
Chapter 5

Sagnac Interferometer: Theory

& Background

5.1 Introduction to Sagnac Interferometers

5.1.1 Development of Sagnac Interferometers

Sagnac provided the first demonstration of the feasibility of an optical exper-

iment capable of indicating the state of rotation of a frame of reference, by

making measurements within that frame, [25, 26]. A schematic diagram of his

interferometer is shown in Fig. 5.1(i) .

The fringe pattern recorded at the output of this interferometer is sensitive to

any phase difference between the two counter-propagating beams. In the case

that the whole interferometer is rotating in its plane, at an angular frequency,

Ωrot, it is possible to follow a simple derivation to obtain the value of the phase

shift, ∆φ.

Consider a circular interferometer of radius, r, Fig. 5.1(ii). The time taken for

the two beams to complete one circuit of the interferometer, t± is given by,

t± =
2πr ± r Ωrott±

v
, (5.1)

where v is the speed of propagation around the Sagnac loop.
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Figure 5.1: (i) A schematic diagram of Sagnac’s original interferometer.

Light from the light source is split into two beams by the beam splitter. Two

counter-propagating beams then circulate the interferometer. The beams

interfere on the beam splitter. There are two output ports of the interferom-

eter, one back towards the light source, the other towards the detector. (ii)

Shows a circular Sagnac interferometer of radius, r, rotating at an angular

frequency, Ωrot. The shifts in path length for the two counter-propagating

beams, vt±, are shown.

Thus,

t±

(
v∓ r Ωrot

v

)
=

2πr

v
. (5.2)

Hence

t± =
2πr

v∓ r Ωrot
. (5.3)

It follows that the difference in propagation time for the two counter-propagating

beams, δt, is given by,

δt = t+ − t− , (5.4)

=
2πr

v− r Ωrot
− 2πr

v + r Ωrot
, (5.5)

=⇒ δt =
4πr2 Ωrot

v2 − (r Ωrot)
2 . (5.6)

The area of the interferometer, A, is equal to πr2. The phase difference between

the two counter-propagating beams, ∆φ, is given by (v δt/λ0) .

In the vast majority of cases, v2 $ (r Ωrot)
2, it follows that,

∆φ =
4A · Ωrot

λ0v
. (5.7)
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Here (A/A) is a unit vector perpendicular to the surface area of the interfer-

ometer. In the case of light v = c, irrespective of a modified group velocity or

phase velocity, [89].

The sensitivity of this interferometer due to rotations depends only on the

wavelength, and the projection of the rotation onto the area enclosed within

the interferometer. The centre of rotation and the shape of the loop have no

bearing on the sensitivity. The sensitivity does however depend on the angle

between the plane of rotation and the plane of the interferometer.

The Sagnac effect manifests itself in both Sagnac interferometers and Mach-

Zehnder interferometers.

5.1.2 Types of Sagnac Interferometers

Since Sagnac’s first measurements of rotation with his interferometer there has

been a large amount of interest in making ever more sensitive measurements

using a variety of different implementations of the Sagnac interferometer, [89,

90, 91].

There have been two main lines of development for Sagnac interferometers.

Optical Sagnac interferometers, [89, 90, 91], aim to increase sensitivity by in-

creasing the path length of the two beams before they are coupled out of the

interferometer. There are two main schemes for achieving this, ring laser gyros

and optical fibre gyros. Multiple loops around the same physical area lead to

an increased gyroscopic area.

Matter-wave interferometers sensitive to the Sagnac effect are generally re-

stricted to Mach-Zehnder interferometers, [92, 93, 94]. One notable exception

is the Sagnac interferometer of Arnold et al., [95]. Matter-wave interferometers

have an intrinsic sensitivity much greater than optical Sagnac interferometers,

due to the smaller velocity and wavelength of the particles compared to light.

Matter-wave interferometers lose out to optical interferometers in that their en-

closed area is limited. Where the sensitivity of optical-fibre interferometers is

very easily scalable, for example by increasing the number of fibre loops, the

sensitivity of matter-wave interferometers is not.

Optical ring laser gyros can achieve sensitivities of 1.4× 10−11 rad s−1 Hz−1/2,
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[96], and atom interferometer gyroscopes can achieve sensitivities of

6× 10−10 rad s−1 Hz−1/2, [97].

5.1.3 Light-Matter-Wave Sagnac Interferometer

Zimmer and Fleischhauer, [17], have proposed a scheme that combines the scal-

ability of optical Sagnac interferometers with the intrinsic greater sensitivity

of matter-wave interferometers. The increased sensitivity comes from the slow-

light phenomenon associated with EIT. Reducing the phase or group velocity

of the light is not sufficient to enhance the Sagnac effect, [89]. If momentum is

transferred from the slow light to a matter-wave, then this matter-wave compo-

nent will lead to the enhancement of the Sagnac effect. It is likely that for this

to be realized a low temperature atomic ensemble would be required, cooling to

at least 103 Trec
1.

5.1.4 Biased Sagnac

Measurements of the dispersion of the hyperfine structure of Cs were made

using a Sagnac interferometer by Robins et al., [99]. This required biasing the

alignment of the interferometer, [100], such that the output arm contains two

interference fringes. The difference signal between these two fringes gives a

signal proportional to the dispersion of the medium.

This method was developed by Jundt et al., [101], and applied to Rb hyperfine

spectra. Rather than taking the difference between two fringes within one arm of

the interferometer, the difference between two output arms of the interferometer

was measured. This was shown to be in excellent agreement with the dispersion

predicted from the transmission spectra using the Kramers-Kronig relations,

§ 2.3.2 on page 22 .

Furthermore, Purves et al., [100], have applied the biased Sagnac interferometer

to measuring EIT resonances. The basis for this publication is presented in

chapter 6 of this thesis.

The theoretical basis showing that the difference signal between the two output

1Trec = (!kab)2/(2mkB), [98], is the recoil temperature which for 87Rb is 180 nK.
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arms of the interferometer, in the case of biased alignment, is proportional to

the dispersion is developed in § 5.3 on page 115 .

The biased Sagnac interferometer as described in § 5.3 on page 115 , provides a

direct readout of the dispersion of a medium. The dispersion associated with a

narrow EIT feature provides an ideal error signal which could be used to detect

any physical effect that causes a shift in the detuning of the EIT resonance. For

the purpose of making a detector, measuring the dispersion is more appropriate

than simply measuring the absorption of the medium for two reasons: about

line centre the rate of change in absorption with detuning is at a minimum,

where as the rate of change in dispersion is at its maximum; secondly, also

about line centre, the change in the absorption has the same sign independent

of the sign of the shift in detuning, whereas the sign of the shift in dispersion

is dependent upon the sign of the shift in detuning.

Mach-Zehnder interferometers have been used to measure the dispersion of a

medium, [102], and specifically to measure the dispersion due to EIT, [3, 57].

There are two main advantages in using a Sagnac interferometer over a Mach-

Zehnder: the stability of the interferometer against vibration and the control of

the absolute difference in the length of the arms of the interferometer. The very

nature of the Sagnac interferometer ensures that the default is to have no differ-

ence in path length between the two arms (the arms counter-propagate around

the same loop). In addition to this the fact that both arms in the Sagnac inter-

ferometer interact with the same optical elements ensures a degree of common

mode rejection in any vibrations that the optical elements experience.

It is of course possible to measure an error signal similar to that provided by

the dispersion of a medium, by dithering the frequency of a probe beam while

measuring the transmission. This has the added disadvantage of the dithering

broadening the resonance, as well as requiring lock-in amplifiers to measure

the error signal — these are complications not present with the biased Sagnac

interferometer.

Measuring EIT in a Sagnac interferometer also paves the way for the realization

of the optical-matter-wave interferometer of Zimmer and Fleischhauer, [17].
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5.2 Beam Splitters

Following in the style of the analysis presented in The Quantum Theory of Light,

by Loudon, [103], consider a beam splitter that does not have any losses. If we

have two input fields, E1 and E2 and two output fields, E3 and E4, as in the

diagram below, Fig. 5.2, it follows that the fields will be related by the following

E1
E3 E4

E2
Beam Splitter

Figure 5.2: Two fields, E1 and E2, incident on the beam splitter lead to

two output fields, E3 and E4.

equations,

E3 = R31E1 + T32E2 , (5.8)

E4 = T41E1 + R42E2 . (5.9)

Here R represents reflection and T represents transmission. R and T are both

generally complex and vary with optical frequency. We will assume that we are

dealing with monochromatic radiation. Equations 5.8 and 5.9 can be rewritten

in matrix form as:
(

E3

E4

)
=

(
R31 T32

T41 R42

)(
E1

E2

)
. (5.10)
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From the conservation of energy it follows that:

|E3|2 + |E4|2 = |E1|2 + |E2|2 , (5.11)

= |R31|2|E1|2 + |T32|2|E2|2 + R31T
∗
32E1E

∗
2

+R∗
31T32E

∗
1E2 + |T41|2|E1|2 + |R42|2|E2|2 (5.12)

+T41R
∗
42E1E

∗
2 + T ∗

41R42E
∗
1E2 .

From equation 5.12 ,

|R31|2 + |T41|2 = 1 ,

= |T32|2 + |R42|2 , (5.13)

R31T
∗
32 + T41R

∗
42 = 0 , (5.14)

or equivalently R∗
31T32 + T ∗

41R42 = 0 . (5.15)

The reflection and transmission coefficients can be written,

R31 = |R31|eiφ31 , (5.16)

R42 = |R42|eiφ42 ,

T32 = |T32|eiφ32 ,

T41 = |T41|eiφ41 .

Substituting from equations 5.16 into equation 5.14, gives,

|R31|eiφ31|T32|e−iφ32 + |T41|eiφ41|R42|e−iφ42 = 0 ,

∴ |R31||T32|ei(φ31−φ32) = −|R42||T41|ei(φ41−φ42) ,

∴ |R31||T32|ei(φ31+φ42−φ32−φ41) = −|R42||T41| . (5.17)

Equating the imaginary parts of equation 5.17,

|R31||T32| sin (φ31 + φ42 − φ32 − φ41) = 0 ,

=⇒ φ31 + φ42 − φ32 − φ41 = −π, 0, +π . (5.18)

It follows that,

cos (φ31 + φ42 − φ32 − φ41) = ±1 . (5.19)
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Equating real parts of equation 5.17,

|R31||T32| > 0 ,

|R42||T41| > 0 ,

hence cos (φ31 + φ42 − φ32 − φ41) < 0 .

Thus from equation 5.19 ,

cos (φ31 + φ42 − φ32 − φ41) = −1 , (5.20)

=⇒ φ31 + φ42 − φ32 − φ41 = ±π , (5.21)

It follows that,

|R31|
|T41|

=
|R42|
|T32|

. (5.22)

Hence the ratios into which the radiation is split is the same whether it comes

in from side “1” or side “2”. Thus from equations 5.13 and 5.22,

|R31| = |R42| ,

≡ |R| , (5.23)

and |T31| = |T42| ,

≡ |T | . (5.24)

Taking the beam splitter coefficients to be symmetrical,

φ31 = φ42 ,

≡ φR , (5.25)

and φ32 = φ41 ,

≡ φT . (5.26)

It follows from equations 5.25, 5.26 and 5.21 that,

φR − φT = ±π

2
. (5.27)
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Hence,

R31 = R42 ,

= R ,

R = |R|eiφR , (5.28)

T32 = T41 ,

= T ,

T = |T |eiφT . (5.29)

Thus the transmission and reflection is the same, independent of which side of

the beam splitter the beam is input from.

5.3 Sagnac Interferometer

The Sagnac interferometer used to make measurements of EIT features in chap-

ter 6 is shown in Fig. 5.3 on the following page .

Consider four different paths of the probe beam around the Sagnac interferom-

eter to one of the photodiodes, Fig. 5.4. The beam can propagate around the

photodiode in one of two directions: clockwise, which will be labelled with the

subscript “c”; and anticlockwise which will be labelled “a”. Both the clockwise

and anticlockwise beams will have components that will impinge on each of

the photodiodes. The two photodiodes are labelled “A” and “B”, and those

subscripts will be used to label the components in the derivation. Fig. 5.4 on

page 117 shows the four possible paths around the interferometer. To determine

the intensity of light measured at each photodiode it is necessary to first find

the amplitude of each component that arrives at that photodiode, and then

take the magnitude of the field squared. It will be necessary to consider the

phase and amplitude modifications of each field around the interferometer. As

each field is derived from the same probe beam, then only the changes to the

fields once they are split into the two oppositely propagating fields needs to be

considered. For the purpose of this derivation, assume that the beam splitters

and mirrors are lossless. Also assume that any phase picked up on the mirrors

is the same for both beams.
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Rb Cell
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Figure 5.3: BS1 and BS2 are the first and second 50:50 beam splitters

respectively; ND is the neutral-density filter; PBS is the polarizing beam

splitter and λ/4 is a quarter-wave plate. The probe beams are drawn in

red and the pump beams in orange. The Sagnac interferometer is formed

by the loop originating and terminating at the second beam splitter (BS2).

Output arm A propagates towards photodiode A and output arm B towards

photodiode B.

It will also be instructive to consider a small misalignment between the two

beams. This will be done by assuming a small path difference of length ∆l

between the clockwise and the anticlockwise propagating beams. Both beams

pick up the same phase shift due to passing through the first beam splitter.

This phase is therefore neglected in the following analysis.

EA, c

EInput
= |T1||TND|

[
e−

αcL
2 ei(kncL+2φ2T+φND)|T2|2

]
, (5.30)

EA, a

EInput
= |T1||TND|

[
e−

αaL
2 ei(k(naL+∆l)+2φ2R+φND)|R2|2

]
, (5.31)

EB, c

EInput
= |T1||R1|

[
e−

αcL
2 ei(kncL+φ2T+φ2R+φ1R)|T2||R2|

]
, (5.32)

EB, a

EInput
= |T1||R1|

[
e−

αaL
2 ei(k(naL+∆l)+φ2R+φ2T+φ1R)|T2||R2|

]
. (5.33)

To determine the normalized intensity of the fields at both photodiodes sum
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Figure 5.4: (i) and (ii) show the path of the clockwise and anticlockwise

propagating beam to photodiode A. (iii) and (iv) show the path of the clock-

wise and anticlockwise propagating beam to photodiode B. ND is a neutral

density filter.

the amplitudes of the fields at each photodiode and then multiply them by the

complex conjugate to obtain the modulus squared.

IA =

∣∣∣∣
EA, c + EA, a

EInput

∣∣∣∣
2

, (5.34)

IB =

∣∣∣∣
EB, c + EB, a

EInput

∣∣∣∣
2

. (5.35)

IA = (|T1||TND|)2
[
e−

αcL
2 ei(kncL+2φ2T)|T2|2 + e−

αaL
2 ei(k(naL+∆l)+2φ2R)|R2|2

]

×
[
e−

αcL
2 e−i(kncL+2φ2T)|T2|2 + e−

αaL
2 e−i(k(naL+∆l)+2φ2R)|R2|2

]
, (5.36)

= |T1|2|TND|2
[
|T2|4e−αcL + |R2|4e−αaL + |T2|2|R2|2e−(αc+αa)L

2 (5.37)

×
(
ei(kncL+2φ2T)−i(k(naL+∆l)+2φ2R) + ei(k(naL+∆l)+2φ2R)−i(kncL+2φ2T)

)]
.
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Now writing,

α =
αc + αa

2
,

∆n = nc − na ,

and also from equation 5.27, (φR − φT = −π/2) , we can rewrite the intensity

at photodiode A as,

IA = |T1|2|TND|2
[
|T2|4e−αcL + |R2|4e−αaL (5.38)

+|T2|2|R2|2e−αL
(
eikL∆n−∆l+iπ + e−ik(L∆n+∆l)−iπ

)]
,

= |T1|2|TND|2
[
|T2|4e−αcL + |R2|4e−αaL

−|T2|2|R2|2e−αL2 cos (k (L∆n−∆l))
]

,

∴ IA = |T1|2|TND|2
[
|T2|4e−αcL + |R2|4e−αaL

−2|T2|2|R2|2e−αL cos (k (L∆n−∆l))
]

. (5.39)

Considering the other output arm of the Sagnac interferometer,

IB = (|T1||R1|)2
[
e−

αcL
2 ei(kncL+φ2T+φ2R+φ1R)|T2||R2|

+e−
αaL

2 ei(k(naL+∆l)+φ2R+φ2T+φ1R)|R2||T2|
]

×
[
e−

αcL
2 e−i(kncL+φ2T+φ2R+φ1R)|T2||R2|

+e−
αaL

2 e−i(k(naL+∆l)+φ2R+φ2T+φ1R)|R2||T2|
]

. (5.40)

As with the derivation above for IA, rewriting the equation for IB in terms of

∆n and α, then we get

IB = |T1|2|R1|2
[
|R2|2|T2|2e−αcL + |R2|2|T2|2e−αaL (5.41)

+|T2|2|R2|2e−αL
(
eik(L∆n−∆l) + e−ik(L∆n+∆l)

)]
,

= |T1|2|R1|2
[
|R2|2|T2|2e−αcL + |R2|2|T2|2e−αaL

+2|T2|2|R2|2e−αL cos (k (L∆n−∆l))
]

,

∴ IB = |T1|2|R1|2|T2|2|R2|2
[
e−αcL + e−αaL

+2e−αL cos (k (L∆n−∆l))
]

. (5.42)
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From equations 5.39 and 5.42 the sum and the difference signals can be derived,

IA + IB = e−αcL
(
|T1|2|TND|2|T2|4 + |T1|2|R1|2|T2|2|R2|2

)

+e−αaL
(
|T1|2|TND|2|T2|4 + |T1|2|R1|2|T2|2|R2|2

)
(5.43)

+e−αL
(
|T1|2|R1|2|T2|2|R2|2

−|T1|2|TND|2|T2|2|R2|2
)
2 cos (k (L∆n−∆l)) ,

IA − IB = e−αcL
(
|T1|2|TND|2|T2|4 − |T1|2|R1|2|T2|2|R2|2

)

+e−αaL
(
|T1|2|TND|2|T2|4 − |T1|2|R1|2|T2|2|R2|2

)
(5.44)

+e−αL
(
−|T1|2|R1|2|T2|2|R2|2

−|T1|2|TND|2|T2|2|R2|2
)
2 cos (k (L∆n−∆l)) .

Consider the particular case where the intensity of an incoming beam is split

equally into two components each of which has 50 % of the incoming intensity.

Also the ND filter will transmit only 50 % of the incident intensity.

Therefore,

|T1| = |T2| ,

= |TND| ,

= |R1| , (5.45)

= |R2| ,

=
1√
2

.

Then, from equations 5.43, 5.44 and 5.45,

IA + IB =
1

8

(
e−αcL + e−αaL

)
, (5.46)

IA − IB = −1

4
e−αL cos (k (L∆n−∆l)) . (5.47)

In practice any misalignment of the Sagnac will lead to there being a range of

∆l across the finite profile of the output beams. As the whole beam is generally

focussed onto a photodiode then what will be recorded is an average over a

range of ∆l of IA and IB. In order to determine what is recorded, it is necessary

to integrate IA and IB over a range of ∆l. From equations 5.39 and 5.42 this
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leads to,
∫ ∆l2

∆l1

IAd (∆l) = |T1|2|TND|2
[(
|T2|4e−αcL + |R2|4e−αaL

)
∆l

−2|T2|2|R2|2e−αL

(
1

k

)
sin (k (L∆n−∆l))

]∆l2

∆l1

,(5.48)

= |T1|2|TND|2
[(
|T2|4e−αcL + |R2|4e−αaL

)
(∆l2 −∆l1)

−2|T2|2|R2|2e−αL

(
1

k

)
[sin (k (L∆n−∆l2)) (5.49)

− sin (k (L∆n−∆l1))]] .

but, sin α− sin β = 2 sin

(
α− β

2

)
cos

(
α + β

2

)
, (5.50)

=⇒ sin (k (L∆n−∆l2)) − sin (k (L∆n−∆l1)) (5.51)

= 2 sin

(
k (∆l1 −∆l2)

2

)
cos

(
kL∆n− k

2
(∆l2 + ∆l1)

)
.

Using the fact that,

cos (θ ± φ) = cos θ cos φ∓ sin θ sin φ , (5.52)

for φ =
π

2
,

then, cos
(
θ − π

2

)
= sin θ . (5.53)

To measure small changes in the refractive index directly, it is desirable to have

sine terms as opposed to cosine terms, with an argument proportional to ∆n,

in the output of both arms of the Sagnac. In the limits of the arguments being

small, sine terms can be approximated as being equal to the argument.

This requires,

k

2
(∆l2 + ∆l1) =

π

2
, (5.54)

and if, k∆l1 = 0 , (5.55)

then, k∆l2 = π . (5.56)

Thus,

sin (k (L∆n−∆l2)) − sin (k (L∆n−∆l1))

= 2 sin
(
−π

2

)
sin (kL∆n) ,

= −2 sin (kL∆n). (5.57)
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Substituting equation 5.57 into equation 5.49,

∫ ∆l2

∆l1

IAd (∆l) = |T1|2|TND|2
[(

|T2|4e−αcL + |R2|4e−αaL
) (π

k

)

+
4

k
|T2|2|R2|2e−αL sin (kL∆n)

]
. (5.58)

Similarly for IB,

∫ ∆l2

∆l1

IBd (∆l) = |T1|2|R1|2|T2|2|R2|2
[(

e−αcL + e−αaL
) (π

k

)

−4

k
e−αL sin (kL∆n)

]
. (5.59)

Therefore the sum and difference signals are given by,

∫ ∆l2

∆l1

IAd (∆l) +

∫ ∆l2

∆l1

IBd (∆l) =
π

8k

(
e−αcL + e−αaL

)
, (5.60)

∫ ∆l2

∆l1

IAd (∆l)−
∫ ∆l2

∆l1

IBd (∆l) =
e−αL

2k
sin (kL∆n) , (5.61)

in the case that equation 5.45 applies.

From equations 5.60 and 5.61, the sum, SS, and difference, SD signals can be

determined,

SS ∝ e−αcL + e−αaL , (5.62)

SD ∝ e−αL sin (kL∆n) . (5.63)

Hence the sum signal is proportional to the sum of the transmission of the two

counter-propagating probes. The difference signal is proportional to the sine of

the difference in refractive index between the two directions of propagation. In

the case that kL∆n) 1 it follows that,

SD ∝ e−αLkL∆n . (5.64)

Thus for a Sagnac interferometer, as described in this chapter, comprising two

50:50 beam splitters, the difference signal between the two output ports will be

proportional to the difference in the real part of the refractive index between

the two counter-propagating arms.


