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The  Faraday  Effect 

Objective 

To observe the interaction of light and matter, as modified by the presence of a magnetic 

field, and to apply the classical theory of matter to the observations. You will measure the 

Verdet constant for several materials and obtain the value of e/m, the charge to mass ratio 

for the  electron.  

Equipment 

Electromagnet (Atomic labs, 0028), magnet power supply (Cencocat. #79551, 50V-5A 

DC, 32 & 140 V AC, RU #00048664), gaussmeter (RFL Industries), High Intensity 

Tungsten Filament Lamp, three interference filters, volt-ammeter (DC), Nicol prisms (2), 

glass samples (extra dense flint (EDF), light flint (LF), Kigre), sample holder (PVC), HP 

6235A Triple output power supply, HP 34401 Multimeter, Si photodiode detector. 

I.  Introduction 

If any transparent solid or liquid is placed in a uniform magnetic field, and a beam of 

plane polarized light is passed through it in the direction parallel to the magnetic lines of 

force (through holes in the pole shoes of a strong electromagnet), it is found that the 

transmitted light is still plane polarized, but that the plane of polarization is rotated by an 

angle proportional to the field intensity.  This "optical rotation" is called the Faraday 

rotation (or Farady effect) and differs in an important respect from a similar effect, called 

optical activity, occurring in sugar solutions.  In a sugar solution, the optical rotation 

proceeds in the same direction, whichever way the light is directed.  In particular, when a 

beam is reflected back through the solution it emerges with the same polarization as it 

entered before reflection.  In the Faraday effect, however, the direction of the optical 

rotation, as viewed when looking into the beam, is reversed when the light traverses the 

substance opposite to the magnetic field direction; that is, the rotation can be reversed by 

either changing the field direction or the light direction.  Reflected light, having passed 

twice through the medium, has its plane of polarization rotated by twice the angle 

observed for single transmission. 

By placing the sample between two pieces of Polaroid or two Nichol prisms, it can be 

arranged (with sufficient magnetic field strength) that little light is transmitted through 

the system in one direction, while it can pass, eventually with undiminished intensity, in 

the opposite direction.  The effect is unique in this respect: it permits the construction of 

an irreversible optical instrument with which observer A can see observer B, while A 

cannot be seen by B. 

Read the theory of the Faraday rotation in the  appendix  and consult the references given 

at the end of this writeup. Many references can also be found online. 

 The relation between the angle of rotation of the polarization and the magnetic field in 

the transparent material is given by Becquerel's formula: 
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 1.  = VBd 

Wherethe is the angle of rotation, d is the length of the path  where the light and 

magnetic field interact (d is the sample thickness for this experiment), B is the magnetic 

field component in the direction of the light propagation  and V is the Verdet constant for 

the material (MKS units: radian/Tesla meter). This empirical proportionality constant 

varies with wavelength and temperature and is tabulated for various materials.  

The Verdet Constant, V, depends on the dispersion of the refractive index, dn/d where n 

is the index of refraction  is the wavelength.  As shown in the appendix:  

2. V = /dB = -

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Here e/m is the charge to mass ratio of the electron and c is the speed of light.   Some 

values of V are listed in the table 

 



http://en.wikipedia.org/wiki/Faraday_effect 
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Substances that are noted for their large dispersion (large dn/d), such as heavy flint 

glasses, and CS2, also show a large Faraday effect as predicted by the theory.  In the 

visible range the refractive index of common substances, such as air, water; lead and soda 

glasses, etc., decreases rapidly with increasing wavelength (increasing frequency 

separation from the governing ultraviolet absorption resonances; normal dispersion); 

hence, dn/d is negative and it follows that light traveling in the direction of B has its 

plane of polarization turned counterclockwise for an observer looking into the beam.  The 

theory discussed in the appendix (cross product expression for magnetic force on a 

moving charged particle) explains the reversal of the rotation when either the field or the 

light direction is reversed (but not both).  These theoretical conclusions are confirmed by 

the observations.  The fact that the theory predicts the correct sign is a direct proof that 

the effect is related to the motion of negative charges, the electrons. 

With the exception of some paramagnetic materials, the quantitative observations are in 

excellent agreement with Becquerel's equation. Typically, from = 6 x 10-5 to 7 x 10-5 

cm, the refractive index changes by about 10-2.  Hence (in mks units) with dn/d  ≈ 105 

m-1,/c ≈ 2x10-15 seconds, and 
e

m
   = 1.76x1011, V is therefore about 17.6 radians per 

tesla-meter, or ≈ 0.06 minutes of arc per gauss-cm.  With a good Nichol prism, rotations 

of about one-half minute can be observed.  Since paths of several centimeters length and 

fields of a few thousand gauss can be used, the Faraday effect is quite easy to observe and 

is measurable with good accuracy. 
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II.  Equipment 

 



Polarizer Electromagnet pole pieces Analyzer

SampleFilter

Source

 

a.  Samples 

Various glass samples are included with the Faraday Effect attachment: 

One extra dense flint (marked EDF) 

One light flint (marked LF) 

One labeled Kigre. 

b.  Polarimeter and electromagnet 

Tapered magnet pole tips are used on the electromagnet to concentrate the magnetic field 

and raise it to as high a value as possible.  The pole tips are attached with hollow bolts so 

that the light may travel through the magnet parallel to the magnetic lines of force. 

Identical Polaroid filters are mounted with split clamps at the ends of the magnet frame 

(not Nichol  prisms,  as indicated in the diagram).  These are used as polarizer and 

analyzer respectively.  They have a radial handle for coarse rotation, with dial and vernier 

scale to measure angle.  Fine control is provided by a locking screw and drive screw.  

Unlock this  before coarse angular adjustment.  

These are identical, so either may serve a polarizer, and the other as analyzer.  The fine 

adjust screws of one has been damaged however, so it is best to use this as the polarizer.  

Do not change the setting of this during a series of measurements. 

Anisotropy provides selective absorption in Polaroid material (reference, Serway).  Long 

chain hydrocarbon molecules (e.g., polyvinyl alcohol) are aligned by stretching during 

manufacture, and subsequently made conducting along the chains only by dipping into an 

iodine solution which provides free electrons.  Strong, selective absorption of light then 

occurs for the electric field component in the molecular direction.  It follows that the 

polarizing direction is independent of wavelength, although the degree of polarization 

(absorption) may not be.  The absorption is incomplete, leading to a non-zero constant 

term in the Malus fit of the vs. analyzer angle data curve. 

Collimators (plastic washers) have been inserted into the optical path entrance and exit 

tunnels, to reduce polarization shift by grazing incidence scattering in the magnet 
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"tunnels". 

c.  Light sources 

The transparent glass is placed between the pole faces with the plastic support resting on 

the tapered portion of the pole faces.  A high-intensity incandescent lamp with filters is 

used as a light source.  A bright light source is desirable since greater contrast of light 

levels is helpful in obtaining accurate data.  

There are three filters. The wavelengths are engraved on the outside, front end of the filter 

barrels. 

 Blue: 4495 Å       Yellow: 5490 Å Red: 6500 Å 

These are very narrow band interference filters ( = 15-50 Å). Use these peak 

wavelengths as the effective wavelengths.The filters are in cells that slide into the front 

end of the apparatus. The filter should face the high-intensity tungsten lamp. Do not force 

the filter cell into the apparatus. 

IT IS IMPORTANT THAT THE FILTER DOES NOT COME INTO CONTACT 

WITH THE HOT BULB. LEAVE A TWO INCH AIR SPACE BETWEEN THE 

FILTER AND THE BULB. 

Put the lamp at maximum intensity for best results. If you see saturation put the lamp on 

medium brightness and move the lamp away from the filter end. 

 

d.  Magnet  

The magnet is controlled with a variable power supply.  The voltage output of the power 

supply, proportional to the magnet current,  is measured with a  multi meter (HP 34401 ).  

III.  Experimental procedure 

The aim of this experiment is to test the Bequerel  relation and to measure the Verdet 

constant and its dependence on the wavelength of light.  You will collect data  to plot the 

light intensity vs. polarizer angle for B=0, and several nonzero B fields. You will then fit 

the data to Malus law which will allow you to extract the values of the polarization 

rotation angle as a function of field, B. From the field dependence of the   polarization 

rotation  you will check the linearity with field and calculate the Verdet constant for three 

wavelengths. Finally you will use your data to obtain the value of e/m.  

1.  Light detection 

The intensity minimum can be determined by eye, which has excellent, non-linear 

sensitivity, but with poor precision and cumulative eye fatigue.  Using a photosensitive 

detector is more objective.  Among the possibilities are a photodiode, a photoresistive 

device and a phototransistor.   
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The eye can be very sensitive to low light levels, due to its approximately logarithmic 

intensity response.  A photoresistor also has a non-linear response.  The photo transistor 

and photodiode can exhibit a fairly linear response over a range of intensity, making them 

suitable for the Malus law (cosine squared) behavior of intensity vs. analyzer angle which 

is the basis of the present method of determining the minimum of intensity.  This law, in 

turn,  follows and exhibits directly the vector character of the electric field. 

At present a silicon photodiode is employed in the photovoltaic mode (no bias).  DC 

output voltage is read with a HP 34401 multimeter.  Range should be set for minimum 

fluctuation, sacrificing resolution.  Choose "Slow 6 digit" mode (integration time 2 

seconds) on the MEASurement (5: resolution) menu.  (The display asterisk will blink at 

the end of each measurement cycle.)   Refer to the HP manual menu tutorial; also to pages 

13, 34 and 81-83. 

The photodiode is about 0.1" square with an integral collecting and focusing lens.  The 

diode housing is clamped with four set screws to the analyzer housing, and rotates with it.  

One detector lead is grounded to the case (and thus to the coax braid via the UHF-BNC 

adapter); the other connects to the coax center wire.  The other end of the coax cable 

terminates in a double banana plug.  The pin adjacent to the plastic lug is connected to 

coax braid and thus to Faraday apparatus ground; be sure this plug is inserted into the lo 

input of the HP multimeter.  (Check for proper and for reverse input orientation the meter 

reading response to touching the cable ground.)  If any other devices (e.g., a notebook 

computer) are plugged into the meter power strip, check meter fluctuation, reading shift, 

etc.  Try reversing the power plug if there seems to be a problem; better, run the device on 

battery. 

The theoretical variation of detector output would follow Malus cos2()  "law". This is a 

direct consequence of the fact that the amplitude of the electromagnetic wave passed by 

the analyzer is proportional to |cos()| , where  is the angle between polarizer and 

analyzer. Thus the transmitted intensity is proportional to cos2()), with an additional 

constant term that is present when the polarization and analysis are incomplete. When 

using visual detection of the analyzed intensity observing the minimum angle is 

preferable to observation of the maximum (less saturation of eye sensitivity), but rates of 

change of either are small. 

The Malus "law" offers a simple alternative way to detect with considerable precision the 

"crossed" or the "parallel" angle of the analyzer (minimum or maximum detector voltage) 

by non-linear least square fitting of a curve of detector voltage vs. angle. Application of 

the Malus theory requires that the detector response remain linear over the range of light 

intensities fit, and that the source remain fixed in position and constant in intensity during 

the measurement.  Test and application of  Malus law is shown below for data taken with 

an unfiltered mercury discharge source. The fit was done with Kaleidograph.  Note the 

zero offset. 
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Non-linear weighted least square fit of the data to Malus law.  Note that the two 

"crossed" positions of the analyzer (minima) are 180 degrees apart, as expected. 

The constant background (m1 parameter) can be understood as resulting from incomplete 

polarization and analysis.   

The Malus curve at zero field can be used to extract the Faraday rotation angle as a 

function of  field. After the zero field measurement and without moving any part of the 

apparatus the field is gradually ramped up through a set of desired values. At every field, 

you will measure  the detector voltage versus magnet power supply voltage V. You will 

then use the  hysteresis curve B(V)  which is obtained by measuring the field with a Hall 

probe gaussmeter..   

2.  Data acquisition 

Source and detector familiarization. With the Si photovoltaic detector quickly find and 

record at zero magnet current approximate maximum and minimum detector meter 

readings  for each filter.   The silicon response improves rapidly at shorter wavelengths.  

Are these detector and the polaroid materials suitable for all of the wavelengths of the 

filters? 

Law of Malus verification Take detector current readings at zero magnet current every 

~10 degrees over a range of ≥ 360 degrees to test the Law of Malus (cos2 intensity 

behavior).  Estimate an average detector current error from observed meter fluctuations.    

Plot detector current vs. analyzer angle, and use your favorite fitting program (Origin 
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or matlab etc.) to fit the data to the form )(cos* 3

2

21 mmm    corresponding to the 

Malus formula. The fitting parameters 1m , 2m  and and 3m  correspond respectively to the 

minimum detector current value, the amplitude of the detector current variation and the 

angle between polarizer and analyzer at the minimum of detector current  (remember to 

use the same units in the simulation as in the measurement, ie degrees, not radians).  

Include in your report the plot and the fit equation showing fit parameters and minimum 

chi square value.  You will note that the quality of fits improves considerably if you limit 

the range of fitting angles to bracket a minimum or a maximum.  

Shifts of the entire curve with magnetic field are the desired data. This shift is measured 

by  the parameter m3.  The polarizer setting must not be changed during a sequence of 

measurements.    

Magnet calibration. Measure the magnetic field with the gaussmeter, removing the 

sample and orienting the plane of the probe perpendicular to the field for maximum 

reading. Handle the gaussmeter with  care.   Note 10x gain. 

 Establish a reproducible hysteresis loop for both positive and negative magnet supply 

voltages. Follow the procedure described below.  

WARNING : Be certain that the power supply is zeroed and turned off before 

disconnecting the magnet in order to reverse current leads.  Failure to observe this 

precaution may result in personal injury or damage to the equipment. 

Hysteresis loop. Turn on the magnet power supply (be sure to set the output to zero!). 

Turn on the gaussmeter and calibrate it, following the instructions on top of the 

instrument 

Remove any residual magnetism in the magnet ("degauss") as follows: Raise the voltage  

in the magnet power supply  to the maximum value you expect to use ~ +50 V and then 

back to zero, switch off the power supply and reverse polarity; raise voltage to -40 V and 

back to zero, switch off and reverse polarity; raise to +30 amperes and back to zero, 

switch off and reverse polarity, etc.( -20, +10, -5,0).   

Hereafter you will maintain a definite magnetic hysteresis curve by always increasing the 

voltage up to 50V in the same sense, and by always decreasing it back down to zero 

before raising it again.  Turn voltage down to zero before switching off-do not switch off 

with current flowing in the magnet.  This is good practice with any magnetic circuit, to 

avoid inductively generated high voltages and possible arcing.   

Now calibrate your magnet by following by recording B(V) for a few voltages on the up 

branch (0 u to +50 V) and then same voltages on the down branch (+50, 0, -50) and then 

back to B=0. If you maintain the same hysteresis curve the B(I) calibration will remain 

valid throughout the experiment and you will no longer  need to use the Hall probe 

Take Faraday data as described below on a single branch of the magnet hysteresis curve 

(+ going or - going).  Always maintain the same hysteresis curve as for your calibration 
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(same current maximum and minimum). 

Then measure B(V) and plot the curve of transmission minimum angle shift vs. B for 

increasing and decreasing B (positive and negative currents).  Alternatively, with the 

analyzer fixed at the angle of maximum sensitivity (45 degrees from zero field 

transmission minimum),  measure detector voltage  vs magnet current voltage for + and - 

currents; then convert to angle shift as a function of field using a previously determined 

Malus curve.  Recheck to verify intensity stability. 

Rotation of polarization. The data collection procedure described should be repeated  

for all samples, for all three filters and for at least 3 field values in addition to zero field.  

1. Set the field current (run both + and - to double the data range) and then record the 

angle for minimum transmission measured by eye.  

2. Now switch to using  the photodetector and Malus law. Measure the detector voltage 

vs. analyzer angle readings at intervals in the selected region, without attempting to 

observe the exact minimum; then find the minimum (or maximum) by least square 

fitting the data.  Voltage readings every 10 degrees in a range of about ± 45 degrees 

around a min (or max) will provide a good determination, if the data is smooth.  If 

you take data around a minimum, you may fit to the form   

 m1-m2*cos(m0-m3)*cos(m0-m3); m1=?; m2=; m3=?  

(input initial parameters  by inspection of the response curve).  Here you would input 

m3 = approximate observed minimum angle.  You could equally well fit to m1-

m2*cos(m0-m3)*cos(m0-m3); m1=?; m2=; m3=? .  Then your starting m3 would be 

approximately that of an adjacent maximum.  Both best fits (same data set) will be the 

same, except for a difference of exactly 90 degrees in final m3, so the minimum angle 

can easily be recovered from a fit to the latter form of Malus law. 

3. An alternative method to using the photodetector and Malus law described in 2. 

Establish the Malus curve at zero field. Set the analyzer to the minimum angle. Sweep the 

field through a set of values and observe the change in transmitted  intensity with field. 

Using the Malus curve and magnet calibration extract the Farady rotation angle as  a 

function of field. Compare your results to those obtained in 1 and 2.  

IV.  Analysis 

1.  Verdet constant 

Tabulate your rotational shifts vs. magnetic field (include the tables in an appendix).  For 

all your data plot the rotation shift versus B. Use a least square linear fit to obtain  the 

Verdet constant and the error for all samples and for each wavelength. Include the plot 

and equation in your report.  

Compare the results obtained with each one of the 3 methods and comment on  their 

accuracy. Compare the measured Verdet constant to accepted values. 
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 (use consistent (mks and radian) units when combining experimental values of V with 

theory to obtain 
e

m
  .) 

2.  Comparison of Faraday inferred dispersion with Cauchy formula prediction 

If sample dispersion data is available (check  appendix 5 ), fit to an inverse even power 

series (n = A + B/2 does fairly well) and differentiate to obtain  

 dn/ddispersion= -2B/3 at your wavelength.  From the measured value of V and using 

accepted values for e/m and c calculate  
d

dn
Verdet .   Make a table with the values of V,  

d

dn
Verdet  and dn/ddispersion . Compare 

d

dn
Verdet  to dn/ddispersion. and comment on 

the differences.  

If corresponding values of V and the  dn/ddispersion can be obtained at several 

wavelengths or for several samples, a linear fit to a plot of 2 V /(/c) vs. dn/ddispersion 

permits an experimental determination of e/m.  Discuss your result. 

Report: 

Include a  theoretical background, description of procedure,  the data presented  in 

graphic format whenever possible, analysis and discussion of results. Raw data should be 

presented in the appendix. In discussion section, space permitting,  you may also include 

other  relevant topics such as: the physical (microscopic) origin of the Faraday rotation; 

why does the classical treatment work for the Faraday rotation (why don’t we need 

Planck’s constant to explain the phenomenon), an explanation of the physical origin of 

hysteresis in magnets.  
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Appendix 1. Optical rotation and circular birefringence 

1.  Decomposition of plane-polarized light into coherent, counter-rotating, 

circularly polarized components 

Optical rotation can be thought of in terms of circular birefringence. By the latter 

is meant that the propagation velocity, or the refractive index, is different for right 

and left circular polarized light.  For ordinary or "linear" birefringence there is a 

difference of the refractive indices for two plane polarized components of light 

which are normal to each other.  To show that optical rotation is equivalent to 

circular double refraction, we note that a plane polarized beam can always be 

considered as the coherent superposition of two coherent circularly polarized 

components of the same frequency and of equal amplitude.  For instance, a 

vibration E = 2A cos t can be considered as the sum of  

a.  a right circular component, and  b. a left circular component 

Ex = A sin t                        Ex = -A sin t 

Ey = A cos t   Ey = A cos t . 

If these equations represent the light incident on an active medium, the light 

emerging after passing through a distance D is given by similar equations that 

differ from the above only by the fact that the right circular components are 

shifted in phase by 


 Dnr2
, while the phase shift of the left circular component is 



 Dnl2
.  nr and nl are the two indexes of refraction, and (nr-nl) =  is the index of 

birefringence. The transmitted beam is therefore given by: 

Eq. 1   Ex = A [sin(t - 


 Dnr2 ) - sin(t - 


 Dnl2 )] 

      = -2A sin{[


D2 ] x [
1

2
 (nr-nl)  ]}    x    cos { t -  [



D2 x [
1

2
(nr + nl)  ] } 

Eq. 2   Ey= A [cos(t - 


 Dnr2 ) + cos(t - 


 Dnl2 )] 
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      = 2A cos{[ 


D2 ] x  [ 
1

2
(nr-nl)  ]}    x  cos { t -   [



D2 ]x [
1

2
(nr + nl)  ] }  

2.  Rotation of the plane of polarization if nr ≠ nl 

The x and y components are in phase; the transmitted light is therefore plane 

polarized, but the direction of vibration is changed from the y direction to a 

direction in the second quadrant which forms with the y  direction an angle given 

by tan= 
Ex

Ey
    , whence a rotation (in radians, with and D in the same units) of 

Eq. 3    = 



)( lr nnD 

. 

The rotation is counterclockwise when nr > nl. 

The figure below illustrates how circular birefringence can produce optical 

rotation.  Light linearly polarized along the x-axis is incident at point 1.  The light 

can be thought of as being formed of two circularly polarized components, and the 

vectors representing the electric fields of these components at point 1 are shown at 

t0 (when our observation starts) and at two later times, tl and t2 . 

The diagrams on the right side of the figure show the light emerging from the 

substance at the corresponding times.  The left circular component is assumed to 

travel faster through the substance (nr > nl); and by time t1, the electric field of 

that component is along the z-direction at point 2.  The right circular component 

travels more slowly, and it takes until time t2 before the electric field of that 

component is along the z-axis. The left circular component at point 2 has 

continued to rotate and the angle  between the field vectors of the two 

components at the time t2 is just the angular velocity multiplied by the difference 

in time taken for the two components to travel the distance D: 

Eq. 4  = (time right - time left)  = 
D

vright
  -  

 D
vleft

  =  
D(nr-nl)

c  . 
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Incident (position 1) and transmitted (position 2) light showing counterclockwise rotation 

of polarization plane due to slower propagation speed of right circularly polarized 

component, for nr > nl. The resultant field makes an angle /2 with the z-axis, and the net 

result for this case is that the polarization plane is rotated counterclockwise.  (All 

observations are taken looking into the oncoming beam.)  The rotation angle is given as 

before by: 

 = /2 = 
c

nnD lr

2

)( 
= 



 )( lr nnD 
. 

Thus different propagation speeds for the left and right circular components can account 

for the rotation observed in the Faraday effect.  The cause of the different propagation 

speeds will be discussed next. 
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Components

Right 

Components

Combined

t0 = 0, t1 = D/v, left , t2 = D/v, right

Position 1 Position 2

x x

t0

t1

t2

t2
t1

t0

t0
t1

t2
t0

t1

t2

t0 t1 t2 t2t1t0

Incident (position 1) and transmitted (position 2) light showing 

counterclockwise rotation of polarization plane due to slower propagation 

speed of right circularly polarized component, for n,right ­ 2xn,left. 

 

                                     = /2 = [ D/(2c)]x[n,right - n,left]  

w w

w w= /2

z

B
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Appendix 2. Classical model for light propagation in a medium 

1.  Spring-mass model of forced electron oscillation 

A convenient model for explaining the propagation of light in a substance involves the 

absorption and re-radiation (delayed and re-directed) of the incoming light by electrons of 

the medium.  The details of this model give an explanation for the absorption, scattering, 

and index of refraction of the medium. 

In a classical model, when electrons are disturbed from their equilibrium orbits, they 

behave as if they were bound by a linear, radial restoring force, and they exhibit the 

familiar mass-spring damped resonance phenomenon. The absorption and phase shift 

characteristics of a linear oscillator are shown below. 

The phase shift curve provides an explanation for the reduced speed of light in a medium.  

It corresponds to a delay in re-radiation of the light.  The re-radiated light combines 

coherently with the incoming beam, which is further absorbed and re-radiated deeper in 

the medium. The net effect is a lower propagation speed.  The change in the index of 

refraction with frequency (dispersion) can be explained by the change in phase shift with 

frequency. 

A more quantitative relationship between the refractive index and phase shift is discussed 

in Rossi, Section 8-4.  Briefly, the velocity of light depends upon 

1

em
   

where the dependence upon  (and hence the relationship between the D and E vectors) 

results from the displacement current contribution to B.  If we consider the electrons of 

the material to have very little damping, the phase relation between E and the electron 

motion (displacement) will shift by almost 180° as the driving (light) frequency passes 

through resonance.  Whereas at lower frequencies the polarization of the atoms reduces 

the electric field D in the medium, at frequencies above the resonance (unsplit, no 

magnetic field) the phase of the electron motion is reversed, which tends to increase the 

electric field.  SinceD = E  = 0E + P,  becomes less than 0, and the index of 

refraction is less than 1 above the resonance.  (This implies that v > c, the relativistic 

limiting velocity for causal information.  However, as is shown in many texts, the phase 

velocity (which we are discussing) can exceed c, but not the group or signal velocity.) 
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Also, recalling that the influence of the medium should diminish as the driving 

frequency moves away from resonance, we get a qualitative explanation for the 
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curves shown previously (amplitude, phase relation and index of refraction) for an 

oscillator without an external magnetic field. 

2.  Analysis of  forced, sinusoidal electron oscillations about equilibrium 

a.  Unsplit resonance at 0, with B = 0.   [nl = nr ( --> vl = vr)] 

The equations governing the motion of the electron are: 

Eq. 5   mr̈    = -m2r  + eE  or, with K=2m, 

    mẍ    = - eE cos(t) - Kx 

    mÿ    = - eE sin(t) - Ky . 

The resonance occurs for either of  = + K/m  = + 0 , so at this point (no 

magnetic field) both right and left circular components are affected in the 

same way.  The introduction of an external magnetic field along the direction 

of propagation of the light removes this symmetry and leads to the following  

classical explanation of the Faraday effect. 

b.  Split "left" and "right" resonances when B ≠ 0;  the Larmor frequency 

shift + L from 0.  [nl ≠ nr ( --> vl ≠ vr)] 

Refraction is the result of the interaction of the light with the electrons. 

Considering a right circular beam passing through a diamagnetic medium in 

the direction of an externally applied magnetic field B (z axis), the equations 

of motion of the electrons now become: 

Eq. 6   mr̈    = - m2 r  +  eE + 
e

c
  (ṙ x B)   ===> 

 mẍ    = - eE cos(t) - Kx - 
e

c
   Bẏ   

 mÿ    = - eE sin(t) - Ky + 
e

c
   Bẋ  . 

Disregarding, momentarily, the incoming electric field, it is easy to show that 

there are solutions corresponding to circular motion of the electrons with 

angular frequency 

Eq. 7   L = 
eB

(2m)
   = 2L, 

where L is called the "Larmor" frequency. 
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For an observer looking into the beam, the light vector rotates clockwise, and 

the electronic structure rotates counterclockwise (negative charge) with the 

Larmor frequency, relative to the circularly polarized light.  If  is the 

frequency of light it is apparent that, to the rotating electrons, the light vector 

appears to be rotating at a higher frequency  + L and it will act accordingly; 

that is the refractive index for this light will have the same value as the 

unmagnetized medium has for light of frequency + L.  Hence 

Eq. 8   nr() = n(+L) 

where n is the refractive index as ordinarily measured without magnetic field.  

In a similar way left circular light passing in the same direction as B appears 

to the atoms to have a lower frequency and hence 

Eq. 9   nl() = n(-L) . 

Since L for visible light is much smaller than  , we can write 

Eq. 10   n(0 + L) = n() + 
d

dn
L  and, since 

   = 


c
 and      





d

dnc

d

d


2
  =  

2

c

d

dn
 = 





d

dn

c

2

 we obtain 

(nr-nl)= 2 
d

dn
L  and, with L = 

2

1
L  = )(

22

1
0n

m

eB



 

Eq. 11   (nr - nl) = 
m

eB

d

dn

c 



4

2 2

  

where 
d

dn
is evaluated at frequency 0. 

Finally,  the optical rotation per unit length is 

 Eq. 12   
f

D
   = - 





d

dn

cm

e

2

1
B . 

This is called Becquerel's equation. The quantity V = /(DB)= -




d

dn

cm

e

2

1
 is 

called the Verdet constant of the material.  It is usually given in degrees of 

rotation per gauss, per centimeter of  light path.  (Note that the unit degree, 

although dimensionless, nevertheless involves mixed units of length.  Angular 

measure is defined as the ratio of arc length to radius length; with both in the 

same units, the angular unit is the radian.  When using degrees, the arc length 
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unit is [360/(2)] times that of the radius.  In comparing experiment and 

theory, it is best to convert the Verdet constant to radians, rather than degrees.) 

 

 

   Appendix 3.  Anomalous variation of n between the Larmor-split resonances 

Finally, combining the varying index of refraction with the small splitting due to 

an external magnetic field (+ L) from the zero-field resonant frequency 0 , we 

obtain for the two circular components the results shown below (greatly 

exaggerating the shift due to the Larmor rotation): 

Absorption

Indices of  

ref raction

 

counter- 

clockwise

clockwise

 = [(D/(2m)] (n  r  - n l )

 r  l

 Larmor  Larmor



1



n

Right circular 

component

Left circular 

component

n r n l
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showing anomalous dispersion (n < 1), and the origin of the rotation angle vs.  

in the region of the split resonances.  Of course, our data is taken far from these 

classical spring-mass ultraviolet electron resonances (at lower ), where nr > nl, 

as discussed previously. 

This model describes the normal, diamagnetic Faraday effect quite well. Paramagnetic 

and ferromagnetic substances also exhibit a Faraday effect. The present experiment, 

however, involves measurement of the Faraday rotation for a diamagnetic substance. 

Appendix 4. Why does the classical picture work? 

Since we know that the spring-mass classical picture of electron binding to a positively 

charged nucleus leads to prediction of an atom unstable to radiative energy loss,  an 

interesting question is:  Why does the classical picture above work so well?  Another is: 

Why are the important, governing resonances in the ultraviolet? 

As to the first question, all we need are strong and heavily damped (broad) 

absorption resonances.  Quantized excitation energies provide them.  For the 

second question, we must conclude that atomic and solid state quantum level 

structures are such that resonances with the required properties lie in the 

ultraviolet.  This involves such fundamental quantities as the strength of the 

Coulomb force, the mass of the electron, the stability of nuclei, the Pauli principle 

(quantum statistics of the electron), etc. 

 

 Appendix 5. Dominant effect of ultraviolet resonances on normal dispersion in the 

visible.  Cauchy formula for n(). 

The dispersion, dn/d, is also a function of .  For most glasses, the  behavior of n is 

dominated by "distant" scattering , strongly absorptive (therefore broad) ultraviolet 

resonances.  An exception is the Kigre glass sample used in this experiment, for which 

erbium doping produces infrared absorption dominance in the visible variation of n.  The 

sign of the Verdet constant is thus different for the flint and Kigre glasses. 

The first successful attempt to represent the curve of normal dispersion was made by 

Cauchy in 1836 using the form 

Eq. 13   n = A + B/2 + C/4 , 

where A, B, and C are constants characteristic of any one substance (B ≠ magnetic field 

here, of course).  Very often it is sufficient to keep the first two terms only.  Then 

Eq. 14   n = A + B/2 and dn/d = -2B/3 

The table below gives the index of refraction n  vs. wavelength for various materials, in 

the visible range from 400 to 750 nanometers.  A quadratic fit in 
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1

l2
 (using KaleidaGraph on a Macintosh, for example)    will yield the Cauchy parameters 

for n vs.  .  dn/dcan then be determined by differentiation of this analytic fit formula. 

Around 200 nm, n curves sharply upward, indicating the distant absorption and scattering 

resonances which cut off transmission in the ultraviolet. 

In specifying glass the manufacturer usually gives nD (the index for the yellow sodium D 

lines)  and also the value of  (nD-1)/(nF-nC), the indices for several other lines of common 

sources, and the differences between these and a number of other lines.  Detailed 

information concerning many glasses can be found in the International Critical Tables.  

The table below is from Monk.  The numerical part can be copied and pasted directly into 

a KaleidaGraph data file. 

 

 

 

Å) Light 

Crown 

Dense 

crown 

Light  

Flint 

Dense 

Flint 

Heavy 

Flint 

Fused 

Quartz 

Fluorite 

        

4000 1.5238 1.5854 1.5932 1.6912 1.8059 1.4699  1.4421 

4600 1.5180 1.5801 1.5853 1.6771 1.7843  1.4655 1.4390 

5000 1.5139 1.5751 1.5796 1.6770 1.7706 1.4624   1.4366 

5600 1.5108 1.5732 1.5757  1.6951 1.7611 1.4599  1.4350 

6000 1.5085 1.5679  1.5728 I.6542 1.7539   1.4581 1.4336 

6500 1.5067 1.5651 1.5703 I.6503 1.7485  1.4566 1.4324 

7000 1.5051 1.5640 1.5684 1.6473 1.7435  1.4553 1.4318 

7500 1.5040 1.5625 1.5668 1.6450 1.7389  1.4542 1.4311 

It is also interesting to analyze the Faraday rotation effects in terms of the phase shifts 

encountered by the light beam as it traverses the substance.  If the incoming light has a 

frequency below both resonance frequencies (0 + L), it is clear that the phase shift will 

be greater for the right circular component (
dn

dl
     negative).  Thus its propagation speed 

will be lower, and a situation as illustrated will result. 
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Manufacturers data (Schott Glass technologies, Inc.) for the flint glass sample (type SF59, 

melt #703495/I, order #Q346376, international code 953204, Lk #23908, Schott Ref. 

#D6502, 20 mm diameter x 10 mm thick) includes the following indices of refraction: 

line  (nm) 1/2  1e7 x 1/2 index n 

 

nt 1014.0 9.7258e-07 9.7258 1.9117 

ns 852.10 1.3773e-06 13.773 1.9206 

nr 706.50 2.0034e-06 20.034 1.9342 

nC 656.30 2.3216e-06 23.216 1.9412 

nC' 643.80 2.4127e-06 24.127 1.9433 

n 632.80  2.4973e-06 24.973 1.9452 

nd 587.60 2.8963e-06 28.963 1.9545 

ne 546.10 3.3532e-06 33.532 1.9654 

nF 486.10 4.2320e-06 42.320 1.9880 

nF' 480.00 4.3403e-06 43.403 1.9909 

Plots and fits to this data are shown below.   
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