)1=2, of the sample in b. Note that on the hole

branch, lmfp < L/2, as expected for ballistic junctions. d, Conductance of the
suspended graphene sample as a function of filling factor n for B 5 1 T and
T 5 1.2 K. The plateaus seen at integer filling factors correspond to the
quantum Hall effect, as discussed in the text. The maxima in between the
plateaus agree with the theoretical expectations21 for a two-terminal
graphene junction with the geometry of our sample, W/L . 1. The quantum
Hall plateaus are better defined and narrower for the hole branch (negative
filling factors), indicating less scattering of hole carriers, consistent with the
lower resistance and longer mean free path on the hole branch, as shown in
b and c.
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Figure 2 | FQHE in suspended graphene. a, Gate voltage dependence of
resistance for the sample in Fig. 1, at indicated magnetic fields and T 5 1.2 K.
Already at 2 T we note the appearance of quantum Hall plateaus outside the
non-interacting sequence, with R~ 1

v
h

e2 ,v~1,1=3. b, Hole conductance as a
function of filling factors for B 5 6T, 8T, 10T and 12T at T 5 1.2 K, showing

that the data collapse together. Quantum Hall plateaus with conductance
values G~v e2

h ,v~1,1=3, appear at the correct filling factors of n5 21, 21/
3. c, Temperature dependence of the quantum Hall plateau features. The
plateaus at n 5 21/3, 21 become smeared out with increasing T and
disappear for T . 20 K.
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and transverse components. Nevertheless, an order of magnitude
estimate can be obtained from the temperature at which the n 5 1/3
plateau disappears. In Fig. 2c we note that this plateau smears out with
increasing temperature and disappears above 20 K, suggesting that
D1/3 < 20 K < 0.008EC(12T), where EC~e2=4pe0e lB 5 650B1/2 K
(with B in units of tesla) is the Coulomb energy, e0 the permittivity
of free space, e 5 1 the dielectric constant of the host material

(vacuum) and lB~
ffiffiffiffi
B

eB

q
is the magnetic length. This is within 8% of

the theoretical prediction4,5, D1/3 < 0.1EC, for the gap in a Laughlin-
like condensate. For 2DES in semiconductors, the discrepancy with
theoretical predictions is significantly larger, reflecting deviations
from an ideal 2D system due to the finite thickness of the quantum
wells (10–30 nm), disorder and mixing with higher Landau levels24.
Importantly, the value of D1/3 in suspended graphene is more than
an order of magnitude larger than the corresponding gap in the
2DES in semiconductors25 because of the lower dielectric constant
(e 5 1 in suspended graphene compared to e < 12.9 in GaAs/
GaAlAs heterostructures).

Next we discuss transport near the Dirac point (n 5 0). Models for
lifting of the fourfold spin and valley degeneracy fall in two categories,
depending on whether the spin degeneracy is lifted first, producing a
so-called quantum Hall ferromagnet12–14 or the valley degeneracy is
lifted first, which gives rise to magnetic catalysis14,15. Both cases predict
insulating bulk, but the former supports counter-propagating edge
states and thus is a conductor, whereas the latter with no edge states
is an insulator. In the quantum Hall ferromagnet scenario, where both
spin and valley degeneracy can be lifted for all Landau levels, plateaus
at all integer n are allowed. In contrast, the magnetic catalysis scenario
does not permit plateaus at odd filling-factors other than n 5 61.
Experiments addressing this issue in non-suspended graphene are
inconclusive16–18. While tilted field experiments support the quantum
Hall ferromagnet situation16, the absence of clear plateaus at 63,65
is consistent with magnetic catalysis. The fact that both insulating

and conducting behaviour were reported further contributes to the
uncertainty.

To address this question in suspended graphene samples, we
studied four samples in fields up to 12 T and at temperatures ranging
from 1 K to 80 K (Supplementary Information). All samples were
insulating at n 5 0 for high fields and low temperature. Consistently
we found that the higher the sample quality, as measured by the
residual carrier density, the sharper the transition to the insulating
state and the earlier its onset (lower fields and higher temperatures). In
our highest quality sample, the onset of insulating behaviour scales
linearly with field. This is clearly seen in Fig. 3a, where the sharp onset
of insulating behaviour at jnj< 0.1 is marked by a dramatic increase in
resistance. In the best samples, the maximum resistance value is
instrument-limited to ,1 GV. In lower quality samples, the insulating
region is broader, the onset less sharp and the maximum resistance
lower. Interestingly, the FQHE state was only observed in samples with
narrow insulating regions, suggesting a competition between the two
ground states. This is illustrated in Fig. 3b, where the insulating
phase, having become broader after contamination, ‘swallowed’ the
1/3 plateau. Current annealing the sample brought it back almost to its
pristine condition again, revealing the 1/3 plateau.

Can the suspended graphene data shed light on the nature of the
insulating phase? The appearance of a plateau at n 5 3, shown in
Fig. 3c, favours the quantum Hall ferromagnet over the magnetic
catalysis. However, since the quantum Hall ferromagnet supports
counter-propagating edge states, this scenario is inconsistent with
insulating behaviour at n 5 0. A possible solution would entail a
gap opening in the edge states and thus a mechanism to admix them.
This would require a mechanism to flip spins and valleys, such as
magnetic impurities or segments of zigzag edges26. An alternative
explanation is that the system undergoes a transition to a new broken
symmetry phase, such as a Wigner crystal or a more exotic skyrme
phase27,28. In this case pinning would naturally lead to insulating
behaviour.
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Figure 3 | Insulating behaviour at n 5 0. a, Resistance as a function of filling
factor for magnetic fields B 5 1,2,3,4,5,6,8,10,12 T. For | n | , 0.1, the
resistance increases sharply with increasing magnetic field. The maximum
resistance value measured above 8 T is instrument-limited. b, Competition
between FQHE and insulating behaviour. The sample in Fig. 1 was warmed
up to room temperature and re-cooled to 1.2 K. Owing to the condensation
of contaminants on the graphene channel, the insulating regime became

broader, swallowing the FQHE plateau at n 5 21/3. On current annealing,
the sample was re-cleaned almost to its pristine condition, causing the
insulating regime to recede and the plateau at n 5 21/3 to reappear.
c, Quantum Hall effect plateaus of a suspended graphene sample which
showed n 5 3. d, Logarithmic plot of maximum resistance for n 5 0 as a
function of T21/2 for the field values shown in a. The solid lines are guides to
the eye.
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To better understand the insulating phase, we studied the temper-
ature dependence of the n 5 0 state. The details of the temperature
dependence of the maximum resistance (Rmax) show strong sample-
to-sample variation, but all curves fit a generalized activated form:
Rmax 5 R0exp(T0/T)a with a < 1/3 2 1. In the best sample (Fig. 3c),
a < 1/2 for all fields, with T0 / B2. This may provide a hint to the
nature of the insulating state, but more work is needed to resolve this
question.

In summary, the experiments described here demonstrate that
Dirac electrons do exhibit strong collective behaviour leading to an
FQHE, which becomes apparent in suspended samples probed with a
two-terminal lead geometry, where the system is isolated from
external perturbations. We find that the FQHE is quite robust,
appearing at low temperatures in fields as low as 2 T and persisting
up to 20 K in a field of 12 T. The effect is significantly more robust
than in the semiconductor-based 2DES, reflecting the stronger
Coulomb interaction and the more 2D nature of the 2DES in gra-
phene. We further show that the FQHE state competes with an insu-
lating phase centred at n 5 0 that broadens in the presence of disorder
and can destroy it. This may explain why, despite the large energy
scale of the Coulomb interactions, the FQHE has until now resisted
observation in graphene. The observation of the FQHE plateau at
n 5 21/3 demonstrates that the FQHE is a stable ground state for the
2D Dirac fermions in graphene, and that it is a distinctly different
phase from the insulating state at n 5 0. These findings pave the way
to future studies of FQHE physics in the Dirac fermion system for the
n 5 0 Landau level as well for higher Landau levels, where new cor-
related states, unique to relativistic charge carriers, are expected to
emerge.
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