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Rutgers University
Department of Physics & Astronomy

01:750:271 Honors Physics I
Fall 2015

Lecture 23
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Final Exam

• Wednesday, December 21st, 8-11:00am, PHL

• Chapters 10,11,12,13,15,18,19,20
(Lecture 15 → end)

• Also need to know the basic concepts and laws in-
troduced before: Newton’s laws, energy, momentum,
conservation laws.

• Will not be on the test:

• Elasticity (Ch. 12.3 in the 10th edition or 12.7
in the 9th edition.)

• Damped and forced oscillations (Ch. 15.5, 15.6
in the 10th edition or 15.8, 15.9 in the 9th edition.)
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• Will not be on the test:

• Heat transfer mechanisms (Ch. 18.6 in the 10th
edition or Ch. 18.12 in the 9th edition.)

• Engines.
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• Temperature: Intrinsic macroscopic quantity
which measures the kinetic energy of the average
microscopic constituent (atom, molecule . . . ) of a
physical system.

The Zeroth Law of Thermodynamics

If bodies A and B are each in thermal equilibrium
with a third body T , then A and B are in thermal
equilibrium with each other.

Thermal equilibrium: two bodies are in thermal
equilibrium if no energy transfer occurs when the two
bodies are in contact.
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• Temperature and heat

Heat (Q): the energy transferred between a sys-
tem and its environment because of a temperature
difference that exists between them.
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• Heat Absorbtion by solids and liquids

Heat capacity (C): the proportionality constant be-
tween the heat Q that the object absorbs or loses and
the resulting temperature change ∆T of the object:

Q = C∆T

Specific heat (c): heat capacity per unit mass:

C = cm ⇒ Q = cm∆T

Units for C: J/K. Also British thermal units (Btu)
and Calories (cal)

1 cal = 3.968× 10−3 Btu = 4.1868 J
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Phase change: transition from solid to liquid or
form liquid to vapors.

Heat of transformation (L): the amount of energy
per unit mass that must be transferred as heat when
a sample completely undergoes a phase change.

Q = Lm
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Solid → liquid

Heat of fusion:

Q = LFm

Liquid → vapors

Heat of vaporization:

Q = LVm
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Example:

A copper slug of mass mc = 75 g is heated to a tem-
perature T = 312◦C. The slug is then dropped into
a glass beaker containing mw = 220 g of water. The
heat capacity Cb of the beaker is 45 cal/K. The ini-
tial temperature Ti of the water and the beaker is
12◦C. Assuming that the slug, beaker, and water are
an isolated system and the water does not vaporize,
find the final temperature Tf of the system at thermal
equilibrium.
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Heated slug
heat−→ Water + beaker

• Heat absorbed by the water:

Qw = mwcw(Tf − Ti) > 0

• Heat absorbed by the beaker:

Qb = Cb(Tf − Ti) > 0

• Heat lost by the copper slug:

Qc = mccc(Tf − T ) < 0



Home Page

Title Page

JJ II

J I

Page 12 of 37

Go Back

Full Screen

Close

Quit

• Isolated system:

Qw +Qb +Qc = 0

mwcw(Tf − Ti) + Cb(Tf − Ti) +mccc(Tf − T ) = 0

Tf =
mwcwTi + CbTi +mcccT

mwcw + Cb +mccc
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Example:

How much heat must be absorbed by ice of mass
m = 720 g at −10◦C to take it to the liquid state at
15◦C?

Three step process:

Step1 : heat the ice from Ti = −10◦C to the melting
temperature Tm = 0◦C

Q1 = mcice(Tm − Ti)

Step1 : melt the ice at constant temperature
Tm = 0◦C

Q2 = mLF = mLice→water



Home Page

Title Page

JJ II

J I

Page 14 of 37

Go Back

Full Screen

Close

Quit

Step3 : warm the liquid water from Tm = 0◦C to the
final temperature Tf = 15◦C

Q3 = mcw(Tf − Tm)

Total heat:

Q1 +Q2 +Q3 = mcice(Tm − Ti) +mLF +mcw(Tf − Tm)
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i-Clicker

A) c1 > c2 > c3

B) c1 > c3 > c2

C) c2 > c3 > c1

D) c2 > c1 > c3

Three different materials of
identical mass are placed one
at a time in a freezer that
can extract energy from a ma-
terial at a certain constant
rate. During the cooling pro-
cess, each material begins in
the liquid state and ends in the
solid state. The figure shows
the temperature T versus time
t.

Rank the materials according
to specific heat in liquid state.
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i-Clicker

A) c1 > c2 > c3

B) c1 > c3 > c2

C) c2 > c3 > c1

D) c2 > c1 > c3

Three different materials of
identical mass are placed one
at a time in a freezer that
can extract energy from a ma-
terial at a certain constant
rate. During the cooling pro-
cess, each material begins in
the liquid state and ends in the
solid state. The figure shows
the temperature T versus time
t.

Rank the materials according
to specific heat in liquid state.

mc∆T = Q = −H∆t, H = constant rate of heat ab-
sorbtion. c = −(H/m)(∆t/∆T ) = (H/m)|∆t/∆T |
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i-Clicker

Same situation. Rank the ma-
terials according to heat of fu-
sion.

A) (LF )1 > (LF )2 > (LF )3

B) (LF )3 > (LF )2 > (LF )1

C) (LF )2 > (LF )1 > (LF )3

D) (LF )2 > (LF )3 > (LF )1
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i-Clicker

Same situation. Rank the ma-
terials according to heat of fu-
sion.

A) (LF )1 > (LF )2 > (LF )3

B) (LF )3 > (LF )2 > (LF )1

C) (LF )2 > (LF )1 > (LF )3

D) (LF )2 > (LF )3 > (LF )1

H∆t = mLF
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A closer look at heat and work

• gas confined to an iso-
lated cylinder

• bottom is in contact to a
thermostat which can heat
the system to a controllable
temperature T

• top closed by a piston
carrying a lead shot.
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The state of the system
is specified by three physi-
cal quantities:

• The volume V of the gas

• The temperature T of
the gas

• The pressure p exerted
on the walls of the cylinder

p =
F

A

For system in equilibrium:

pA = weight of piston and lead shot
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Thermodynamic process

Change in the system from
an initial state

(Vi, Ti, pi)

to a final state

(Vf , Tf , pf)
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• Suppose we remove the
lead shot such that the gas
will push the piston upward.

• For an infinitesimal dis-
placement d~s of the cylinder
the differential work done
by the gas is

dW = ~F · d~s = (pA)ds = pdV

dV = differential change in
volume

• For a finite displacement:

W =

∫
dW =

∫
pdV
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• |W | = area below the graph p = p(V ) in the (p, V )
plane

• W depends on the path in (p, V ) plane

0 < Wc < Wa < Wb

• W > 0 during expansion (work done by the gas)
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• W < 0 during contraction (work done on the gas)

• reversing the process changes the sign of W .

• cyclic process: |W | = enclosed area; W > 0 clock-
wise; W < 0 counterclockwise.
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The first law of thermodynamics

∆Eint = Eint,f − Eint,i = Q−W

• Eint = internal energy of the system

• Q heat exchanged by the system

• W work done by the system

The internal energy Eint of a system tends to
increase if energy is added as heat Q and tends
to decrease if energy is lost as work W done by
the system
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Special processes

• Adiabatic processes

Q = 0 ⇒ ∆Eint = −W

• Constant volume processes

W = 0 ⇒ ∆Eint = Q

• Cyclical processes

∆Eint = 0 ⇒ Q = W

• Free expansions:

Q = W = 0 ⇒ ∆Eint = 0
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Free expansion



Home Page

Title Page

JJ II

J I

Page 28 of 37

Go Back

Full Screen

Close

Quit

Heat conduction mechanisms

• Conduction

• Convection

• Radiation
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• Conduction • Energy is transferred as
heat from a reservoir at
temperature TH to a reser-
voir at temperature TC < TH
through a conducting slab
of thickness L.

• Conduction rate:

Pcond =
Q

t

where Q is the energy trans-
ferred in time t.
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• Conduction • Experimental formula

Pcond = kA
TH − TC

L

where A is the area of the
slab’s cross section and

• k = thermal conductivity

• Thermal resistance

R =
L

k
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• Convection

• Energy transfer occurs when a fluid, such as air or
water, comes in contact with an object whose tem-
perature is higher than that of the fluid.
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• The temperature of the part of the fluid that is in
contact with the hot object increases, and (in most
cases) that fluid expands and thus becomes less dense.

• The expanded fluid is now lighter than the sur-
rounding cooler fluid, and the buoyant forces cause it
to rise.
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• Some of the surrounding cooler fluid then flows so
as to take the place of the rising warmer fluid, and
the process can then continue.
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• Radiation

Energy transferred through electromagnetic waves

No medium required; can occur in vacuum.
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All objects above absolute zero emit radiation ac-
cording to Boltzmann’s law:

Prad =
Qrad

t
= σεAT 4
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Prad =
Qrad

t
= σεAT 4

• A = area of the surface

• T = temperature of the object

• σ = 5.6704 × 10−8 W/m2 · K4 Stefan-Boltzmann
constant

• ε = emissivity depends on the material

0 ≤ ε ≤ 1

• ε = 1 ideal black body radiator
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• The rate Pabs at which an object absorbs energy
via thermal radiation from its environment, which we
take to be at uniform temperature Tenv (in kelvins), is

Pabs = σεAT 4
env

• ε = 1 ⇒ an ideal blackbody will absorb all the radi-
ated energy it intercepts (no reflection or scattering).

• An object will radiate energy to the environment
while it absorbs energy from the environment, hence
the objects net rate Pnet of energy exchange due to
thermal radiation is

Pnet = Pabs − Prad = σεA(T 4
env − T 4)


