
Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I Fall 2015

Lecture 23

Final Exam

- Wednesday, December 21st, 8-11:00am, PHL
- Chapters 10,11,12,13,15,18,19,20 (Lecture $15 \rightarrow end$)

• Also need to know the basic concepts and laws introduced before: Newton's laws, energy, momentum, conservation laws.

• Will **not** be on the test:

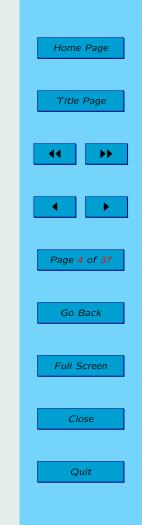
• Elasticity (Ch. 12.3 in the 10th edition or 12.7 in the 9th edition.)

• Damped and forced oscillations (Ch. 15.5, 15.6 in the 10th edition or 15.8, 15.9 in the 9th edition.)

• Will **not** be on the test:

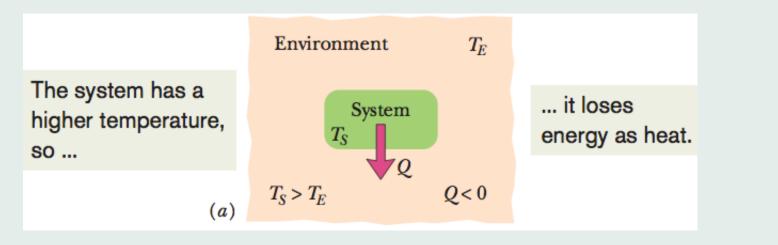
• Heat transfer mechanisms (Ch. 18.6 in the 10th edition or Ch. 18.12 in the 9th edition.)

• Engines.


Home Page
Title Page
••
Page 3 of 37
Go Back
Full Screen
Close
Quit

• **Temperature: Intrinsic macroscopic** quantity which measures the kinetic energy of the **average** microscopic constituent (atom, molecule ...) of a physical system.

The Zeroth Law of Thermodynamics


If bodies A and B are each in thermal equilibrium with a third body T, then A and B are in thermal equilibrium with each other.

Thermal equilibrium: two bodies are in thermal equilibrium if no energy transfer occurs when the two bodies are in contact.

• Temperature and heat

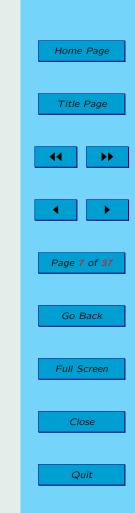
Heat (Q): the energy transferred between a system and its environment because of a temperature difference that exists between them.

	Environment	T_E		
The system has the same temperature, so	System T_S		no energy is transferre as heat.	
<i>(b)</i>	$T_S = T_E$	<i>Q</i> =0		
	Environment	T_E		
The system has a lower temperature, so	T_S Q		it gains energy as heat.	
<i>(c)</i>	$T_S < T_E$	Q>0		

Quit

• Heat Absorbtion by solids and liquids

Heat capacity (C): the proportionality constant between the heat Q that the object absorbs or loses and the resulting temperature change ΔT of the object:

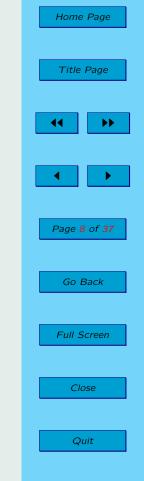

$$Q = C\Delta T$$

Specific heat (c): heat capacity per unit mass:

$$C = cm \Rightarrow Q = cm\Delta T$$

Units for C: J/K. Also British thermal units (Btu) and Calories (cal)

$$1 \text{ cal} = 3.968 \times 10^{-3} \text{ Btu} = 4.1868 \text{ J}$$



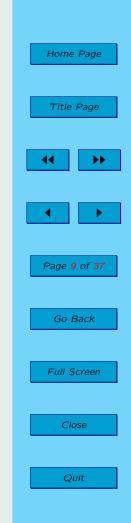
www.shutterstock.com · 16093510

Phase change: transition from **solid** to **liquid** or form **liquid** to **vapors**.

Heat of transformation (L): the amount of energy per unit mass that must be transferred as heat when a sample completely undergoes a phase change.

$$Q = Lm$$

$\textbf{Solid} \rightarrow \textbf{liquid}$


Heat of fusion:

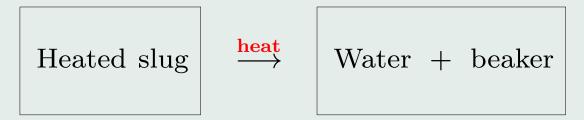
 $Q = L_F m$

Liquid \rightarrow vapors

Heat of vaporization:

$$Q = L_V m$$





www.shutterstock.com · 16093510

Example:

A copper slug of mass $m_c = 75 \text{ g}$ is heated to a temperature $T = 312^{\circ} \text{ C}$. The slug is then dropped into a glass beaker containing $m_w = 220 \text{ g}$ of water. The heat capacity C_b of the beaker is 45 cal/K. The initial temperature T_i of the water and the beaker is 12° C . Assuming that the slug, beaker, and water are an isolated system and the water does not vaporize, find the final temperature T_f of the system at thermal equilibrium.

• Heat absorbed by the water:

$$Q_w = m_w c_w (T_f - T_i) > 0$$

• Heat absorbed by the beaker:

 $Q_b = C_b(T_f - T_i) > 0$

• Heat lost by the copper slug:

$$Q_c = m_c c_c (T_f - T) < 0$$

• Isolated system:

$$Q_w + Q_b + Q_c = 0$$

$$m_w c_w (T_f - T_i) + C_b (T_f - T_i) + m_c c_c (T_f - T) = 0$$

$$T_f = \frac{m_w c_w T_i + C_b T_i + m_c c_c T}{m_w c_w + C_b + m_c c_c}$$

Title Page
••
Page 12 of 37
Go Back
Full Screen
Close
Quit

Example:

How much heat must be absorbed by ice of mass $m = 720 \,\mathrm{g}$ at $-10^{\circ}\,\mathrm{C}$ to take it to the liquid state at $15^{\circ}\,\mathrm{C}$?

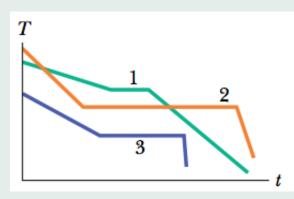
Three step process:

Step1 : heat the ice from $T_i = -10^{\circ} \text{ C}$ to the melting temperature $T_m = 0^{\circ} \text{ C}$

$$Q_1 = mc_{ice}(T_m - T_i)$$

Step1 : melt the ice at constant temperature $T_m = 0^{\circ} C$

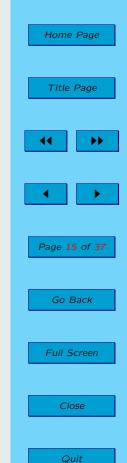
$$Q_2 = mL_F = mL_{ice \to water}$$

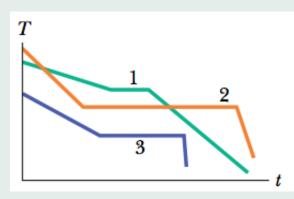

Home Page
Title Page
•• >>
Page 13 of 37
Go Back
Full Screen
Close
Quit

Step3 : warm the liquid water from $T_m = 0^{\circ} C$ to the final temperature $T_f = 15^{\circ} C$

$$Q_3 = mc_w(T_f - T_m)$$

$$Q_1 + Q_2 + Q_3 = mc_{ice}(T_m - T_i) + mL_F + mc_w(T_f - T_m)$$

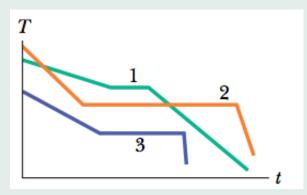

Home Page
Title Page
•• ••
Page 14 of 37
Go Back
Full Screen
Close
Quit



A) $c_1 > c_2 > c_3$ B) $c_1 > c_3 > c_2$ C) $c_2 > c_3 > c_1$ D) $c_2 > c_1 > c_3$

Three different materials of identical mass are placed one at a time in a freezer that can extract energy from a material at a certain constant rate. During the cooling process, each material begins in the liquid state and ends in the solid state. The figure shows the temperature T versus time t.

Rank the materials according to specific heat in liquid state.


A) $c_1 > c_2 > c_3$ B) $c_1 > c_3 > c_2$ C) $c_2 > c_3 > c_1$ D) $c_2 > c_1 > c_3$

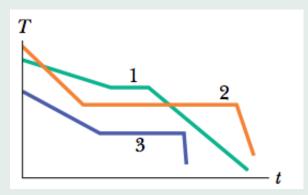
Three different materials of identical mass are placed one at a time in a freezer that can extract energy from a material at a certain constant rate. During the cooling process, each material begins in the liquid state and ends in the solid state. The figure shows the temperature T versus time t.

Rank the materials according to specific heat in liquid state.

 $mc\Delta T = Q = -H\Delta t$, H = constant rate of heat absorbtion. $c = -(H/m)(\Delta t/\Delta T) = (H/m)|\Delta t/\Delta T|$

Home Page Title Page Page 16 of 37 Go Back Full Screen Close Quit

Same situation. Rank the materials according to heat of fusion.


A) $(L_F)_1 > (L_F)_2 > (L_F)_3$

B) $(L_F)_3 > (L_F)_2 > (L_F)_1$

 $(L_F)_2 > (L_F)_1 > (L_F)_3$

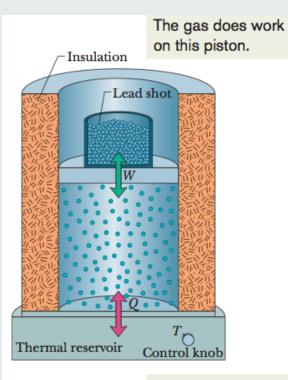
 $D) (L_F)_2 > (L_F)_3 > (L_F)_1$

Home Page
Title Page
•••
Page 17 of 37
Go Back
Full Screen
Close
Quit

Same situation. Rank the materials according to heat of fusion.

A) $(L_F)_1 > (L_F)_2 > (L_F)_3$

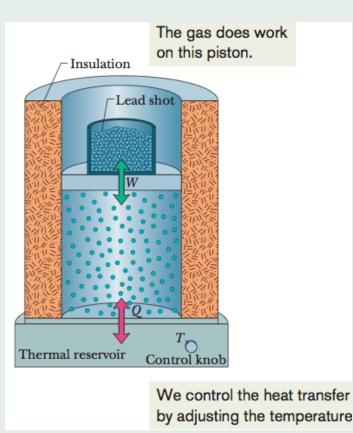
B) $(L_F)_3 > (L_F)_2 > (L_F)_1$


 $(L_F)_2 > (L_F)_1 > (L_F)_3$

 $D) (L_F)_2 > (L_F)_3 > (L_F)_1$

 $H\Delta t = mL_F$

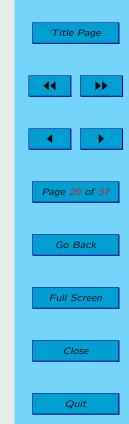
A closer look at heat and work


We control the heat transfer by adjusting the temperature

 gas confined to an isolated cylinder

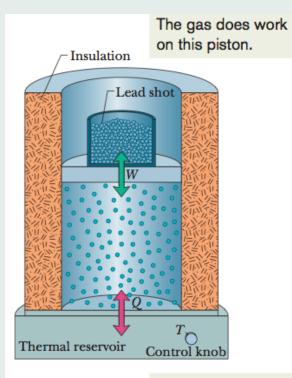
• bottom is in contact to a **thermostat** which can heat the system to a controllable temperature *T*

• top closed by a **piston** carrying a lead shot.


Home Page
Title Page
••
Page 19 of 37
Go Back
Full Screen
Close
Quit

The state of the system is specified by three physical quantities:

- The volume V of the gas
- The temperature T of the gas
- \bullet The pressure p exerted on the walls of the cylinder


$$p = \frac{F}{A}$$

Home Page

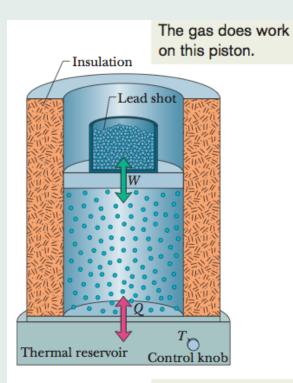
For system in equilibrium:

pA = weight of piston and lead shot

We control the heat transfer by adjusting the temperature

Thermodynamic process

Change in the system from an **initial state**


 (V_i, T_i, p_i)

to a final state

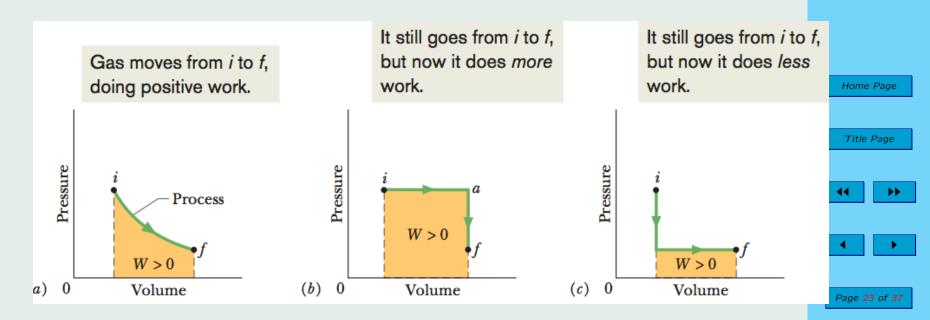
 (V_f, T_f, p_f)

Home Page Title Page •• Page 21 of 37 Go Back Full Screen Close

Quit

We control the heat transfer by adjusting the temperature

- Suppose we remove the lead shot such that the gas will push the piston upward.
- For an infinitesimal displacement $d\vec{s}$ of the cylinder the **differential work** done by the gas is


$$dW = \vec{F} \cdot d\vec{s} = (pA)ds = pdV$$

dV = differential change in volume

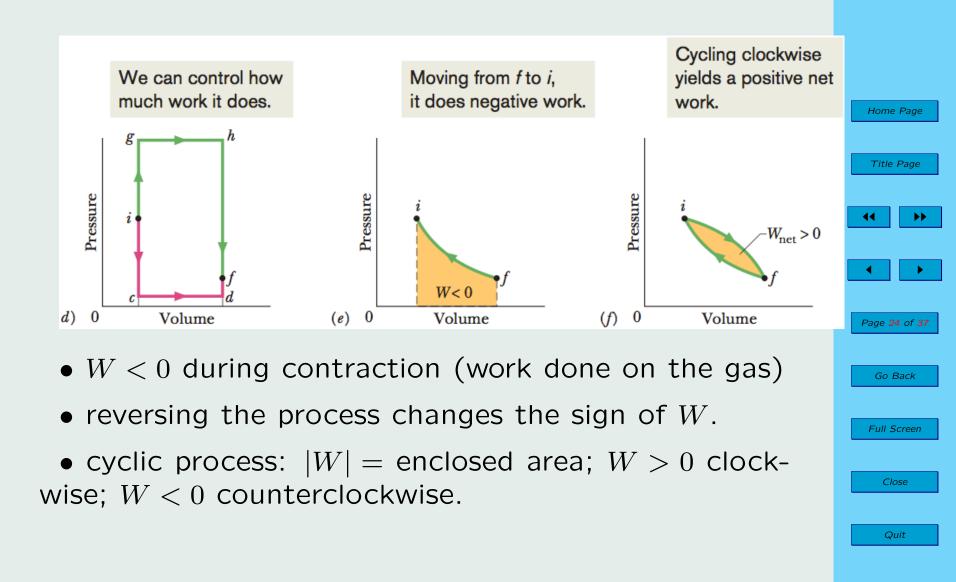
• For a finite displacement:

$$W = \int dW = \int p dV$$

Home Page Title Page Page 22 of 37 Go Back Full Screen Close Quit

Go Back

Full Screen

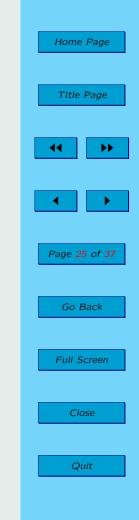

Close

Quit

• $\left|W\right|$ = area below the graph p=p(V) in the (p,V) plane

• W depends on the path in (p, V) plane $0 < W_c < W_a < W_h$

• W > 0 during expansion (work done by the gas)



The first law of thermodynamics

$$\Delta E_{\rm int} = E_{\rm int,f} - E_{\rm int,i} = Q - W$$

- $E_{int} = internal$ energy of the system
- $\bullet \ Q$ heat exchanged by the system
- $\bullet~W$ work done by the system

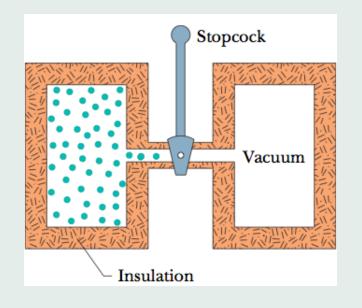
The internal energy E_{int} of a system tends to increase if energy is added as heat Q and tends to decrease if energy is lost as work W done by the system

Special processes

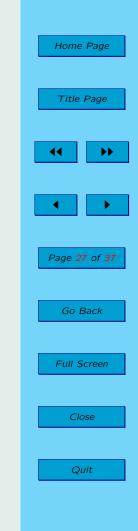
• Adiabatic processes

$$Q = 0 \Rightarrow \Delta E_{\text{int}} = -W$$

• Constant volume processes

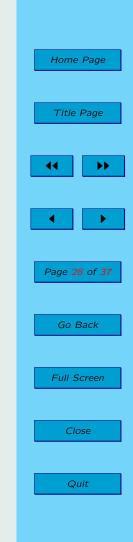

$$W = 0 \Rightarrow \Delta E_{\text{int}} = Q$$

• Cyclical processes

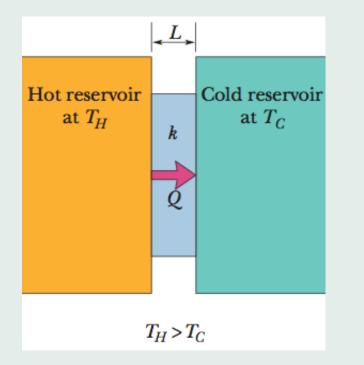

$$\Delta E_{\rm int} = 0 \ \Rightarrow \ Q = W$$

• Free expansions:

 $Q = W = 0 \Rightarrow \Delta E_{\text{int}} = 0$

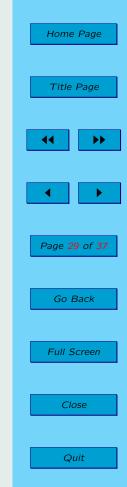


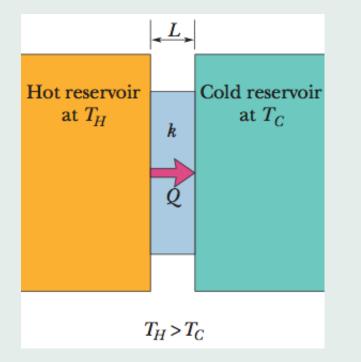
Free expansion



Heat conduction mechanisms

- Conduction
- Convection
- Radiation


Conduction


• Energy is transferred as heat from a reservoir at temperature T_H to a reservoir at temperature $T_C < T_H$ through a conducting slab of thickness L.

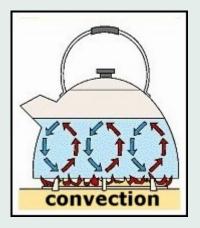
• Conduction rate: $P_{\text{cond}} = \frac{Q}{t}$

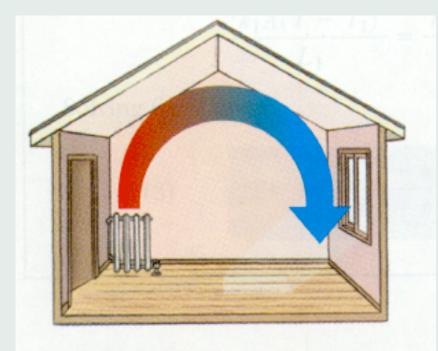
where Q is the energy transferred in time t.

• Conduction

• Experimental formula

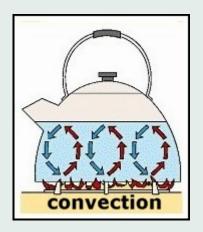
$$P_{\rm cond} = kA \frac{T_H - T_C}{L}$$

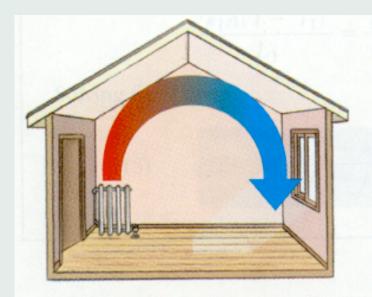

where A is the area of the slab's cross section and


- k = thermal conductivity
- Thermal resistance

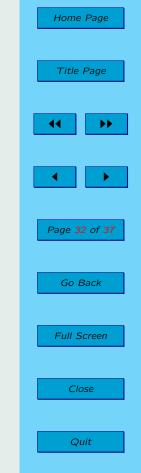
$$R = \frac{L}{k}$$

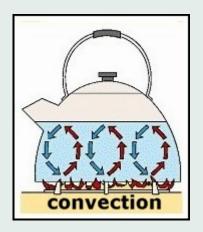
Home Page
Title Page
•• ••
Page 30 of 37
Go Back
Full Screen
Close
Quit

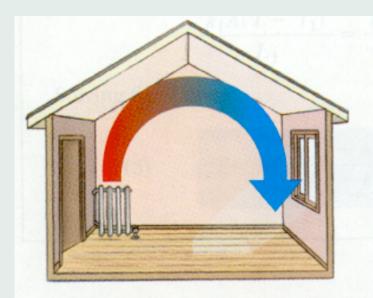

• Convection



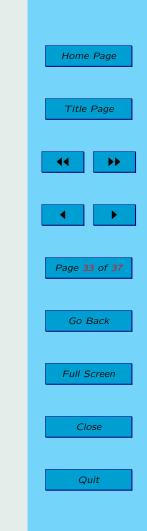
• Energy transfer occurs when a fluid, such as air or water, comes in contact with an object whose temperature is higher than that of the fluid.

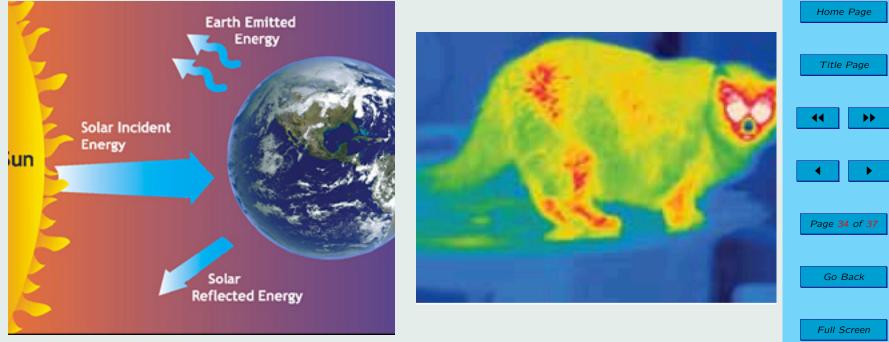

Home Page
Title Page
••
Page 31 of 37
Go Back
Full Screen
Close
Quit



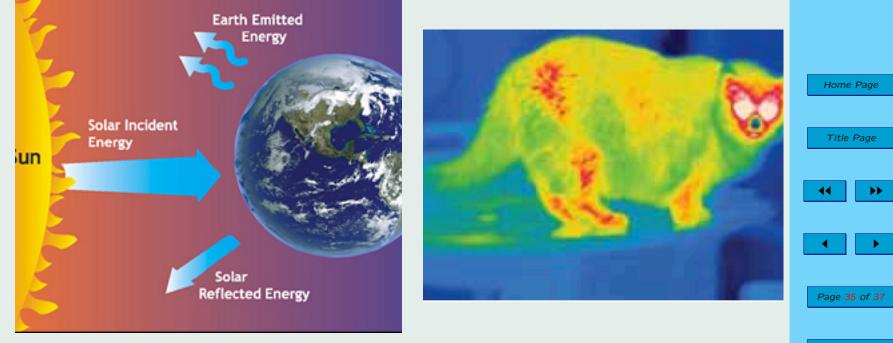


• The temperature of the part of the fluid that is in contact with the hot object increases, and (in most cases) that fluid expands and thus becomes less dense.

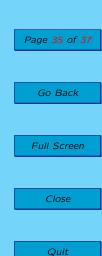

• The expanded fluid is now lighter than the surrounding cooler fluid, and the buoyant forces cause it to rise.



• Some of the surrounding cooler fluid then flows so as to take the place of the rising warmer fluid, and the process can then continue.


• Radiation

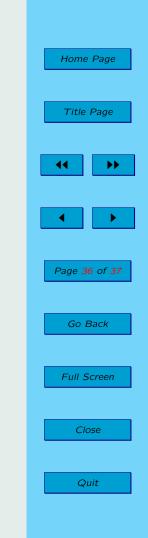
Close


Quit

Energy transferred through **electromagnetic waves** No medium required; can occur in vacuum.

All objects above absolute zero emit radiation according to **Boltzmann's law:**

$$P_{\rm rad} = \frac{Q_{\rm rad}}{t} = \sigma \epsilon A T^4$$

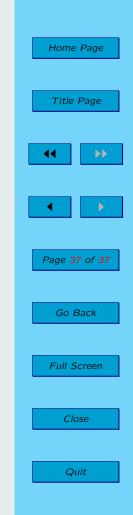


$$P_{\mathsf{rad}} = rac{Q_{\mathsf{rad}}}{t} = \sigma \epsilon A T^4$$

- A = area of the surface
- T =temperature of the object
- $\sigma = 5.6704 \times 10^{-8} \ {\rm W/m}^2 \cdot {\rm K}^4$ Stefan-Boltzmann constant
 - $\epsilon =$ **emissivity** depends on the material

 $0 \le \epsilon \le 1$

• $\epsilon = 1$ ideal black body radiator


• The rate P_{abs} at which an object absorbs energy via thermal radiation from its environment, which we take to be at uniform temperature T_{env} (in kelvins), is

$$P_{\rm abs} = \sigma \epsilon A T_{\rm env}^4$$

• $\epsilon = 1 \Rightarrow$ an ideal blackbody will absorb all the radiated energy it intercepts (no reflection or scattering).

• An object will radiate energy to the environment while it absorbs energy from the environment, hence the objects net rate P_{net} of energy exchange due to thermal radiation is

$$P_{\text{net}} = P_{\text{abs}} - P_{\text{rad}} = \sigma \epsilon A (T_{\text{env}}^4 - T^4)$$

