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Abstract 

This review covers recent experimental progress in probing the electronic properties of graphene and how 

they are influenced by various substrates, by the presence of a magnetic field and by the proximity to a 

superconductor. The focus is on results obtained using scanning tunneling microscopy, spectroscopy, 

transport and magneto-transport techniques.  

A. INTRODUCTION ............................................................................................................................................ 3 

1. HISTORICAL NOTE ................................................................................................................................................. 3 

2. MAKING GRAPHENE .............................................................................................................................................. 4 

Exfoliation from graphite. .................................................................................................................................... 5 

Chemical vapor deposition (CVD) on metallic substrates. .................................................................................... 5 

Surface graphitization and epitaxial growth on SiC crystals. ............................................................................... 6 

Other methods. .................................................................................................................................................... 6 

3. CHARACTERIZATION. ............................................................................................................................................. 7 

Optical. ................................................................................................................................................................. 7 

Raman spectroscopy. ........................................................................................................................................... 7 

Atomic force microscopy (AFM). .......................................................................................................................... 7 

Scanning tunneling microscopy and spectroscopy (STM/STS) ............................................................................. 8 

Scanning electron microscope (SEM) and transmission electron microscope (TEM) ........................................... 9 

Low energy electron diffraction (LEED) and angular resolved photoemission (ARPES). ...................................... 9 

Other techniques .................................................................................................................................................. 9 

4. STRUCTURE AND PHYSICAL PROPERTIES ..................................................................................................................... 9 

Mechanical properties........................................................................................................................................ 10 

Chemical properties. .......................................................................................................................................... 10 

Thermal properties. ............................................................................................................................................ 10 

Optical properties. .............................................................................................................................................. 10 

5. ELECTRONIC PROPERTIES. ..................................................................................................................................... 11 

Tight binding Hamiltonian and band structure. ................................................................................................. 12 

Linear dispersion and spinor wavefunction. ....................................................................................................... 13 

How robust is the Dirac Point? ........................................................................................................................... 13 

Dirac-Weyl Hamiltonian, masssles Dirac fermions and chirality ........................................................................ 14 

Suppression of backscattering ........................................................................................................................... 15 

Berry Phase ........................................................................................................................................................ 15 

Density of states and ambipolar gating. ............................................................................................................ 16 



2 

 

Cyclotron mass and Landau levels ..................................................................................................................... 16 

From bench-top quantum relativity to nano-electronics ................................................................................... 18 

Is graphene special? ........................................................................................................................................... 19 

6. EFFECT OF THE SUBSTRATE ON THE ELECTRONIC PROPERTIES OF GRAPHENE. ................................................................... 19 

Integer and fractional quantum Hall effect........................................................................................................ 21 

B. SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY ....................................................................... 23 

1. GRAPHENE ON SIO2 ............................................................................................................................................ 24 

2. GRAPHENE ON METALLIC SUBSTRATES .................................................................................................................... 25 

3. GRAPHENE ON GRAPHITE ..................................................................................................................................... 25 

Almost ideal graphene seen by STM and STS ..................................................................................................... 26 

Landau Level Spectroscopy ................................................................................................................................ 29 

Finding graphene on graphite ............................................................................................................................ 29 

Landau level linewidth and electron-electron interactions. ............................................................................... 29 

Line-shape and Landau level spectrum .............................................................................................................. 31 

Electron-phonon interaction and velocity renormalization ................................................................................ 31 

Multi-layers - from weak to strong coupling ...................................................................................................... 33 

4. TWISTED GRAPHENE LAYERS ................................................................................................................................. 36 

5. GRAPHENE ON CHLORINATED SIO2 ........................................................................................................................ 41 

Fermi energy anomaly and gap-like feature ...................................................................................................... 44 

6. GRAPHENE ON OTHER SUBSTRATES ........................................................................................................................ 45 

Graphene on SiC ................................................................................................................................................. 45 

Graphene on h-BN .............................................................................................................................................. 45 

C. CHARGE TRANSPORT IN GRAPHENE ........................................................................................................... 46 

Graphene devices for transport measurements: ................................................................................................ 46 

Electric field gating characterization and ambipolar transport. ........................................................................ 47 

Sources of disorder and scattering mechanisms ................................................................................................ 48 

1. GRAPHENE-SUPERCONDUCTOR JOSEPHSON JUNCTIONS.............................................................................................. 48 

Fabrication and measurement of graphene-superconductor junctions. ............................................................ 49 

Superconducting proximity effect, bipolar gate-tunable supercurrent and multiple Andreev reflections ......... 49 

Diffusive versus ballistic transport ..................................................................................................................... 51 

2. SUSPENDED GRAPHENE ........................................................................................................................................ 53 

Fabrication of suspended graphene devices. ..................................................................................................... 53 

Ballistic transport in suspended graphene junctions. ......................................................................................... 55 

3. HOT SPOTS AND THE FRACTIONAL QHE. ................................................................................................................. 57 

QHE with two terminal measurements .............................................................................................................. 59 

Fractional QHE ................................................................................................................................................... 60 

Activation gap obtained from two terminal measurements .............................................................................. 61 

4. MAGNETICALLY INDUCED INSULATING PHASE ........................................................................................................... 62 

ACKNOWLEDGEMENTS ........................................................................................................................................ 64 

REFERENCES ......................................................................................................................................................... 64 

  



3 

 

A. Introduction 

In 2004 a Manchester University team le d by Andre Geim demonstrated a simple mechanical 

exfoliation process[1, 2] by which graphene, a one-atom thick 2 dimensional (2D) crystal of 

Carbon atoms arranged in a honeycomb lattice [3-8], could be isolated from graphite. The 

isolation of graphene and the subsequent measurements which revealed its extraordinary 

electronic properties [9, 10]  unleashed a frenzy of scientific activity the magnitude of which was 

never seen. It quickly crossed disciplinary boundaries and in May of 2010 the Nobel symposium 

on graphene in Stockholm was brimming with palpable excitement. At this historic event 

graphene was the centerpiece for lively interactions between players who rarely share common 

ground: physicists, chemists, biologists, engineers and field- theorists. The excitement about 

graphene extends beyond its unusual electronic properties. Everything about graphene ï its 

chemical, mechanical, thermal and optical properties - is different in interesting ways. 

This review focuses on the electronic properties of single layer graphene that are accessible with 

scanning tunneling microscopy and spectroscopy and with transport measurements. Part A gives 

an overview starting with a brief history in section A1 followed by methods of producing and 

characterizing graphene in sections A2 and A3. In section A4 the physical properties are 

discussed followed by a review of the electronic properties in section A5 and a discussion of 

effects due to substrate interference in section A6. Part B is devoted to STM (scanning tunneling 

microscopy) and STS (scanning tunneling spectroscopy) measurements which allow access to 

the atomic structure and to the electronic density of states. Sections B1 and B2 focus on 

STM/STS measurements on graphene supported on standard SiO2 and on metallic substrates.  B3 

is devoted to graphene supported above a graphite substrate and the observation of the intrinsic 

electronic properties including the linear density of states, Landau levels, the Fermi velocity, and 

the quasiparticle lifetime. This section discusses the effects of electron-phonon interactions and 

of interlayer coupling. B4 is dedicated to STM/STS studies of twisted graphene layers. B5 

focuses on graphene on chlorinated SiO2 substrates and the transition between extended and 

localized electronic states as the carrier density is swept across Landau levels. A brief description 

of STM/STS work on epitaxial graphene on  SiC and on  h-BN substrates is given in B6.   Part C 

is devoted to transport measurements. C1 discusses substrate-induced scattering sources in 

graphene deposited on SiO2. Superconductor/Graphene/superconductor (SGS) Josephson 

junctions are the focus of C2. C3 and C4 discuss suspended graphene devices, the observation of 

ballistic transport the fractional quantum Hall effect  and  the magnetically induced insulating 

phase.  

List of abbreviations: AFM (atomic force microscopy); ARPES (angular resolved 

photoemission); CNP (charge neutrality point); CVD (chemical vapor deposition); DOS (density 

of states); DP (Dirac point); e-ph (electron-phonon); HOPG (highly oriented pyrolitic graphite); 

LL (Landau levels); LL (lambda levels); MAR (multiple Andreev reflections); NSG (non-

suspended graphene); QHE (quantum Hall effect); FQHE (fractional QHE); SG (suspended 

graphene); SEM (scanning electron microscopy); STM (scanning tunneling microscopy); STS 

(scanning tunneling spectroscopy); TEM (transmission electron microscopy0.  

1. Historical n ote 

The story of graphene is both old and new. First postulated in 1947 by J. C. Wallace [11] as a 

purely theoretical construct to help tackle the problem of calculating the band structure of 

graphite, this model of a 2D crystal arranged in a honeycomb lattice, was now and again dusted 
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off and reused over the years [12-15]. In 1984 G. Semenoff [12] resurrected it as a model for a 

condensed matter realization of a three dimensional anomaly and in 1988 D. Haldane [14] 

invoked it as model for a Quantum Hall Effect (QHE) without Landau Levels. In the 90ôs the 

model was used as a starting point for calculating the band structure of Carbon nanotubes [16]. 

But nobody at the time thought that one day it would be possible to fabricate a free standing 

material realization of this model. This skepticism stemmed from the influential Mermin-Wagner 

theorem [17] which during the latter part of the last century was loosely interpreted to mean that 

2D crystals cannot exist in nature. Indeed one does not find naturally occurring free standing 2D 

crystals, and computer simulations show that they do not form spontaneously because they are 

thermodynamically unstable against out of plane fluctuations and roll-up [18]. It is on this 

backdrop that the realization of free standing graphene came as a huge surprise. But on closer 

scrutiny it should not have been. The Mermin-Wagner theorem does not preclude the existence 

of finite size 2D crystals: its validity is limited to infinite systems with short range interactions in 

the ground state. While a finite size 2D crystal will be prone to develop topological defects at 

finite temperatures, in line with the theorem, it is possible to prepare such a crystal in a long-

lived metastable state which is perfectly ordered provided that the temperature is kept well below 

the core energy of a topological defect. How to achieve such a metastable state? It is clear that 

even though 2D crystals do not form spontaneously they can exist and are perfectly stable when 

stacked and held together by Van der Waals forces as part of a 3D structure such as graphite. The 

Manchester group discovered that a single graphene layer can be dislodged from its graphite 

cocoon by mechanical exfoliation with Scotch tape. This was possible because the Van der 

Waals force between the layers in graphite is many times weaker than the covalent bonds within 

the layer which help maintain the integrity of the 2D crystal during the exfoliation.  

The exfoliated graphene layer can be supported on a substrate or suspended from a supporting 

structure[19] [20-23]. Although the question of whether free-standing graphene is truly 2D or 

contains tiny out-of-plane ripples [18] (as was observed in suspended graphene membranes at 

room temperature [20]) is still under debate, there is no doubt about its having brought countless 

opportunities to explore new physical phenomena and to implement novel devices.  

2. Making graphene  

We briefly describe some of the most widely used methods to produce graphene, together with 

their range of applicability. 

Figure A-1. Making exfoliated graphene. a) HOPG graphite flakes are deposited on Scotch tape shown with cm ruler. 

b) A Si/SiO2 substrate is pressed onto flakes on the tape.  c) Optical micrograph of graphene deposited on SiO2 showing 

flakes with various number of layers. A large flake of single layer graphene, corresponding to the faintest contrast, is 

indicated by the arrow.  Image credits:  A. Luican-Mayer. 
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Exfoliation from graphite.  

Exfoliation from graphite, illustrated in Fig. A-1, is inexpensive and can yield small (up to 0.1 

mm) high quality research grade samples[1, 2]. In this method, which resembles writing with 

pencil on paper, the starting material is a graphite crystal such as natural graphite, Kish or HOPG 

(highly oriented pyrolitic graphite). Natural and Kish graphite tend to yield large graphene flakes 

while HOPG is more likely to be chemically pure. A thin layer of graphite is removed from the 

crystal with Scotch tape or tweezers. The layer is subsequently pressed by mechanical pressure 

(or dry N2 jet for cleaner processing) unto a substrate, typically a highly doped Si substrate 

capped with 300nm of SiO2, which enables detection under an optical microscope [1] as 

described in detail in  the next section on optical characterization [24-26]. Often one follows up 

this step with an AFM (atomic force microscope) measurement of the height profile to determine 

the thickness (~ 0.3nm /layer) and/or Raman spectroscopy to confirm the number of layers and 

check the sample quality. Typical exfoliated graphene flakes are several microns in size, but 

occasionally one can find larger flakes that can reach several hundred mm. Since exfoliation is 

facilitated by stacking defects, yields tend to be larger when starting with imperfect or 

turbostratic graphite but at the same time the sample size tends to be smaller. The small size and 

labor intensive production of samples using exfoliated graphene render them impractical for 

large scale commercial applications. Nevertheless, exfoliated graphene holds its own niche as a 

new platform for basic research. The high quality and large single crystal domains, so far not 

achieved with other methods of fabrication, have given access to the intrinsic properties of the 

unusual charge carriers in graphene, including ballistic transport and the fractional QHE, and 

opened a new arena of investigation into relativistic chiral quasiparticles[21, 27-30].  

Chemical vapor deposition (CVD) on metallic substrates. 

A 

quick and relatively simple method to make graphene is CVD by hydrocarbon decomposition on 

a metallic substrate [31]. This method (Figure A-2a) can produce large areas of graphene 

suitable, after transfer to an insulating substrate, for large scale commercial applications. In this 

method a metallic substrate, which plays the role of catalyst, is placed in a heated furnace and is 

Figure A-2. Graphene grown by CVD. a) Optical image of single crystal graphene flakes obtained by CVD growth on  

Copper with  Ar /CH4 flow . Scale bar: 50mm. (A.M B. Goncalves and E.Y. Andrei unpublished). b) Raman spectrum of 

graphene on Copper sample shown in in panel a.  Inset Raman spectrum of graphene on SiO2.  
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attached to a gas delivery system that flows a gaseous carbon source downstream to the 

substrate. Carbon is adsorbed and absorbed into the metal surface at high temperatures, where it 

is then precipitated out to form graphene, typically at around 500-800 
0
C during the cool down to 

room temperature. The first examples of graphitic layers on metallic substrates were obtained 

simply by segregation of carbon impurities when the metallic single crystals were heated during 

the surface preparation. Applications of this method using the decomposition of ethylene on Ni 

surfaces [32] were demonstrated in the 70ôs. More recently graphene growth was demonstrated 

on various metallic substrates including Rh[33], Pt[34-36],  Ir [37], Ru [38-41], Pd [42] and Cu 

foil [43-46]. The latter yields, at relatively low cost, single layer graphene of essentially 

unlimited size and excellent transport qualities characterized by mobility in excess of 7000 cm
2
 

/V s [47]. The hydrocarbon source is typically a gas such as methane and ethylene but 

interestingly solid sources also seem to work, such as poly(methyl methacrylate) (PMMA) and 

even table sugar was recently demonstrated as a viable Carbon source[48].  

Surface graphitization and epitaxial growth on SiC crystals. 

Heating of 6H-SiC or 4H-SiC crystals to temperatures in excess of 1200 °C causes sublimation 

of the Silicon atoms from the surface[49-51] and the remaining Carbon atoms reconstruct into 

graphene sheets[52]. The number of layers and quality of the graphene depends on whether it 

grows on the Si or C terminated face and on the annealing temperature[53]. The first Carbon 

layer undergoes reconstruction due to its interaction with the substrate forming an insulating 

buffer layer while the next layers resemble graphene. C face graphene consists of many layers, 

the first few being highly doped due the field effect from the substrate. Growth on the Si face is 

more controlled and can yield single or bilayers. By using hydrogen intercalation or thermal 

release tape[54, 55] one can transfer these graphene layers to other substrates. Epitaxial graphene 

can cover large areas, up to 4ò, depending on the size of the SiC crystal. Due to the lattice 

mismatch these layers form terraces separated by grain boundaries which limit the size of crystal 

domains to several micrometers[56] as shown in Fig. A-3a, and the electronic mobility to less 

than 3000 cm
2
/V s which is significantly lower than in exfoliated graphene. The relatively large 

size and ease of fabrication of epitaxial graphene make it possible to fabricate high-speed 

integrated circuits [57], but the high cost of the SiC crystal starting material renders it impractical 

for large-scale commercial applications.  

Other methods.  

The success and commercial viability of future graphene-based devices rests on the ability to 

synthesize it efficiently, reliably and economically. CVD graphene is one of the promising 

directions. Yet, in spite of the fast moving pace of innovation, CVD growth of graphene over 

large areas remains challenging due to the need to operate at reduced pressures or in controlled 

environments. The recent demonstration of graphene by open flame synthesis [58] offers the 

potential for high-volume continuous production at reduced cost. Many other avenues are being 

explored in the race toward low cost, efficient and large scale synthesis of graphene. Solution-

based exfoliation of graphite with organic solvents [59] or non-covalent functionalization [60] 

followed by sonication can be used in mass production of flakes for conducting coatings or 

composites. Another promising approach is the use of colloidal suspensions [61]. The starting 

material is typically a graphite oxide film which is then dispersed in a solvent and reduced. For 
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example the reduction by hydrazine annealing in argon/hydrogen [62] produces large areas of 

graphene films for use as transparent conducting coating, graphene paper or filters. 

3. Characterization.  

Optical.  

For flakes supported on SiO2 a fast and efficient way to find and identify graphene is by using 

optical microscopy as illustrated in Figure A-1c. Graphene is detected as a faint but clearly 

visible shadow in the optical image whose contrast increases with the number of layers in the 

flake. The shadow is produced by the interference between light-beams reflected from the 

graphene and the Si/SiO2 interface [24-26]. The quality of the contrast depends on the 

wavelength of the light and thickness of the oxide. For a ~300 nm thick SiO2 oxide the visibility 

is optimal for green light. Other ñsweet spotsò occur at ~90 nm and ~500nm.This method allows 

to visualize micron-size flakes, and to distinguish between single-layer, bilayer and multilayer 

flakes. Optical microscopy is also effective for identifying single layer graphene flakes grown by 

CVD on Copper as illustrated in Figure A-2a.  

Raman spectroscopy.  

Raman spectroscopy is a relatively quick way to identify graphene and to determine the number 

of layers[63, 64]. In order to be effective the spatial resolution has to be better than the sample 

size; for small samples this requires a companion high resolution optical microscope to find the 

flakes. The Raman spectrum of graphene, Figure A-2b, exhibits three main features: the G peak 

~1580 cm
-1

 which is due to a first order process involving the degenerate zone center E2g optical 

phonon; the 2D (Gô) peak at ~2700 is a second order peak involving two 1'A  zone-boundary 

optical phonons; and the D-peak, centered at ~1330 cm
ï1

, involving one 1'A  phonon, which is 

attributed to disorder-induced first-order scattering. In pure single layer graphene the 2D peak is 

typically ~ 3 times larger than the G peak and the D peak is absent. With increasing number of 

layers, the 2D peak becomes broader and loses its characteristic Lorenzian line-shape. Since the 

G-peak is attributed to intralayer effects, one finds that its intensity scales with the number of 

layers. 

 Atomic force microscopy (AFM) .  

The AFM is a non-invasive and non-contaminating probe for characterizing the topography of 

insulating as well as conducting surfaces. This makes it convenient to identify graphene flakes 

on any surface and to determine the number of layers in the flake without damage, allowing the 

flake to be used in further processing or measurement. High-end commercial AFM machines can 

produce topographical images of surfaces with height resolution of 0.03nm. State of the art 

machines have even demonstrated atomic resolution images of graphene. The AFM image of 

epitaxial graphene on SiC shown Figure A-3a clearly illustrates the terraces in these samples. 

Figure A-3 shows an AFM image of a graphene flake on an h-BN substrate obtained with the 

Integra Prima AFM by NT-MD.  
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Scanning tunneling microscopy and spectroscopy (STM/STS) 

STM, the technique of choice for atomic resolution images, employs the tunneling current 

between a sharp metallic tip and a conducting sample combined with a feedback loop to a 

piezoelectric motor. It provides access to the topography with sub-atomic resolution, as 

illustrated in Figure A-4a. STS can give access to the electronic density of states (DOS) with 

energy resolution as low as ~0.1 meV. The DOS obtained with STM is not limited by the 

position of the Fermi energy ï both occupied and empty states are accessible. In addition 

measurements are not impeded by the presence of a magnetic field which made it possible to 

directly observe the unique sequence of Landau levels in graphene resulting from its ultra-

relativistic charge carriers [65, 66].  

The high spatial resolution of the STM necessarily limits the field of view so, unless optical 

access is available, it is usually quite difficult to locate small micron size samples with an STM. 

A recently developed technique [67] which uses the STM tip as a capacitive antenna allows 

locating sub-micron size samples rapidly and efficiently without the need for additional probes. 

A more detailed discussion of STM/STS measurements on graphene is presented in part B of this 

review. 

a b c 

Figure A-3.  a) AFM image of epitaxial graphene grown on SiC shows micron size terraces . (K.V. Emtsev et al. Nature 

Materials 8 (2009) 203).  b)  AFM scan (NT-MDT Integra prime) of single layer graphene flake on an h-BN substrate. 

c)The height profile shows a 0.7nm  step between the substrate and the flake surface. The bubble under the flake is 

7nm at its peak height.  Image credits:  B. Kim NT-MDT.  

 

 

Figure A-4. STM and SEM on graphene. a) Atomic resolution STM of graphene on a graphite substrate. (b,c) SEM 

images on suspended graphene (FEI Sirion equipped with JC Nabity Lithography Systems).  b)Suspended graphene 

flake supported on LOR  polymer. Scale bar 1mm.  Image credits: J. Meyerson.  c) Suspended graphene flake (central 

area) held in place by Au/Ti support. Scale bar 1mm. Image credits A. Luican-Mayer. 

 

a b c 
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Scanning electron microscope (SEM) and transmission electron microscope (TEM)  

 SEM is convenient for imaging large areas of conducting samples. The electron beam directed at 

the sample typically has an energy ranging from 0.5 keV to 40 keV, and a spot size of about 

0.4 nm to 5 nm in diameter. The image, which is formed by the detection of backscattered 

electrons or radiation, can achieve a resolution of ~ 10nm in the best machines. Due to the very 

narrow beam, SEM micrographs have a large depth of field yielding a characteristic three-

dimensional appearance. Examples of SEM images of suspended graphene devices are shown in 

Figure A-4b,c. A very useful feature available with SEM is the possibility to write sub-micron 

size patterns by exposing an e-beam resist on the surface of a sample. The disadvantage of using 

the SEM for imaging is electron beam induced contamination due to the deposition of 

carbonaceous material on the sample surface. This contamination is almost always present after 

viewing by SEM, its extent depending on the accelerating voltage and exposure. Contaminant 

deposition rates can be as high as a few tens of nanometers per second. 

In TEM the image is formed by detecting the transmitted electrons that pass through an ultra-thin 

sample. Owing to the small de Broglie wavelength of the electrons, TEMs are capable of 

imaging at a significantly higher resolution than optical microscopes or SEM, and can achieve 

atomic resolution. Just as with SEM imaging with TEM suffers from electron beam induced 

contamination.  

Low energy electron diffraction (LEED) and angular resolved photoemission 

(ARPES).  

These techniques provide reciprocal space information. LEED measures the diffraction pattern 

obtained by bombarding a clean crystalline surface with a collimated beam of low energy 

electrons, from which one can determine the surface structure of crystalline materials. The 

technique requires the use of very clean samples in ultra-high vacuum. It is useful for monitoring 

the thickness of materials during growth. For example LEED is used for in-situ monitoring of the 

formation of epitaxial graphene [68].  

ARPES is used to obtain the band structure in zero magnetic field as a function of both energy 

and momentum. Since only occupied states can be accessed one is limited to probing states 

below the Fermi energy. Typical energy resolution of ARPES machines is ~ 0.2eV for toroidal 

analyzers. Recently 0.025eV resolution was demonstrated with a low temperature hemispherical 

analyzer at the Advanced Light Source. 

Other techniques 

In situ formation of graphitic layers on metal surfaces was monitored  in the early work by Auger 

electron spectroscopy  which shows a carbon peak [69] that displays the characteristic fingerprint 

of graphite[70].  In X-ray photoemission spectroscopy,  which can also be used during the 

deposition,  graphitic carbon is identified by a carbon species with a C1s energy close to the bulk 

graphite value of 284.5 eV[70]. 

4. Structure and physical properties  

Structurally, graphene is defined as a one-atom-thick planar sheet of sp
2
-bonded carbon atoms 

that are arranged in a honeycomb crystal lattice[3] as illustrated in Figure A-5a. Each Carbon 

atom in graphene is bound to its three nearest neighbors by strong planar s bonds that involve 
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three of its valence electrons occupying the sp
2
 hybridized orbitals. In equilibrium the Carbon-

Carbon s bonds are 0.142 nm long and are 120
0
 apart. These bonds are responsible for the planar 

structure of graphene and for its mechanical and thermal properties. The fourth valence electron 

which remains in the half-filled 2pz orbital orthogonal to the graphene plane forms a weak 

p bond by overlapping with other 2pz orbitals. These delocalized p electrons determine the 

transport properties of graphene.  

Mechanical properties.  

The covalent s bonds which hold graphene together and give it the planar structure are the 

strongest chemical bonds known. This makes graphene one of the strongest materials: its 

breaking strength is 200 times greater than steel, and its tensile strength, 130 GPa [19, 71, 72], is 

larger than any measured so far. Bunch et al. [72] were able to inflate a graphene balloon and 

found that it is impermeable to gases[72], even to helium. They suggest that this property may be 

utilized in membrane sensors for pressure changes in small volumes, as selective barriers for 

filtration of gases, as a platform for imaging of graphene-fluid interfaces, and for providing a 

physical barrier between two phases of matter.  

Chemical properties.  

The strictly two dimensional structure together with the unusual massless Dirac spectrum of the 

low energy electronic excitations in graphene (discussed below) give rise to exquisite chemical 

sensitivity. Shedin et al.[73] demonstrated that the Hall resistivity of a micrometer-sized 

graphene flake is sensitive to the absorption or desorption of a single gas molecule, producing 

step-like changes in the resistance. This single molecule sensitivity, which was attributed to the 

exceptionally low electronic noise in graphene and to its linear electronic DOS, makes graphene 

a promising candidate for chemical detectors and for other applications where local probes 

sensitive to external charge, magnetic field or mechanical strain are required.  

Thermal properties.  

 The strong covalent bonds between the carbon atoms in graphene are also responsible for its 

exceptionally high thermal conductivity. For suspended graphene samples the thermal 

conductivity reaches values as high as 5,000 W/m K [74] at room temperature which is 2.5 times 

greater than that of diamond, the record holder among naturally occurring materials. For 

graphene supported on a substrate, a configuration that is more likely to be found in useful 

applications and devices, the thermal conductivity (near room temperature) of single-layer 

graphene is about 600 Wm
-1

K
-1
 [48]. Although this value is one order of magnitude lower than 

for suspended graphene, it is still about twice that of Copper and 50 times larger than for Silicon.  

Optical properties.  

The optical properties of graphene follow directly from its 2D structure and gapless electronic 

spectrum (discussed below). For photon energies larger than the temperature and Fermi energy 

the optical conductivity is a universal constant independent of frequency: 
>4

2e
G=  where e is the 

electron charge and > the reduced Plank constant[15, 75]. As a result all other measurable 

quantities - transmittance T, reflectance R, and absorptance (or opacity) P - are also universal 

constants. In particular the ratio of absorbed to incident light intensity for suspended graphene is 
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simply proportional to the fine structure constant
137

12

==
c

e

>
a : %3.2)1( =º-= paTP . Here c 

is the speed of light. This is one of the rare instances in which the properties of a condensed 

matter system are independent of material parameters and can be expressed in terms of 

fundamental constants alone. Because the transmittance in graphene is readily accessible by 

shining light on a suspended graphene membrane [76], it gives direct access in a simple bench-

top experiment to a fundamental constant, a quantity whose measurement usually requires much 

more sophisticated techniques. The 2.3% opacity of graphene, which is a significant fraction of 

the incident light despite being only one atom thick, makes it possible to see graphene with bare 

eyes by looking through a glass slide covered with graphene. For a few layers of graphene 

stacked on top of each other the opacity increases in multiples of 2.3% for the first few layers. 

 The combination of many desirable properties in graphene: transparency, large conductivity, 

flexibility , high chemical and thermal stability, make it[77, 78] a natural candidate for solar cells 

and other optoelectronic devices.  

5. Electronic properties .  

Three ingredients go into producing the unusual electronic properties of graphene: its 2D 

structure, the honeycomb lattice and the fact that all the sites on its honeycomb lattice are 

occupied by the same atoms, which introduces inversion symmetry. We note that the honeycomb 

lattice is not a Bravais lattice. Instead, it can be viewed as a bipartite lattice composed of two 

interpenetrating triangular sublattices, A and B with each atom in the A sublattice having only B 

sublattice nearest neighbors and vice versa. In the case of graphene the atoms occupying the two 

sub-lattices are identical and as we shall see this has important implications to its electronic band 

structure. As shown in Figure A-5a, the Carbon atoms in sublattice A are located at positions 

Figure A-5. Graphene structure. a)Hexagonal lattice. Red and green colors indicate the two triangular sublattices, 

labeled A and B. The grey area subtended by the primitive translation vectors 1a
C

and 2a
C

marks the primitive unit cell 

and the vector marked t
C

connects two adjacent A and B atoms. b) Brillouin zone showing the reciprocal lattice vectors 

G1 and G2 . Each zone corner coincides with a Dirac point found at the apex of the Dirac cone excitation spectrum 

shown in Figure A-6. Only two of these are inequivalent (any two which are not connected by a reciprocal lattice 

vector)  and are usually referred to as K and Kô.  
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a
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a
CC    are the lattice 

translation vectors for sublattice A. Atoms in sublattice B are at t
CC
+R , where .3/)( 12 aa
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+=t

 

The reciprocal lattice vectors, )3,1(
3

2
),3,1(

3

2
21 -==

a
G

a
G

pp    
CC

and the first Bril louin zone, a 

hexagon with the corners at the so-called K points, are shown in Figure A-5b.  Only two of the K 

points are inequivalent, the others being connected by reciprocal lattice vectors. The electronic 

properties of graphene are controlled by the low energy conical dispersion around these K points. 

Tight binding Hamiltonian and band structure.  

The low energy electronic states, which are determined by electrons occupying the pz orbitals , 

can be derived from the tight binding Hamiltonian[11] in the Huckel model for nearest neighbor 

interactions:  

( )ä ++-++-++-=
R

chaRRaRRRRtH
C

CCCCCCCCCCC
...1 21 ttt

 

Here )( rRRr
zp

CCCC
-Y=

 
is a wave function of the pz orbital on an atom in sublattice A, t

CCC
+Rr

is a similar state on a B sublattice atom, and t is the hopping integral from a state on an A atom 

to a state on an adjacent B atom. The hopping matrix element couples states on the A sublattice 

to states on the B sublattice and vice versa. It is chosen as t ~ 2.7 eV so as to match the band 

structure near the K points obtained from first principle computations. Since there are two 

Bravais sublattices two sets of Bloch orbitals are needed, one for each sublattice, to construct 

Bloch eigenstates of the Hamiltonian: Re
N

Ak
R

Rki
CC

C

CC

ä Ö=
1

 
and t

CCC

C

CC

+= ä Ö Re
N

Bk
R

Rki1
. 

These functions block-diagonalize the one-electron Hamiltonian into 2 x 2 sub-blocks, with 

vanishing diagonal elements and with off-diagonal elements given by:

).()1( 21 keeeteBkHAk
akiakiki

CCC CCCCCC

¹++-=
Ö-Ö-Öt

 

The single particle Bloch energies )()( kek
CC

°=e  

b a 

Figure A-6. Graphene band structure. a) Three dimensional band structure. Adapted from C.W.J. Beenakker, 

Rev.Mod.Phys., 80 (2008) 1337. b) Zoom into low energy dispersion at one of the K points shows the electron-hole 

symmetric  Dirac cone structure .  
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give the band structure plotted in Figure A-6a , with )()( kek
CC

=e  corresponding to the 

conduction band ˊ * and )()( kek
CC

-=e  to the valence band ˊ. It is easy to see that )(k
C

e  

vanishes when k
C

lies at a K point. For example at ( )3/2 211 GGK
CCC

+= , 

( ) 01)(
3/23/ 2211 =++-=

Ö-Ö-Ö aGiaGiki eeteKe
CCCCCCC

t  where we used : 
ijj

a
i

G pd2=Ö
CC

. For reasons that will 

become clear, these points are called ñDirac pointsò (DP). Everywhere else in k-space, the 

energy is finite and the splitting between the two bands is )(2 ke
C

 
.  

Linear dispersion and spinor wavefunction.  

We now discuss the energy spectrum and eigenfunctions for k close to a DP. Since only two of 

the K points - also known as ñvalleysò - are inequivalent we need to focus only on those two. 

Following convention we label them K and Kô. For the K valley, it is convenient to define the 

(2D) vector kKq
CCC
-= . Expanding around 0=q

C
, and substituting ( )yxiq µµ-­ ,>

C
 the eigenvalue 

equation becomes [3-5]:  
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Where sm
at

vF /10
2

3 6º=
>

 is the Fermi velocity of the quasiparticles. The two components 

ɊKA and ɊKB give the amplitude of the wave function on the A and B sublattices. The operator 

couples ɊKA to ɊKB but not to itself, since nearest-neighbor hopping on the honeycomb lattice 

couples only A-sites with B- sites. The eigenvalues are linear in the magnitude of q and do not 

depend on its direction, qvq F

C
>°=)(e  producing the electron-hole symmetric conical band 

shown in Figure A-6b. The electron hole symmetry in the low energy dispersion of graphene is 

slightly modified when second order and higher neighbor overlaps are included. But the 

degeneracy at the DP remains unchanged even when the higher order corrections are added as 

discussed in the next section. The linear dispersion implies an energy independent group velocity 

Fgroup vqEkEv =µµ=µµ= >> //  for low-energy excitations (|E| Ḻ t). 

The eigenfunctions describing the low energy excitations near point K are:
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This two component representation, which formally resembles that of a spin, corresponds to the 

projection of the electron wavefunction on each sublattice.  

How robust is the Dirac Point?  

A perfect undoped sheet of graphene has one electron per carbon in the ˊ band and, taking spin 

into account, this gives a half filled band at charge neutrality. Therefore, the Fermi level lies 

between the two symmetrical bands, with zero excitation energy needed to excite an electron 

from just below the Fermi energy (hole sector) to just above it (electron sector) at the DPs. The 
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Fermi ñsurfaceò in graphene thus consists of the two K and Kô points in the Brillouin zone where 

the ˊ and ˊ * bands cross. We note that in the absence of the degeneracy at the two K points 

graphene would be an insulator! Usually such degeneracies are prevented by level repulsion 

opening a gap at crossing points. But in graphene the crossing points are protected by discrete 

symmetries[79]: C3, inversion and time reversal, so unless one of these symmetries is broken the 

DP will remain intact. Density functional theory calculations[80] show that adding next-nearest 

neighbor terms to the Hamiltonian removes the electron hole symmetry but leaves the 

degeneracy of the DPs. On the other hand the breaking of the symmetry between the A and B 

sublattices, such as for example by a corrugated substrate, is bound to lift the degeneracy at the 

DPs. The effect of breaking the (A,B) symmetry is directly seen in grapheneôs  sister compound, 

h-BN. Just like graphene h-BN is 2-dimensional crystal with a honeycomb lattice, but the two 

sublattices in h-BN are occupied by different atoms and the resulting broken symmetry leaves 

the DP unprotected. Consequently  h-BN is a band insulator with a gap of ~ 6eV. 

Dirac-Weyl Hamiltoni an, masssles Dirac fermions and chirality   

A concise form of writing the Hamiltonian in equation 2 is  

pvH FK

CC
> Ö= s

  

 
where qp

C
>

C
=  and the components of the operator ),( yx sss=

C
 are the usual Pauli matrices, 

which now operate on the sublattice degrees of freedom instead of spin, hence the term 

pseudospin. Formally, this is exactly the Dirac-Weyl equation in 2D, so the low energy 

excitations are described not by the Schrödinger equation, but instead by an equation which 

would normally be used to describe an ultra-relativistic (or massless) particle of spin 1/2 (such as 

a massless neutrino), with the velocity of light c replaced by the Fermi velocity vF, which is 300 

times smaller. Therefore the low energy quasiparticles in graphene are often referred to as 

ñmassless Dirac fermionsò.  

The Dirac-Weyl equation in quantum electrodynamics (QED) follows from the Dirac equation 

by setting the rest mass of the particle to zero. This results in two equations describing particles 

of opposite helicity or chilarity (for massless particles the two are identical and the terms are 

used interchangeably). The chiral (helical) nature of the Dirac-Weyl equation is a direct 

consequence of the Hamiltonian being proportional to the helicity operator: ph
%C
Ö= s

2

1Ĕ  where p
%

 

is a unit vector in the direction of the momentum. Since hĔ commutes with the Hamiltonian, the 

projection of the spin is a well-defined conserved quantity which can be either positive or 

negative, corresponding to spin and momentum being parallel or antiparallel to each other.  

In condensed matter physics hole excitations are often viewed as a condensed matter equivalent 

of positrons. However, electrons and holes are normally described by separate Schrödinger 

equations, which are not in any way connected. In contrast, electron and hole states in graphene 

are interconnected, exhibiting properties analogous to the charge-conjugation symmetry in QED. 

This is a consequence of the crystal symmetry which requires two-component wave functions to 

define the relative contributions of the A and B sublattices in the quasiparticle make-up. The 

two-component description for graphene is very similar to the spinor wave functions in QED, but 

the óspinô index for graphene indicates the sublattice rather than the real spin of the electrons. 

This allows one to introduce chirality in this problem as the projection of pseudospin in the 
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direction of the momentum ï which, in the K valley, is positive for electrons and negative for 

holes. So, just as in the case of neutrinos, each quasipartcle excitation in graphene has its 

ñantiparticleò. These particle-antiparticle pairs correspond to electron-hole pairs with the same 

momentum but with opposite signs of the energy and with opposite chirality. In the Kô the 

chirality of electrons and holes is reversed, as we show below. 

Suppression of backscattering  

The backscattering probability can be obtained from the projection of the wavefunction 

corresponding to a forward moving particle ))(( qqK

C+Y on the wavefunction of the back-scattered 

particle ))(( pq+Y+ qK

C
. Within the same valley we have 

))(())(())(( qpqq qiqq KKK

CCC -++ Y=+Y­Y which gives 0))(())(( =YY -+ qq qq KK

CC
 . In 

other words backscattering within a valley is suppressed. This selection rule follows from the 

fact that backscattering within the same valley reverses the direction of the pseudospin.  

We next consider backscattering between the two valleys. Expanding in kKq
CCC
-= ''  near the 

second DP yields pvH FK

CC
> Ö-= *' s  (* indicates complex conjugation) which is related to 

)(qH K

C

 
by the time reversal symmetry operator, *Czs  [5]. The solution in the Kô valley is 

obtained by taking 
xx pp -­  in equation 2 resulting in
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Backscattering between valleys is also disallowed because it entails the transformation 

)()()( ' qKqKqK i qpqq -++ Y=+Y­Y which puts the particle in a state that is orthogonal to its 

original one. This selection rule follows from the fact that backscattering between valleys 

reverses the chirality of the quasiparticle.  

The selection rules against backscattering in graphene have important experimental 

consequences including ballistic transport at low temperature [21, 22] , extremely large room 

temperature conductivity [81] and weak anti-localization [82].  

Berry Phase  

Considering the quasiparticle wavefunction in equation 3, we note that it changes sign under a 

p2  rotation in reciprocal space: )2()( pqq +Y-=Y °°

qKqK . This sign change is often used to 

argue that the wavefunctions in graphene have a Berry phase, ofp. A non-zero Berry phase [83] 

which can arise in systems that undergo a slow cyclic evolution in parameter space, can have far 

reaching physical consequences that can be found in diverse fields including atomic, condensed 

matter, nuclear and elementary particle physics, and optics. In graphene the Berry phase of p is 

responsible for the zero energy Landau level and the anomalous QHE discussed below.  

On closer inspection however the definition of the Berry phase in terms of the wavefunction 

alone is ambiguous because the sign change discussed above can be made to disappear simply by 

multiplying the wavefunction by an overall phase factor, .
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less ambiguous result one should use a gauge invariant definition for the Berry phase[84]
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lylg  where the integration is over a closed path in parameter space and 

the wavefunction )(ly has to be single valued. Applying this definition to the single valued 

form of the wavefunction, ie 
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 over a contour 

that encloses one of the DPs we find that the gauge invariant Berry phase in graphene is

 

pg= .  

Density of states and ambipolar gating.  

The linear DOS in graphene is a direct consequence of the conical dispersion and the electron-

hole symmetry. It can be obtained by considering p2/)( 2qqnK = , the number of states in 

reciprocal space within a circle of radius 
Fvq >/e= around one of the DPs, say K, and taking 

into account the spin degeneracy. The DOS associated with this point is 
dq

dn

v

K

F>

1
. Since there 

are 2 DPs the total DOS per unit area is:  

( )
e

p
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F vdq
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The DOS per unit cell is then cA)(er

 

where 2/33 2aAc =  is the unit cell area. The DOS in 

graphene differs qualitatively from that in non-relativistic 2D electron systems leading to 

important experimental consequences. It is linear in energy, electron-hole symmetric and 

vanishes at the DP - as opposed to a constant value in the non-relativistic case where the energy 

dispersion is quadratic. This makes it quite easy to dope graphene with an externally applied 

gate. At zero doping, the lower half of the band is filled exactly up to the DPs. Applying a gate 

voltage induces a nonzero charge, which is equivalent to injecting (depending on the sign of the 

voltage) electrons in the upper half of Dirac cones or holes in the lower half. Due to the electron-

hole symmetry, the gating is ambipolar  with the gate induced charge changing sign at the DP. 

This is why the DP is commonly labeled as the charge neutrality point (CDP).  

Cyclotron mass and Landau levels 

Considering such a doped graphene device with carrier density per unit area, sn , at a low enough 

temperature so that the electrons form a degenerate Fermi sea, one can then define a ñFermi 

surfaceò (in 2D a line). After taking into account the spin and valley degeneracies, the 

corresponding Fermi wave vector qF is ( ) pp 2/
2/1

sF nq = . One can now define an ñeffective 

massò m* in the usual way, 2/1
2/1

/* s

F

FF n
v

vqm
>
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p
== . In a 3D solid, the most direct way of 

measuring m* is through the specific heat, but in a 2D system such as graphene this is not 

practical. Instead one can use the fact that for an isotropic system the mass measured in a 

cyclotron resonance experiment, ,*

cm is identical to m* defined above. This is because in the 

semi-classical limit 
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enclosed by an orbit of energy e, so */* mvqm FFc ==> . Cyclotron resonance experiments on 

graphene verify that m* is indeed proportional to n
1/2

 [9].  

The energy spectrum of 2D electron systems in the presence of a magnetic field, B, normal to the 

plane breaks up into a sequence of discrete Landau levels. For the nonrelativistic case realized in 

2D electron system on helium[85] or in semiconductor heterostructures [86] the Landau level 

sequence consists of a series of equally spaced levels similar to that of a harmonic oscillator 

)2/1( += NE cN w>  with */ meBc =w  the cyclotron frequency and a finite energy offset of 1/2

cw> . This spectrum follows directly from the semi-classical Onsager quantization condition [87] 

for closed orbits in reciprocal space: ,..1,0);(
2

)( =+ö
ö
÷

õ
æ
æ
ç

å
= NN

Be
S l

p
e

>
 and 

pgl 2/2/1 -= , where g is the Berry phase. The magnetic field introduces a new length scale, 

the magnetic length
eB

lB

>
= , which is roughly the distance between the flux quanta 

e

h
=0f . 

The Onsager relation is equivalent to requiring that the cyclotron orbit encloses an integer 

number of flux quanta.  

Figure A-7. Low energy dispersion and DOS.  a) Zero-field energy dispersion of low energy excitations illustrating the 

electron (red) hole (blue) symmetry. b)  The zero-field DOS is linear in energy and vanishes at the Dirac point.  c) Finite-

field energy dispersion exhibits a discrete series of unevenly spaced Landau levels symmetrically arranged about the 

zero-energy level, N=0, at the Dirac point. d) DOS in finite magnetic field consists of a sequence of d(E-EN)  functions 

with gaps in between, All peaks have the same height, proportional to the level degeneracy 4B/f 0 . 
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For the case of non-relativistic electrons g =0,  resulting in the ½ sequence offset. In graphene, as 

a result of the linear dispersion and Berry phase of p which gives 0=l , the Landau level 

spectrum is qualitatively different. Using the same semiclassical approximation, the quantization 

of the reciprocal space orbit area, 2

Fqp gives N
Be

qS F ö
ö
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õ
æ
æ
ç

å
==

>

p
pe

2
)( 2

, which produces the 

Landau level energy sequence: 

 
,...1,0;2.5 2 °=°== NNBveqvE FFFN >> . 

Here the energy origin is taken to be the DP and +/- refer to electron and hole sectors 

respectively.  

Compared to the non-relativistic case the energy levels are no longer equally spaced, the field 

dependence is no longer linear and the sequence contains a level exactly at zero energy which is 

a direct manifestation of the Berry phase in graphene[12].  

We note that the Landau levels are highly degenerate, the degeneracy/per unit area being equal to 

4 times (for spin and valley) the orbital degeneracy (the density of flux lines): .4
0f

B

 

The exact finite field solutions to this problem can be obtained [88-91] from the Hamiltonian in 

equation 2, by replacing Aeii
CCC

+Ð-­Ð- , where in the Landau gauge, the vector potential is 

)0,( yBA -=
C

 and AB
CCC
³Ð= . The energy sequence obtained in this approach is the same as 

above, but now one can also obtain the explicit functional form of the eigenstates. 

From bench-top quantum relativity to nano-electronics  

Owing to the ultra-relativistic nature of its quasiparticles, graphene provides a platform which for 

the first time allows testing in bench-top experiments some of the strange and counterintuitive 

effects predicted by quantum relativity, but often not yet seen experimentally, in a solid-state 

context. One example is the so called ñKlein paradoxò which predicts unimpeded penetration of 

relativistic particles through high [92] potential barriers. In graphene the transmission probability 

for scattering through a high potential barrier [93, 94] of width D at an angle q, is 

)(sin)(cos1

)(cos
22

2

q

q

Dq
T

x-
= . In the forward direction the transmission probability is 1 

corresponding to perfect tunneling. Klein tunneling is one of the most exotic and counterintuitive 

phenomena. It was discussed in many contexts including in particle, nuclear and astro-physics, 

but direct observation in these systems has so far proved impossible. In graphene on the other 

hand it may be observed [95]. Other examples of unusual phenomena expected due to the 

massless Dirac-like spectrum of the quasiparticles in graphene include electronic negative index 

of refraction[96], zitterbewegung and atomic collapse[97]. 

Beyond these intriguing single-particle phenomena electron-electron interactions and correlation 

are expected to play an important role in graphene [98-104] because of its weak screening and 

large effective ñfine structure constantò 2
2

º=
Fv

e

>
a [3] In addition, the interplay between spin 
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and valley degrees of freedom is expected to show SU(4) fractional QH physics in the presence 

of a strong magnetic field which is qualitatively different from that in the conventional 2D 

semiconductor structures[104, 105]. 

The excellent transport and thermal characteristics of graphene make it a promising material for 

nanoelectronics applications. Its high intrinsic carrier mobility[106], which enables low 

operating power and fast time response, is particularly attractive for high speed electronics[57]. 

In addition, the fact that graphene does not lose its electronic properties down to nanometer 

length scales, is an invaluable asset in the quest to downscale devices for advanced integration. 

These qualities have won graphene a prime spot in the race towards finding a material that can 

be used to resolve the bottleneck problems currently encountered by Si-based VLSI electronics. 

Amongst the most exciting recent developments is the use of graphene in biological applications. 

The strong affinity of bio-matter to graphene makes it an ideal interface for guiding and 

controlling biological processes. For example graphene was found to be an excellent bio-sensor 

capable of differentiating between single and double stranded DNA [107]. New experiments 

report that graphene can enhance the differentiation of human neural stem cells for brain repair 

[108] and that it accelerates the differentiation of bone cell from stem cells[109]. Furthermore, 

graphene is a promising material for building efficient DNA sequencing machines based on 

nanopores, or functionalized nano-channels [110].  

Is graphene special? 

The presence of electron-hole symmetric Dirac cones in the band structure of graphene endows it 

with extraordinary properties, such as ultra-high carrier mobility which is extremely valuable for 

high speed electronics, highly efficient ambipolar gating and exquisite chemical sensitivity.  

One may ask why graphene is special. After all there are many systems with Dirac cones in their 

band structure. Examples include transition metal dichalcogenites below the charge density wave 

transition[111], cuprates below the superconducting transition [112] and pnictides below the spin 

density wave transition[113]. However in all the other cases the effect of the DP on the 

electronic properties is drowned by states from other parts of the Brillouin zone which, not 

having a conical dispersion, make a much larger contribution to the DOS at the Fermi energy. In 

graphene on the other hand the effect of the DPs on the electronic properties is unmasked 

because they alone contribute to the DOS at the Fermi energy. In fact, as discussed above, had it 

not been for the DPs, graphene would be a band insulator.  

6. Effect of the substrate on the electronic properties  of graphene.  

The isolation of single layer graphene by mechanical exfoliation was soon followed by the 

experimental confirmation of the Dirac-like nature of the low energy excitations [9, 81]. 

Measurements of the conductivity and Hall coefficient on graphene FET devices demonstrated 

ambipolar gating and a smooth transition from electron doping at positive gate voltages to hole 

doping on the negative side. At the same time the conductivity remained finite even at nominally 

zero doping, consistent with the suppression of backscattering expected for massless Dirac 

fermions. Furthermore, magneto-transport measurements in high magnetic field which revealed 

the QHE confirmed that the system is 2 dimensional and provided evidence for the chiral nature 

of the charge carriers through the absence of a plateau at zero filling (anomalous QHE). 

Following these remarkable initial results, further attempts to probe deeper into the physics of 

the DP by measuring graphene deposited on SiO2 substrates, seemed to hit a hard wall. Despite 
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the fact that the QHE was readily observed, it was not possible in these devices to approach the 

DP and to probe its unique properties such as ballistic transport [56, 114], specular Andreev 

reflections expected [63, 115] at graphene/superconducting junctions [116, 117] or correlated 

phenomena such as the fractional QHE [118]. Furthermore, STS measurements did not show the 

expected linear DOS or its vanishing at the charge neutrality point (CNP)[119, 120].  

The failure to probe the DP physics in graphene deposited on SiO2 substrates was understood 

later, after applying sensitive local probes such as STM [119-124] and SET (single electron 

transistor) microscopy[125], and attributed to the presence of a random distribution of charge 

impurities associated with the substrate. The electronic properties of graphene are extremely 

sensitive to electrostatic potential fluctuations because the carriers are at the surface and because 

of the low carrier density at the DP. It is well known that insulating substrates such as SiO2 host 

randomly distributed charged impurities, so that graphene deposited on their surface is subject to 

spatially random gating and the DP energy (relative to the Fermi level) displays random 

fluctuations, as illustrated in Figure A-8b. The random potential causes the charge to break up 

into electron-hole puddles: electron puddles when the local potential is below the Fermi energy 

and hole puddles when it is above. These puddles fill out the DOS near the DP (Figure A-8c,d ) 

making it impossible to attain the zero carrier density condition at the DP for any applied gate 

voltage as seen in the STS image shown in Figure A-8e. Typically for graphene deposited onto 

SiO2 the random potential causes DP smearing over an energy range .10030 meVER -ºD  When 

the Fermi energy is within RED  of the DP, a gate voltage change transforms electrons into holes 

and vice versa but it leaves the net carrier density almost unchanged. As a result, close to the DP 

Figure A-8. Effect of substrate on electronic properties. a) DOS map of graphene on an SiO2 substrate shows the effect of 

local gating due to the random potential. b) Schematic illustration of local gating leading to spatial fluctuation of the 

Dirac point and to the formation of electron-hole puddles. c) Electron-hole puddles introduce midgap states in the DOS 

which lead to smearing of Dirac point. d) STS measurement for  graphene on SiO2 shows smearing of the Dirac point 

due to electron-hole  puddles.  e) Conductivity versus gate voltage curve shows saturation due to electron hole puddles.  

f) Same as panel (e) on a logarithmic scale. 
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the gate voltage cannot affect significant changes in the net carrier density. This is directly seen 

as a broadening of order 1-10V in the conductivity versus gate voltage curves, Figure A-8e,f, 

which corresponds to a minimum total carrier density in these samples of ns ~10
11

 cm
-2

. The 

energy scale defined by the random potential also defines a temperature RB ETk D~  below which 

the electronic properties such as the conductivity are independent of temperature.  

Integer and fractional quantum Hall effect.  

The substrate induced random potential which makes the DP inaccessible in graphene deposited 

on SiO2 , explains the inability to observe in these samples the linear DOS and its vanishing at 

the CNP with STS measurements. As we show below this also helps understand why the integer 

QHE is readily observed in such samples but the fractional QHE is not.  

To observe the QHE in a 2D electron system one measures the Hall and longitudinal resistance 

while the Fermi energy is swept through the Landau levels (LL), by changing either carrier 

density or magnetic field [126]. The Fermi energy remains within a LL until all the available 

states, 0/4 fB  per unit area, are filled and then jumps across the gap to the next level unless, as is 

usually the case,  there are localized impurity states available within the gap which are populated 

first. In homogeneous samples the LL energy is uniform in the bulk and diverges upwards 

(downwards) for electrons (holes) near the edges. As a result, when the Fermi energy is placed 

within a bulk gap between two LLs, it must intersect all the filled LLs at the edge. This produces 

one dimensional ballistic edge channels, in which the quasiparticles on opposite sides of the 

sample move in opposite directions, as shown in Figure A-9a. These ballistic channels lead to a 

vanishing longitudinal resistance and to a quantized Hall conductance: h

e
xy

2

ns = where n is   

the ñfilling factorò. n counts the number of occupied ballistic channels which is the number of 

filled LLs multiplied by the (non-orbital) degeneracy,  4 in the case of graphene. The N=0 level 

is special because half of its  states  are electron like (K valley) and half hole like (Kô valley) so 

that its contribution consists of  only 2 states for each species.  Therefore when the Fermi energy 

is in between levels N and N+1, the number of occupied states is 4N+2, corresponding to   

)2/1(4 += Nn . The ½ offset, absent in the case of non-relativistic electrons, is a direct 

consequence of the chiral symmetry of the low energy quasiparticles in graphene. As a result the 

series of QH plateaus in graphene:  
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e
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lacks the plateau at zero Hall conductance which in the non-relativistic case is associated with a 

gap at zero energy. 

The ballistic edge channels which are necessary to observe the QHE are destroyed by excessive 

disorder. This is because large random potential fluctuations may prevent the formation of a 

contiguous gap across the entire sample and then the Fermi energy cannot be placed in a gap 

between two LL as illustrated in  Figure A-9b. This could allow the creation of a conducting path 

that connects the two edges resulting in back-scattering, the destruction of the ballistic channels 

and the loss of the quantized plateaus. In graphene, the condition for to placing the Fermi energy 
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between the N=0 and N=1 LLs, and thus to observe at least one QH plateau, is: 

( ) .,][35
2/1

01 TkETBmeVEE BRD>Ö=- For a typical graphene sample on SiO2, 

where  this implies that the integer QHE can already be seen in fields TB 1²  , consistent with 

the early experiments.  

The condition for observing the fractional QHE [127] is more stringent. The fractional QHE 

occurs when as a result of strong correlations the system can lower its energy for certain filing 

factors by forming ñcomposite fermionsò which consist of an electron bound together with an 

even  number of flux lines [128]. These composite fermions sense the remnant magnetic field left 

after having ñswallowedò the flux lines, and as a result their energy spectrum breaks up into 

ñLambda levelsò (LL) which are the equivalent of LLs but for the composite fermions in the 

smaller field. Just as the electrons display an integer QHE whenever the Fermi energy is in a gap 

between LLs, so do the composite fermions when the Fermi energy is in a gap between the LLs. 

The filling factors for which this occurs take fractional values

2,1..;2,1,
12

°°==
°

= mp
mp

p
n . The characteristic spacing between the LLs is controlled by 

the Coulomb energy, and is much smaller than the spacing between LLs: 

ee
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e
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c

´L  where e is the dielectric constant of the substrate. Thus the 

criterion for decoupled edges in the fractional QHE case becomes

TBmeVEE R 5030 e>Ý²D>L , which is larger than any dc magnetic field attainable to date. 

In other words, the fractional QHE is not observable in graphene deposited on SiO2.  

Therefore in order to access the intrinsic properties of graphene and correlation effect it is 

imperative to reduce the substrate-induced random potential. The remainder of this review is 

Figure A-9. Landau levels and quantum Hall effect.  a) Landau levels in the bulk showing their upward (downward for 

holes) bending at sample edges indicated by dashed lines. The Fermi energy (green line) lies in the gap between the N=1 

and N=2 levels in the bulk and at the edges it intersects both filled LLs. The 4 intersection points define ballistic one 

dimensional edge channels in which the electrons move out of the page (right edge marked by circles) or into the page 

(left channels marked by crosses). b)  In the presence of a random potential the Fermi energy cannot always be placed in 

a bulk gap. This may destroy the quantum Hall effect as discussed in the text.   
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devoted to the exploration of ways to reduce this random potential and to access the intrinsic 

electronic properties of graphene.  

B. Scanning Tunneling Microscopy and Spectroscopy  

In STM/STS experiments, one brings a sharp metallic tip very close to the surface of a sample, 

with a typical tip-sample distance of ~1nm. For positive tip-sample bias voltages, electrons 

tunnel from the tip into empty states in the sample; for negative voltages, electrons tunnel out of 

the occupied states in the sample into tip. In the Bardeen tunneling formalism [129] the tunneling 

current is given by  

7.    Ὅ
ᴐ
᷿ ὪὉ Ὡὠ ‭ ὪὉ ‭” Ὁ Ὡὠ ‭” Ὁ ‭ȿὓȿὨ‭   

where ïe is the electron charge, f(x) is the Fermi function, EF the Fermi energy, V the sample 

bias voltage, rT and rs represent the DOS in the tip and sample, respectively. The tunneling 

matrix M depends strongly on the tip-sample distance z. When the tip DOS is constant and at 

sufficiently low temperatures the tunneling current can be approximated by 

)(exp),(),,( rz

eV

s drVzrI keer -

¤-

ù
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ø
é
ê

è
´ ñ  where >/2~ fk m  is the inverse decay length and f is the 

local barrier height or average work function. The exponential dependence on height makes it 

possible to obtain high resolution topography of the surface at a given bias voltage. The image is 

obtained by scanning the sample surface while maintaining a constant tunneling current with a 

feedback loop which adjusts the tip height to follow the sample surface. We note that an STM 

image not only reflects topography but also contains information about the local DOS which can 

be obtained directly [130] by measuring the differential conductance: 

ψȢ  
ὨὍ

Ὠὠ
 ὠ  θ” ‭ Ὡὠ 

Here EF is set to be zero. In STS the tip-sample distance is held fixed by turning off the feedback 

loop while measuring the tunneling currents as a function of bias voltage. Usually one can use a 

lock-in technique to measure differential conductance directly by applying a small ac modulation 

to the sample bias voltage.  

In practice, finite temperatures introduce thermal broadening through the Femi functions in 

Eq.(7), leading to reduced energy resolution in STS. For example, at 4.2K the energy resolution 

cannot be better than 0.38meV. Correspondingly, the ac modulation of the sample bias should be 

comparable to this broadening in order to achieve highest resolution. The condition of flat tip 

DOS is usually considered satisfied for common tips, such as Pt-Ir, W or Au, as long as the 

sample bias voltage is not too high. Compared to a sharp tip, a blunt tip typically has a flatter 

DOS. In order to have reliable STS, one should make sure a good vacuum tunneling is achieved. 

To this end, one can check the spatial and temporal reproducibility of the spectra and ensure that 

they are independent of tip-sample distance [130].  
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1. Graphene on SiO2 

As discussed in part A, the insulating substrate of choice and the most convenient, SiO2, suffers 

from large random potential fluctuations which make it impossible to approach the DP due to the 

formation of electron hole puddles [125]. STM topography on these substrates does show a 

honeycomb structure for single layer graphene and a triangular lattice for multi-layers [121, 131] 

with very few topological defects which is testimony to the structural robustness of graphene. 

However, in contrast to the case of graphene on graphite [65], these samples show significant 

corrugation on various length scales ranging from ~1-32nm due to the substrate, wrinkling 

during fabrication [100] and possibly intrinsic fluctuations. These corrugations can lead to 

broken sub-lattice symmetry affecting both transport and the STM images and can lead for 

example to the appearance of a triangular lattice instead of the honeycomb structure in 

unperturbed graphene [131, 132].  

In the presence of scattering centers, the electronic wave functions can interfere to form standing 

wave patterns which can be observed by measuring the spatial dependence of dI/dV at a fixed 

sample bias voltage. By using these interference patterns, it was possible to discern individual 

scattering centers in the dI/dV maps obtained at energies far from the CNP when the electron 

wave length is small [133]. No correlations were found between the corrugations and the 

scattering centers, suggesting the latter play a more important role in the scattering process. 

When the sample bias voltage is close to the CNP, the electron wave length is so large that it 

covers many scattering centers and the dI/dV maps show coarse structures ( Figure B-1b) which 

are attributed to electron-hole puddles. 

The Fourier transform of the interference pattern provides information about the energy and 

momentum distribution of quasiparticle scattering, which can be used to infer band structure 

[123]. While for unperturbed single layer graphene, the patterns should be absent or very weak 

[134],  for graphene on SiO2 clear interference patterns arise [133] due to strong scattering 

Figure B-1. STM/STS of graphene on chlorinated SiO2 . a)  STM topography image of a typical 300x300 nm graphene 

area. Tunneling current It=20pA, and bias voltage Vbias=190mV.  Legend shows height scale. b) Differential conductance  

map over the area in panel (a)  taken close to the  Dirac point (~140mV), marked ED in (d). Legend shows  differential 

conductance scale. c) STM atomic resolution image (It=20pA, Vbias=300mV)  shows honeycomb structure. d) Differential 

conductance  averaged over the area shown in  (b). .  Adapted from A. Luican et al. Phys. Rev. B, 83 (2011)  
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centers which are believed to be trapped charges. The dispersion E(k) obtained from the 

interference pattern is linear with vF = 1.5±0.2×10
6
 and 1.4±0.2×10

6
m/s for electron and hole 

states, respectively. It should be noted that these values are for states with energies significantly 

far from the Fermi level and the CNP. At lower energies, transport measurements yielded 

vF=1.1×10
6
m/s [9, 10].  

2. Graphene on metallic substrates  

As detailed in the introductory section  epitaxial growth of graphitic layers can be achieved on a 

wide range of metal substrates by thermal decomposition of a hydrocarbon or by surface 

segregation of carbon atoms from the bulk metal[135, 136]. Graphene monolayers are relatively 

easy to prepare on metal surfaces  and, with the right metal and growth conditions, the size of the 

monolayer flakes is almost unlimited.  STM studies of graphitic flakes on metallic substrates 

have focused mostly on the structure.  On Ir(111) [46] ,  Cu(111) [46, 137, 138] and on Ru(0001) 

[139] (Figure B-2a) they  revealed structurally high-quality monolayer graphene and continuity 

which is not limited by the size of terraces in the substrate, although the overall structure  is often  

strongly modulated by the mismatch with the lattice of the underlying metal which leads  to 

Moire super structures (Figure B-2 c).   The electronic properties of these graphitic layers are 

strongly affected by the metallic substrates leading to significant deviations from the linear 

dispersion expected for free standing graphene[139](Figure B-2b). Thus, in order to access the 

unique electronic properties of graphene while also taking advantage of the high quality and 

large scales achieved on metallic substrates  it is necessary to separate the graphitic layer from its  

metallic substrate.  

 

 

3. Graphene on Graphite 

The choice of a minimally invasive substrate for gaining access to the electronic properties of 

graphene is guided by the following attributes: flat, uniform surface potential, and chemically 

pure. Going down this list, the substrate that matches the requirements is graphite, the ñmother 

ñof graphene. Because it is a conductor, potential fluctuations are screened and furthermore it is 

readily accessible to STM and STS studies.  

Figure B-2. STM/STS on graphene on Ru(0001)  and Cu(111).  a) Atomic-resolution image showing graphene 

overlayer across  a  step edge on the Ru substrate.  b)  Differential conductance  spectrum of graphene layer on Ru 

substrate.  Adapted from  Pan et al, Adv. Mat. 21 (2009) 2777. c) Atomic resolution STM topography image of 

graphene on Cu showing the Moire´pattern  and the honeycomb structure. Adapted from Gao et al Nano Letters, 

10 (2010) 3512. 

a b c 
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Almost ideal graphene seen by STM and STS 

During exfoliation of a layered material, cleavage takes place between the least coupled layers. 

Occasionally, when cleavage is partial, a region in which the layers are separated can be found 

adjacent to one where they are still coupled. This situation in shown in Figure B-3a where partial 

cleavage creates the boundary ï seen as a diagonal dark ridge - between the decoupled region  

marked G and a less coupled region marked W. The layer separation in these regions is obtained 

from height profiles along lines a and b shown in the figure. In region W the layer separation, 

~0.34nm, is close to the inter layer spacing 0.335nm of graphite, but in region G the larger 

separation,  ~0.44nm, means that the top layer is lifted by ~30%. Atomic resolution STM images 

show a honeycomb structure in region G but a triangular one in region W. The triangular lattice 

in region W is consistent with the sub-lattice asymmetry expected for Bernal stacked graphite. In 

this stacking, which is the lowest energy configuration for graphite, the atoms belonging to 

sublattice A in the topmost layer are stacked above B atoms in the second layer, while B atoms 

in the topmost layer are above the hollow sites of the carbon hexagons of the second layer. Ab 

initio band structure calculations [140] show that in the presence of interlayer coupling this site 

asymmetry leads to a strong  asymmetry in the local density of states at the Fermi level with the 

B atoms having the larger  DOS.  This leads to STM images in which the B atoms on graphite 

appear more prominent than the A atoms resulting in a triangular lattice[140, 141].  In the 

absence of interlayer coupling the DOS is symmetric between the two sublattices and one would 

expect to observe a honeycomb structure as seen in region G. The observation of the honeycomb 

structure provides an important first clue in the search for decoupled graphene flakes on graphite, 

but it is not sufficient to establish decoupling between the layers. This is because, even though 

the atomic resolution topography of the surface of HOPG was one of the first to be studied by 

STM, its interpretation is not unique and depends on other factors such as the bias voltage. The 

triangular structure discussed above is commonly seen in atomic resolution topographic images 

of graphite at low bias voltages, but there are also many reports of the appearance of a 

honeycomb structure under various circumstances which are often not reproducible [142-149].  
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Figure B-3.  Graphene flake on the surface of graphite. a) Large area STM topography. Atomic steps are clearly visible 

at edges of graphene layers. A diagonal ridge separates a region with honeycomb structure (region G), from a triangular 

structure (region B) below. The region marked C represents the surface of graphite surrounding the flake. (b,c) Height 

profiles along cross sectional cuts marked a and  b. (d,e) Atomic resolution images show the honeycomb structure in 

region G and the triangular lattice in region W.  
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As we show below in order to establish the degree of coupling of the top layer to the layers 

underneath it is necessary to carry out spectroscopic measurements and in particular Landau 

level spectroscopy. In the earlier works only topographic measurements were reported [125-132] 

and therefore it was not possible to correlate the structure seen in STM with the degree of 

coupling between the layers.     

We start in region C of Figure B-3 where atomic resolution topography images show a triangular 

lattice for bias voltages in the range 100mV - 800mV and for junction resistances exceeding 

1GW as seen in Figure B-4a.  Zero field STS, Figure B-4b, shows finite differential conductance 

at the neutrality point, consistent with the finite DOS expected for bulk graphite. The finite field 

spectra shown in  Figure B-4c are again consistent with bulk graphite: no Landau level sequence 

is observed consistent with the energy dispersion normal to the surface. In summary the data in 

region C presents the characteristic features of bulk graphite. 

Figure B-4. Identifying a decoupled graphene layer. a) Atomic resolution topography in region C of Figure B-3a, shows 

a triangular lattice. b) STS in zero field and at T=4.2 K in region C. c) Finite field spectra ( B=3T) in region C shows no 

LL peak sequence. d) Atomic resolution topography in region G shows honeycomb structure. b) STS in zero field and at 

T=4.2 K shows the  ñV shapedò density of states that vanishes at the Dirac point expected for massless Dirac fermions. 

The Fermi energy is taken to be at zero. c) LL are clearly seen in region G.  Spectra at  T=4.2K and B=4T . (ac 

modulation: 2mV, junction resistance ~6GW).  
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The situation is qualitatively different in region G, where the atomic resolution spectroscopy 

image (Figure B-4d) shows the honeycomb structure in the entire region, which extends over ~ 

400nm, with no visible vacancies or dislocations. STS in this region in zero field, Figure B-4e, 

shows that the DOS is V-shaped and vanishes at the DP which is ~16meV above the Femi 

energy ( taken as zero) corresponding to unintentional hole doping with a concentration of ns~ 

2×10
10

cm
2
. In the presence of a magnetic field the DOS develops sharp LL peaks (Figure B-4f). 

The three results in Figure B-4d,e,f are consistent with intrinsic graphene. In order to verify that 

the sequence of peaks in Figure B-4c does indeed correspond to massless-Dirac-fermions, Li  et 

al. [65, 66] measured the dependence of the peak energies on field and level-index and compared 

them to the expected values (Eqn. 5):   

 ωȢ   Ὁ Ὁ ςὩᴐὺȿὔȿὄ  N=0, ρȣȢȢ   

where ED is the energy at the DP. The N=0 level is a consequence of the chirality of the Dirac 

fermions and does not exist in any other known two dimensional electron system. This field-

independent state at the DP together with the square-root dependence on both field and level 

index, are the hallmarks of massless Dirac fermions. They are the criterion that is used for 

identifying graphene electronically decoupled from the environment or for determining the 

degree of coupling between coupled layers, as discussed below.  

The field dependence of the STS spectra in region G, shown in Figure B-5, exhibits an unevenly 

spaced sequence of peaks flanking symmetrically, in the electron and hole sectors, a peak at the 

DP. All the peaks, except the one at the DP, which is identified with the N = 0 LL, fan out to 

higher energies with increasing field. The peak heights increase with field consistent with the 

increasing degeneracy of the LLs. To verify that the sequence is consistent with massless Dirac 

fermions we  plot the peak positions as a function of the reduced parameter (|N|B)
1/2

 as shown in 

Figure B-5b. This scaling procedure collapses all the data unto a straight line. Comparing to Eqn. 

9, the slope of the line gives a direct measure of the Fermi velocity, vF = 0.79×10
6
m/s. This value 
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Figure B-5. Landau level  spectroscopy of graphene.  a) Evolution of  Lnadau levels with field at 4.4 K and indicated 

values of field. b) LL  energies plotted against the reduced parameter (NB)1/2 collapse onto a straight line indicating  

square-root dependence on level index and field. Symbols represent the peak positions obtained  from (a) and the solid 

line is a fit to Eq.(9). 
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is ~ 20% below that expected from single particle calculations and, as discussed later, the 

reduction can be attributed to electron-phonon (e-ph) interactions.  

We conclude that the flake marked as region G is electronically decoupled from the substrate 

Landau Level Spectroscopy 

The technique described above, also known as LL spectroscopy, was developed by Li et al. [65, 

66] to probe the electronic properties of graphene on graphite. They showed that LL 

spectroscopy can be used to obtain information about the intrinsic properties of graphene: the 

Fermi velocity, the quasiparticle lifetime, the e-ph coupling, and the degree of coupling to the 

substrate. LL spectroscopy is a powerful technique which gives access to the electronic 

properties of Dirac fermions when they define the surface electronic properties of a material and 

when it is possible to tunnel into the surface states. The technique was adopted and successfully 

implemented to probe massless Dirac fermions in other systems including graphene on 

SiO2[120], epitaxial graphene on SiC [150], graphene on Pt [151] and topological insulators 

[152, 153].  

An alternative method of accessing the LLs is to probe the allowed optical transitions between 

the LL by using cyclotron resonance measurements. This was demonstrated in early experiments 

on SiO2[154, 155], epitaxial graphene[156] and more recently on graphite[157].  

Finding graphene on graphite 

The flake in region G of Figure B-3, exhibits all the characteristics of intrinsic graphene ï 

honeycomb crystal structure, V shaped DOS which vanishes at the DP, a LL sequence which 

displays the characteristic square root dependence on field and level index, and contains an N=0 

level. One can use these criteria to develop a recipe for finding decoupled graphene flakes on 

graphite. For a successful search one needs the following: 1) STM with a coarse motor that 

allows scanning large areas in search of stacking faults or atomic steps. Decoupled graphene is 

usually found covering such faults as shown in Figure B-4. 2) A fine motor to zoom into 

subatomic length scales after having identified a region of interest. If the atomic resolution image 

in this region shows a honeycomb structure as in Figure B-4a one continues to the next step. 3) 

Scanning tunneling spectroscopy. If the region is completely decoupled from the substrate the 

STS will produce a V shaped spectrum as in Figure B-4b. 4) The last and crucial step is LL 

spectroscopy. A completely decoupled layer will exhibit the characteristic single layer sequence 

and scaling as shown in Figure B-4c. In the presence of coupling to the substrate the LL 

sequence is modified. Importantly LL spectroscopy can be used to quantify the degree of 

coupling to the substrate, as discussed later in the section on multi-layers.  

Landau level linewidth and electron-electron interactions. 

Comparing the LL spectra in Figure B-4c with the idealized sequence of equal height delta peaks 

in Figure A-7, it is clear that the spectrum is strongly modified by a finite linewidth. The data in 

Figure B-5 is resolution limited so in order to access the intrinsic broadening of the LL high 

resolution spectra are obtained by decreasing the ac modulation until the spectrum becomes 

independent of the modulation amplitude. The peculiar V shaped lower envelope of the spectrum 

is a direct consequence of the square root dependence on energy as we show below. Similarly, 

the down-sloping of the upper envelope is a direct consequence of the linear increase in 

linewidth with energy.  
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The sharpness and large signal-to noise ratio of the LL peaks makes it possible to extract the 

energy dependence of the quasiparticle lifetime from the spectrum. The level sequence can be fit 

 to high accuracy with a sum of peak functions centered at the measured peak energies and with 

the line width of each peak left as free parameters. Comparing fits with various line-shapes, Li et 

al found that Lorentzians give far better fits than Gaussians. This suggests that the linewidth 

reflects the intrinsic quasiparticle lifetime rather than impurity broadening. From the measured 

energy dependence of the linewidth (Figure B-6b) they found that the inverse quasiparticle 

lifetime is: 

 

 ρπȢ  
t

ȿȿ
     

where E is the LL energy in units of eV, g~9fs/eV, and t0~0.5ps at the Fermi level. The linear 

energy dependence of the first term is attributed to the intrinsic lifetime of the Dirac fermion 

quasiparticles. It was shown theoretically [158], that graphene should display marginal Fermi 

liquid characteristics leading to a linear energy dependence of the inverse quasiparticle lifetime 

arising from electron-electron interactions, as opposed to the quadratic dependence in Fermi 

liquids. Theoretical estimates of the life time in zero field give g~20fs/eV. Since the electron-

electron interactions are enhanced in magnetic field, it is possible that the agreement would be 

even better if calculations were made in finite field. The energy independent term in Eqn. 10 

corresponds to an extrinsic scattering mechanism with characteristic mean free path of ὰ

ὺ† τͯππὲάȢ This is comparable to the sample size indicating that the extrinsic scattering is 

primarily due to the boundaries and that inside the sample the motion is essentially ballistic. Note 

Figure B-6. Quasiparticle lifetime in graphene. a)  Landau level spectrum at 4.4K and 4T. (ac modulation 2mV, setpoint 

53pA at 300mV). b)  High resolution spectrum on the hole side (symbols) together with a fit with sequence of Lorentzian 

peaks (solid line). The inset represents the energy dependence of the peak widths. c) Simulated overall density of states 

including the energy dependence of the linewidth.   d) Individual peaks used  to obtain the spectrum in c. 
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that had this been a diffusive sample, with the same carrier density ( -210

s cm 103n ³=  ) and 

mean free path, its transport mobility would be: sec/000,220 2 Ö== VcmElev FmfpFm .  

Line-shape and Landau level spectrum  

Several factors contribute to produce the envelope of the LL spectra Fig. B-2c: the finite 

lifetime of the quasiparticles which is inversely proportional to the linewidth; the uneven spacing 

of the LL and the energy dependence of the linewidths. Figure B-7 illustrates how the V shaped 

lower envelope of the spectrum builds up as the individual LLs get broader when each level has 

the same width and the same degeneracy (or peak area). Since the peaks are unevenly spaced ( 

Eqn. 9), the overlap between peaks increases at higher energies, hence the increasing background 

in the overall  DOS with increasing energy away from the CNP (which here coincides with the 

Fermi energy). Comparing to the spectrum in Figure B-4c we note that that the N=1 peak is 

higher than the N=2 peak which is not the case in the simulated spectra. In order to simulate the 

down-turn of the upper envelope away from zero energy seen in the high resolution spectra of 

Figure B-6a one has to require the peak width to increase with energy, as shown in Figure B-6d.  

Electron-phonon interaction and velocity renormalization 

The single-electron physics of the carriers in graphene is captured in a tight-binding model [11]. 

However, many-body effects are often not negligible. Ab initio density functional calculations 

[159] show that electron-phonon (e-ph) interactions introduce additional features in the electron 

self-energy, leading to a renormalized velocity at the Fermi energy ὺ ὺ ρ ‗ , where 

vF0 is the bare velocity and l is the e-ph coupling constant. Away from the Fermi energy, two 

dips are predicted in the velocity renormalization factor, ὺ ὺ Ⱦὺ, at energies Ὁ ᴐ‫ , 

where wph is the characteristic phonon energy. Such dips give rise to shoulders in the zero field 

DOS at the energy of the relevant phonons, and can provide a clear signature of the e-ph 

interactions in STS measurements. The tunneling spectra measured on a decoupled graphene 

flake on graphite exhibit two shoulders that flank the Fermi energy are seen around ±150meV 

(Figure B-8) which are independent of tip-sample distance for tunneling junction resistances in 

the range 3.8-50GW.  

Figure B-7. The origin of the V-shaped background in the DOS. Left panels :illustration of the  levels and their increased 

overlap as the linewidth  is increased from the top to the bottom panel.  The area under each peak is kept the constant. 

Right panels: overall density of states. The un-evenly spaced peaks overlap to produce the V-shaped background. Energy 

unit: E 1= ▄ᴐ○╕║. 
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Further analysis of these features requires a calibration of the zero field DOS.  This is done by 

using the information obtained from LL spectroscopy to ascertain massless Dirac fermion nature 

of the excitations in this area, and to obtain the average value of vF for energies up to 150meV. 

The next step is to compare the expected DOS per unit cell with the measured spectrum in order 

to calibrate the arbitrary units of dI/dV. Since dI/dV is proportional to the DOS, r(E), the linear 

spectra at low energies in Figure B-8 together with Eqn. 11 give:  

 

  ρρȢ   ” Ὁ
Ⱦ ȿ ȿ

ᴐ
πȢρςσȿὉ Ὁȿ   

For an isotropic band (a good approximation for the relevant energies E< 150meV), the 

dispersion is related to the  DOS by 

 ρςȢ     ὯὉ ȿ Ⱦ ᷿ ”‭Ὠ‭ȿȾ   

The result, obtained by integrating the spectrum in Figure B-8, is shown in Figure B-9a. Now the 

shoulders in Figure B-8 appear as kinks in the dispersion. The energy dependent velocity 

obtained from the dispersion: 

 ρσȢ      ὺ
ᴐ

      

 plotted in Figure B-9b resembles that obtained by density functional theory: it exhibits two dips 

at the energy of the optical breathing phonon A1ô, ~ meV150° , suggesting that this phonon, 

which couples the K and Kô valleys and undergoes a Kohn anomaly, is an important player in the 

velocity renormalization. Incidentally, this same phonon is involved in producing the D and 2D 

peaks in the Raman spectra of graphene.  

The A1ô phonon has very large line width for single layer graphene, indicating strong e-ph 

coupling. However, the line width decreases significantly for bilayer graphene and decreases 

even more for graphite [160, 161]. Therefore e-ph coupling through the A1ô phonon is 

suppressed by interlayer coupling and the e-ph induced velocity renormalization is only observed 

in single layer graphene decoupled from the substrate. Consequently and paradoxically the Fermi 

velocity in multilayer graphene will  be closer to the bare value, as discussed in the next section. 

Figure B-8. Zero field tunneling spectra at 4.4K. Thick line is the DOS calculated according to Eq.(4). Thin lines are 

tunneling spectra taken with different tunneling junction settings. Circles highlight the shoulder features signaling 

deviations from the linear density of states. 
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Multi -layers - from weak to strong coupling 

Unlike in conventional layered materials, interlayer coupling in graphene is relatively easy to 

tune. For example, in Figure B-3a, the from region G to region W turns on the interlayer 

coupling which breaks the sublattice symmetry. Therefore the atomic resolution STM 

topography appears different in the two decrease in graphene-substrate spacing when crossing 

regions: triangular in W (Figure B-3e) and honeycomb in G (Figure B-3d). The effect of 

coupling on the electronic structure is illustrated by comparing STS of the two regions in 

Figure B-10.  

Figure B-9. a) Energy-momentum dispersion of graphene obtained from the data in Fig. B-8 as described in the text. b) 

Energy dependent Fermi velocity obtained by differentiating the dispersion in a . c) Schematic diagram of inter-valley 

scattering mediated by the A1ô phonon. 

 

Figure B-10. Effect of interlayer coupling on STS  spectra corresponding to the graphene flake shown in  Figure B-3. a,b) 

Zero field STS in region G and W. c) LL spectrum at 4T in region G. d)  LL spectrum at 4T in region W. 
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In zero field we note that the DOS vanishes at the CNP in region G, but remains finite in region 

W, as seen in Figure B-10 (a,b). The difference in LL spectroscopy is even more pronounced: the 

simple LL sequence in region G, Figure B-10c, evolves into the more complicated spectrum in 

region W, Figure B-10d.  

Stacking faults and other defects in HOPG cause decoupling of the layers. Therefore, one often 

observes strong LL spectra in some regions of the surface of HOPG after cleavage, but usually 

more than one sequence is observed indicating coupling to the substrate [66]  

For an AB stacked bilayer the interlayer coupling, ^t  , the two-band dispersion of the single 

layer evolves into four bands [162]: 

 

 ρτȢ     ὉὯ ȿ̂t ^t τᴐὺὯ ȿ   

 

We note that the single layer linear dispersion is recovered in the limit of zero coupling. For 

finite interlayer coupling there are still two bands touching (Figure B-11) at the CNP, but 

because the bands are no longer linear  the DOS does not  vanish at the CNP. The other two 

bands are separated by an energy gap 2̂t , leading to DOS jumps at ± ^t . Such jumps are 

difficult to resolve in the STS. A more accurate and direct measure of the coupling between the 

layers can be obtained from LL spectroscopy. 

Figure B-11. Simulated dispersion (top row) and density of states (bottom row)  for graphene bilayer for indicated 

values of interlayer coupling strength t. 
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In the presence of magnetic field, interlayer coupling modifies the simple sequence of massless 

Dirac fermions of Eq. (14) into [162]: 

 ρυȢ  Ὁ Ὁ Ὡᴐὺὄ
Ѝ
ρ ςὔ ρ ρ ςὔ ρ ὔὔ ρ

Ⱦ

 

   

where ὸ ^t ᴐ
. Once interlayer coupling is turned on, the single layer sequence splits into 

two, one bending toward ED and the other away from it. LL crossings occur with increasing 

coupling, which leads to new peaks as seen in Figure B-10d. The evolution of LLs from region G 

to region W is shown in Figure B-12. Comparing the LL spectra in region W to the theoretical 

model for a bilayer with finite interlayer coupling we obtain, as shown in Figure B-12d, an 

estimate of  ^t ~45meV in this region [163] which is about one order of magnitude below the 

equilibrium coupling value. Although the simple model discussed above captures the main 

features of Figure B-12, some subtle details, e.g. electron-hole asymmetry, have not been 

addressed.  

In the limit of equilibrium interlayer coupling, ^t = 400meV (the standard bilayer case) the 

spectrum consists of massive quasiparticles. These are qualitatively different from those in 

conventional two dimensional electron systems and are described as chiral massive fermions 

carrying a Berry phase of 2p [164]. The LL sequence in the bilayer is    Ὁ ᴐ‫ ὔὔ ρ 

Figure B-12.  Effect of interlayer coupling on LLs  for graphene bilayer.  a) Topography of flake showing the boundary 

between decoupled region G and weakly coupled region W.  LL spectra at 4T as a function of position were recorded  

along the line marked ñdò. b) Evolution of LL spectra(4T)  along the trajectory marked in panel a shows a qualitative 

change occurring across the ridge between the two regions marked by the dashed line.  Intensity represents the 

amplitude of dI/dV. Typical tunneling spectra are shown in Figs. 9 c and d. c) Comparison of spectra in region G with 

calculated sequence using eqn. 15 as a function of interlayer coupling ̂t  for B=4T.  The sequence matches the 

positions of LL corresponding to zero coupling.  d) Same as  c in region W. The sequence matches the positions of LL 

corresponding to finite interlayer coupling of 45 meV.  
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where ‫
ᶻ
 the cyclotron frequency, m* is the effective band mass. The energy levels in this 

sequence are linear in field and the N=0 LL has double the degeneracy of the other LLs.  

For trilayer graphene with Bernal stacking, massless Dirac fermions and massive chiral fermions 

coexist [66, 165]. As the number of layers increases, the band structure becomes more complex. 

However, for ten layers or less, the massless Dirac fermions always show up in odd number of 

layers [166]. Furthermore, changing the stacking sequences away from the Bernal stacking can 

strongly modify the band structure [167, 168].  The massive sequence can vary from sample to 

sample as it is controlled by interlayer coupling [65]. However, the massless sequence is quite 

robust, showing very weak sample dependence. For graphene multilayers, i.e. when sequences of 

LLs coexist, the massless sequence gives a Fermi velocity of 1.07×10
6
m/s, which is close to the 

un-renormalized value. This supports the theoretical expectation that e-ph coupling through A1
ô 
is 

suppressed by interlayer coupling as discussed in the previous section. 

4. Twisted graphene layers  

Graphite consists of stacked layers of graphene whose lattice structure contains two 

interpenetrating triangular sublattices, A and B. In the most common (Bernal) stacking, adjacent 

layers are arranged so that B atoms of layer 2 (B2) sit directly on top of A atoms of layer 1 (A1) 

and B1 and A2 atoms are in the center of the hexagons of the opposing layer. If two graphene 

layers are rotated relative to each other by an angle q away from Bernal stacking, a 

commensurate superstructure, also known as Moiré pattern, is produced. The condition leading 

to Moiré patterns can be obtained from elementary geometry[169]

)133/()2/133()cos( 22 ++++= iiiiiq , with i an integer (i=0, q = 60̄  corresponds AA stacking 

and ¤­i , q = 0̄  to AB stacking) and lattice constant of the superlattice 133 2 ++= iiaL  where 

a0 ~ 2.46Å is the atomic lattice constant. In a continuum approximation, the period L 

Figure B-13.  Moiré pattern corresponding to a twist angle of 1.79̄ obtained by STM topography on a graphite surface. 

a) Large area image showing the super-lattice. Scale bar: 50nm. b) High resolution image showing the atomic lattice. 

Scale bar: 500pm. c) Zoom into a bright spot in panel a.  Scale bar: 200pm. d) Zoom into a dark spot in panel a.  Scale 

bar: 200pm. Insets: Fourier transforms of the main images. 
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corresponding to a twist angle q is given by:  

ρφȢ     ὒ
ὥ

ςÓÉÎ
—
ς

   

An alternative way to understand Eq.(16) is to note that when two graphene layers rotate against 

each other, the two hexagonal Brilouin zones also rotate (Figure B-15a) around the G point. As a 

result the K points of the two lattices separate by a displacement DK: 

ρχȢ    Ўὑ
τ“

σЍσὥ
ÓÉÎ 
—

ς 

These displacement vectors form a new hexagon, which corresponds to the Fourier transform of 

the Moiré pattern. Eq.(16) can be derived from Eq.(17) by using DK= 2p/L. The new hexagon is 

rotated by 30̄-q/2 relative to the original one for small angles, as seen experimentally in Figure 

B-13.  

The freedom of stacking between graphene layers is so large that twisting away from the 

equilibrium Bernal stacking is possible for a wide range of rotation angles resulting in a variety 

of Moiré patterns. These patterns were observed very soon after STM became widely available 

and made it possible to explore the topography of graphite surfaces [141, 170]. An example of a 

Moiré pattern on the surface HOPG is shown in Figure B-13. The highly ordered triangular 

pattern has a period of ~ 7.7nm, much larger than the lattice constant of graphene. A better 

understanding of the pattern is gained by zooming into the bright and dark spots with atomic 

resolution, Figure B-13c,d. For the bright spots of the pattern the underlying lattice structure is 

triangular, indicating Bernal stacking. In between the bright spots a less ordered honeycomb-like 

Figure B-14. Twist angle dependence of moire patterns and van Hove singularities. Top row:  Moire pattern for 

decreasing twist angles, a) 20.8 b) 3.480, c) 1.780 and  d) 1.160 .  Scale bar: 1nm for panel a and 2nm for the rest.  Bottom 

row:  density of states showing van Hove singularities for indicated twist angles.  e) Differential conductance for both 

large twist angles and  untwisted regions shows no Van-Hove singularities.. (f-h) As the twist-angle decreases from 3.50 

to 1.160  the period of the moiré pattern increases and the separation between van Hove singularities decreases.    
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structure is seen indicating lost registry between layers due to twisting. The connection between 

twist angle and the Moiré pattern period is directly revealed by comparing the pattern and its 

Fourier transform shown in Figure B-13. The evolution of the pattern with twist-angle (Figure 

B-14) illustrates the decrease in period with increasing twist angle.  

While twist-induced Moiré patterns have been known and understood for many years, the 

surprising discovery that the twist between layers also has a profound effect on the electronic 

band structure came only recently [171]. This realization has led to a flurry of research into the 

connections between interlayer twist and electronic properties [172-187]. Compared to the non-

twisted case where the DOS increases monotonically with distance from the CNP, Figure B-14e, 

Li et al. [171] found that twisting away from Bernal stacking produces two pronounced peaks in 

the DOS which flank the CNP on both sides, Figure B-14f,g, and that  their separation increases 

with the angle of rotation. To understand the origin of the peaks in the DOS we consider two 

adjacent Dirac cones belonging to the different layers in Figure B-15a. It is immediately obvious 

that the cones must intersect at two points at energies  ᴐὺЎὑ in the hole and electron sectors. 

At these points - and not at the DP as is the case in Bernal stacked layers - the two layers can 

couple to each other with coupling strength of order ὸ πȢτὸ [169]. Here, ὸ is the interlayer 

hopping for unrotated layers. At the intersections of the two Dirac cones their bands will 

hybridize (if the coupling between layers is finite), Figure B-15b, resulting in saddle points in the 

dispersion. These give rise to two Van Hove singularities which symmetrically flank the CNP 

and are seen as peaks in the DOS [171, 188]. It is important to realize that in the absence of 

interlayer coupling the Van Hove singularities will not appear. The separation between Van 

Hove singularities is controlled by the twist angle, q. For angles 2̄<q<5 ,̄ the separation 

 is 

 ρψȢ    ЎὉ ᴐὺЎὑ ςὸ 

 

Figure B-15. Twist angle dependence of band structure and density of states for a twisted graphene bilayer.   a) The 

Bril louin zones of the two layers (green and red) are rotated with respect to each other by the same angle as their relative 

rotation in space.  b) Saddle points in the band structure, marked sp, occur at positive and negative energies corresponding 

to the intersection of the Dirac cones calculated for q=1.79̄ , tṶ ~ 0.27eV. c)  The density of states exhibits Van Hove 

singularities at the saddle points.   
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A comparison between the measured peak separation and the theoretical calculation is shown in 

Figure B-16a. As the Van Hove singularities separate from each other with increasing twist 

angle, the low energy sector of the Dirac cones in each layer are less disturbed. Therefore, for 

sufficiently low energies, the electrons in twisted layers can behave like massless Dirac fermions 

in a single layer [169, 172-177]. However, the slope of the Dirac cone, i.e. Fermi velocity, still 

reflects the influence of the Van Hove singularities, leading to a renormalized Fermi velocity 

which depends on twist angle [169]:  

ρωȢ    
ὺ —

ὺ
ρ ω

ὸ

ᴐὺЎὑ
 

The velocity renormalization can be observed experimentally by using LL spectroscopy on 

twisted layers in a magnetic field [188]. In Figure B-17 we illustrate these results in two adjacent 

regions, one of which, M1, is twisted. In region M1, a Moiré pattern with period 4.0nm is 

resolved, while in region M2, the pattern is not resolved indicating an unrotated layer (or a much 

smaller period). In zero field, STS reveals Van Hove singularities in region M1 but not in region 

M2 even for bias voltages up to ±500meV (Figure B-17b,c). In both regions, STS in magnetic 

field (Figure B-17f,g) shows LLs of massless Dirac fermions with Fermi velocities of 

0.87×10
6
m/s and  1.10×10

6
m/s for regions M1 and M2, respectively.  

The velocity renormalization is significant only for twist angles smaller than ~10 ̄in agreement 

with theory (Figure B-16b). At large angles, the Dirac cones for different graphene layers are 

well separated so that the low energy electronic properties and the Fermi velocity are 

indistinguishable from those in a single layer [120]. At very small angles less than ~2̄, denoted 

as a question mark in Figure B-16b, the van Hove singularities become so dominant that the 

description of the low energy excitations in terms massless Dirac fermions no longer applies. For 

example at q ~1.79̄  individual contributions to that spectrum from LLs and from  van Hove 

singularities can  no longer be identified, Error! Reference source not found.. Eventually the 

van the Hove singularities themselves show non-trivial fi eld dependence [120]. Moreover, a 

strong spatial modulation is observed in the DOS maps at small angles, indicating the formation 

of a charge density wave [171, 178].  
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Figure B-16.  a)Twist angle dependence of energy separation between Van Hove singularities for experimental data is 

compared with theory. b) Twist angle dependence of the Fermi velocity.  Comparison between  theory (solid line)  and 

experimental data (symbols). The question mark  at small angles corresponds to a band structure where merging of the 

Van Hove singularities precludes analysis based on a LL  sequence.  
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It is important to note that the mechanism of downward velocity renormalization in twisted 

layers is distinctly different from that in isolated graphene layers discussed in previous sections. 

In the twisted layers the renormalization only occurs in the presence of coupling between layers 

and its magnitude is a sensitive function of the twist-angle. By contrast the velocity 

renormalization observed in the decoupled graphene layer supported on graphite (Figure B-5b) is 

due to e-ph interactions. If the 20% renormalization of the Fermi velocity seen in these data was 

due to coupling between twisted layers, the twist angle would have to be~3.2
0
 according to Eqn. 

19. Such a twist would result in hard-to-miss features: a Moiré pattern with a period of 2.54 nm 

(18 lattice spacing) in STM topography and two Van Hove singularity peaks in the STS 

~400meV apart. The absence of these features rules out twist-induced decoupling in the partially 

suspended graphene layer shown in Figure B-3. In the previous section we have shown that the 

e-ph coupling via the A1
ô
 phonon is strongest in decoupled single layer and that it becomes less 

important as the coupling between layers increases. As we show in Figure B-16b the twist-

induced renormalization becomes negligible for angles exceeding 10
0
. For example the Fermi 

velocity corresponding to the 20.8
0
 twist-angle, vF=1.12x10

6
 m/s is almost identical to that in 

multi-layers with Bernal stacking, suggesting that e-ph coupling via A1
ô
 is also suppressed in 

twisted layers 

  

 

Figure B-17.  Velocity renormalization in twisted graphene. a) STM images show region M1 with a twist angle of ~3.48̄ 

and region M2 with no twist. b) Zero field tunneling spectra show van Hove singularities, marked as ñVHSò, in region 

M 1. c) Tunneling spectra in a field of 6 T show indexed Landau levels. d, e) LL maps shows evolution with magnetic field 

in the two regions. The apparent discontinuities are the result of using discrete field points to generate the maps. f,g) LL 

peak positions plotted against reduced field show collapse of the data. Fit to Eqn. 9 gives the Fermi velocity vF=0.87x106 

m/s in  M1  and  vF=1.16x106  m/s  in M 2.  
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5. Graphene on chlorinated SiO2  

The existence of electron-hole puddles strongly modifies the LLs in graphene [119, 120, 189] 

preventing their observation with STS [190]. One way to overcome the substrate limitation 

without sacrificing the ability to gate is to use suspended samples. As discussed in part C, 

transport measurements on suspended samples have shown that in the absence of the substrate 

the intrinsic DP physics including interaction effects is revealed [21, 27]. However, due to their 

fragility, small size and reduced range of gating the use of suspended samples is limited. Finding 

a minimally invasive insulating substrate on which graphene can be gated and also visualized is 

therefore of great interest.  

Figure B-19. Low temperature (4.4K) STS of graphene on a chlorinated SiO2. a)  DOS map shows the evolution of LL peaks 

which fan away from the Dirac point and become better resolved with increasing field. b) LL spectra show well defined peaks 

above 7T.  Adapted from A. Luican et al. Phys. Rev. B, 83, 041405 (R),  (2011). Evolution of LL across the sample at 12T show 

well separated strips, corresponding to LL peaks (bright regions) separated by gaps (dark regions). The STS trace in red 

illustrates the correspondence between  LL peaks and bright regions in the map.  The spatial uniformity of the spectra   

indicaties that it is possible to place the Fermi energy within a gap between LLs. 
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Figure B-18 Field dependence of STS for a twist angle of 1.79̄ . LLs ride on the van Hove singularities. The STS show strong 

spatial dependence across the Moiré pattern. The positions where the spectra were taken ( indicated by arrows) correspond to a 

bright spot (left panel) and dark spot (right panel).  The vertical scales in the right panels is magnified compared to the left panels 

to compensate for the lower signal intensity in the dark spots. 








































































