# Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I

Lecture 2

Home Page

Title Page

44 >>>

**→** 

Page 1 of 40

Go Back

Full Screen

Close

# 2. Motion along a straight line

#### **Goals:**

- To introduce position and displacement in one dimension.
- To define and differentiate average and instantaneous linear velocity.
- To define and differentiate average and instantaneous linear acceleration.
- To explore some applications of one dimensional motion with constant acceleration.
  - To examine freely falling bodies.

Home Page

Title Page

**⋈** | →

**←** || →

Page 2 of 40

Go Back

Full Screen

Close

#### One dimensional motion.

- Motion is along a straight line only.
- Will study the characteristics of motion i.e kinematics, not its cause (dynamics.)
  - Physical objects will be assumed pointlike.



Elementary particles.

Good model



Spaceship between Earth and Mars.

Home Page

Title Page

44

◀ |

Page 3 of 40

Go Back

Full Screen

Close



Car in parking lot.

Bad model



Spaceship in asteroid cloud.

Home Page

Title Page

(**4** | **>>** 

**←** 

Page 4 of 40

Go Back

Full Screen

Close

Quit

Note: scale is very important in physics!

# Position and displacement.



- Fix origin  $\Rightarrow$  position determined by one number x
- Positive direction  $x \nearrow$
- Negative direction  $x \searrow$

Home Page

Title Page

44

1

Page 5 of 40

Go Back

Full Screen

Close

• Displacement: change from position  $x_1$  to  $x_2$ 

$$\Delta x = x_2 - x_1$$

Displacement is a vector quantity
 direction

$$x_1 = 3\text{m}, \quad x_2 = 8\text{m} \quad \Rightarrow \quad \Delta x = 5\text{m} > 0$$
 Positive direction

$$x_1 = 8m, \quad x_2 = 3m \quad \Rightarrow \quad \Delta x = -5m < 0 \quad \frac{\text{Negative}}{\text{direction}}$$

Home Page

Title Page

Page 6 of 40

Go Back

Full Screen

Close

$$\Delta x = (\text{Sign})|\Delta x|, \qquad |\Delta x| > 0.$$

 $|\Delta x| = \text{Magnitude}$ : distance covered from initial to from initial to final position.

Sign: direction of motion from initial to final position.

- $+ \leftrightarrow$  positive direction.
- $\leftrightarrow$  negative direction.

**Note:** displacement depends only on the initial and final position.

Home Page

Title Page

(**d** 

4

Page **7** of **40** 

Go Back

Full Screen

Close

#### i-Clicker:

Suppose a particle moves from  $x=2\,\mathrm{m}$  out to  $x=5\,\mathrm{m}$  and back to  $x=2\,\mathrm{m}$ . Then the displacement is:

$$(A) \Delta x = 3 \,\mathrm{m}$$

$$(B) \Delta x = -3 \,\mathrm{m}$$

$$(C) \Delta x = 0 \,\mathrm{m}$$

$$(D) \Delta x = 5 \,\mathrm{m}$$

(E) 
$$\Delta x = 2 \,\mathrm{m}$$

Home Page

Title Page

Page 8 of 40

Go Back

Full Screen

Close

#### **Answer**

Suppose a particle moves from  $x=2\,\mathrm{m}$  out to  $x=5\,\mathrm{m}$  and back to  $x=2\,\mathrm{m}$ . Then the displacement is:

$$(A) \Delta x = 3 \,\mathrm{m}$$

$$(B) \ \Delta x = -3 \,\mathrm{m}$$

$$x_1 = 2 \,\mathrm{m}$$

$$(C) \Delta x = 0 \,\mathrm{m}$$

$$(D) \Delta x = 5 \,\mathrm{m}$$

$$\Delta x = 2 \,\mathrm{m} - 2 \,\mathrm{m} = 0 \,\mathrm{m}$$

 $x_2 = 2 \, \text{m}$ 

$$(E) \Delta x = 2 \,\mathrm{m}$$

Home Page

Title Page

l**∢** 

Page 9 of 40

Go Back

Full Screen

Close

# Average velocity and average speed

• One dimensional motion  $\leftrightarrow$  graph of the position x as function of time t



Home Page

Title Page

44

•

Page 10 of 40

Go Back

Full Screen

Close

• Average velocity: rate of change of position

$$v_{ ext{avg}} = rac{\Delta x}{\Delta t} = rac{x_2 - x_1}{t_2 - t_1}$$

$$x_1 = x(t_1)$$
 position at time  $t_1$ 

$$x_2 = x(t_2)$$
 position at time  $t_2 > t_1$ 

 $v_{\mathrm{avg}}$  vector quantity: same sign as  $\Delta x$  since

$$t_2 - t_1 > 0$$

Units for  $v_{\text{avg}}$ : meter/second = m/s.

Home Page

Title Page

**•** 

Page 11 of 40

Go Back

Full Screen

Close

# Geometric interpretation:

This is a graph of position x versus time t.

To find average velocity, first draw a straight line, start to end, and then find the slope of the line.



 $v_{\text{avg}} = \text{slope}$  of straight line connecting the points  $(t_1, x_1), (t_2, x_2).$  Above  $v_{\text{avg}} = 6/3 \,\text{m/s} = 2 \,\text{m/s}.$ 

Home Page

Title Page

Page 12 of 40

Go Back

Full Screen

Close

### Average speed

$$s_{\text{avg}} = \frac{\text{total distance travelled in time interval } \Delta t}{\Delta t}$$

 $s_{\text{avg}}$  scalar quantity; no sign, no direction.

Units for  $s_{\text{avg}}$ : meter/second = m/s.

Home Page

Title Page

← || →

Page 13 of 40

Go Back

Full Screen

Close

#### i-Clicker

A particle moves from  $x=0\,\mathrm{m}$  to  $x=3\,\mathrm{m}$  and then from  $x=3\,\mathrm{m}$  to  $x=1\,\mathrm{m}$  as shown in the graph below. Then  $v_{\mathrm{avq}}$  is:





(B) 
$$v_{\text{avg}} = 0.75 \text{m/s}$$

$$(C) v_{\text{avg}} = 1.25 \text{m/s}$$

(D) 
$$v_{\text{avg}} = 0.25 \text{m/s}$$

(E) none of the above

Home Page

Title Page

Page 14 of 40

Go Back

Full Screen

Close

#### Answer

A particle moves from  $x=0\,\mathrm{m}$  to  $x=3\,\mathrm{m}$  and then from  $x=3\,\mathrm{m}$  to  $x=1\,\mathrm{m}$  as shown in the graph below. Then  $v_{\mathrm{avg}}$  is:



Home Page

Title Page

**∢** | ▶)

**←** 

Page 15 of 40

Go Back

Full Screen

Close

#### i-Clicker

For the same graph  $s_{\text{avg}}$  is:



$$(A) s_{\text{avg}} = 1 \text{m/s}$$

(B) 
$$s_{avg} = 1.25 \text{m/s}$$

$$(C) s_{avg} = 0.25 m/s$$

(D) 
$$s_{\text{avg}} = 0.75 \text{m/s}$$

(E) none of the above.

Home Page

Title Page

( | **)** 

Page 16 of 40

Go Back

Full Screen

Close

#### **Answer**

For the same graph  $s_{\text{avg}}$  is:



Total distance 3 m + 2 m = 5 m,  $\Delta t = 4 \text{s}$ ,  $s_{\text{avg}} = \frac{5}{4} \text{m/s} = 1.25 \text{m/s}$ .

Home Page

Title Page

**◆** 

· •

Page 17 of 40

Go Back

Full Screen

Close

# Instantaneous velocity and speed

• Instantaneous velocity: velocity of a particle at a given moment in time.

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$



 $v = \text{limit of } v_{\text{avg}} \text{ over smaller and smaller time}$ intervals  $\Delta t$  centered at a current point (x, t) Home Page

Title Page

44

Page 18 of 40

Go Back

Full Screen

Close

# **Geometric interpretation**



$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

$$= \text{slope of the}$$

$$\text{tangent line}$$

$$\text{to motion graph}$$

$$\text{at current point}$$

$$= \frac{dx}{dt} \text{ (derivative)}$$

Home Page

Title Page

Page 19 of 40

Go Back

Full Screen

Close

Note: v is a vector quantity  $\begin{cases} \text{direction} \\ \text{magnitude} \end{cases}$ 

• Instantaneous speed: magnitude of v

$$s = |v| = \left| \frac{dx}{dt} \right|$$

Units for v, s: m/s.

Home Page

Title Page

Page 20 of 40

Go Back

Full Screen

Close

#### i-Clicker

Which of the following velocity graphs represents a car initially moving forward and then reversing direction?



Home Page

Title Page

(4

**∢** || |

Page 21 of 40

Go Back

Full Screen

Close

#### **Answer**

Which of the following velocity graphs represents a car initially moving forward and then reversing direction?



The velocity must be v=0 at some instant in time.

Home Page

Title Page

44

Page 22 of 40

Go Back

Full Screen

Close

#### Acceleration

- Acceleration: the rate of change of velocity.
- Average acceleration

$$a_{\mathsf{avg}} = rac{v_2 - v_1}{t_2 - t_1} = rac{\Delta v}{\Delta t}$$

 $v_1 = v(t_1)$  instantaneous velocity at time  $t_1$ 

 $v_2 = v(t_2)$  instantaneous velocity at time  $t_2 > t_1$ 

 $a_{ ext{avg}}$  vector quantity: same sign as  $\Delta v$  since  $t_2-t_1>0$ 

Home Page

Title Page

**→** 

**←** 

Page 23 of 40

Go Back

Full Screen

Close

#### Instantaneous acceleration

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

Note: a is a vector quantity  $\begin{cases} \text{direction} \\ \text{magnitude} \end{cases}$ 

Units for  $a_{avg}, a$ :

 $(\text{meter/second})/\text{second} = \text{m/s}^2.$ 

Home Page

Title Page

**4** | | →

**•** 

Page 24 of 40

Go Back

Full Screen

Close

# Geometric interpretation: velocity graph



$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

$$= \text{slope of the}$$

$$\text{tangent line}$$

$$\text{to motion graph}$$

$$\text{at current point}$$

$$= \frac{dv}{dt}$$

Alternative formula:

$$a = \frac{d^2x}{dt^2}$$
 (second derivative)

Home Page

Title Page

**←** 

Page 25 of 40

Go Back

Full Screen

Close

#### i-Clicker

Which of the following velocity graphs represents a car moving with a>0 for a finite time interval and then switching to a<0?



(A)

(B)

(C)

(D)

(E) none of the above

Home Page

Title Page

 $lack {lack}$ 

Page 26 of 40

Go Back

Full Screen

Close

#### **Answer**

Which of the following velocity graphs represents a car moving with a>0 for a finite time interval and then switching to a<0?



Home Page

Title Page

Page 27 of 40

Go Back

Full Screen

Close

#### Constant acceleration

What if a is constant, independent of time?

Time dependence of velocity v and position x?

$$a = \text{constant} \quad \Rightarrow \quad a = a_{\text{avg}}$$

 $a_{\text{avg}} = \text{average}$  acceleration from t = 0 to time t > 0:

$$a_{\text{avg}} = \frac{v - v_0}{t - 0} = \frac{v - v_0}{t}, \quad v_0 = \text{velocity at } t = 0$$

$$v = v_0 + at$$
 Linear!



Home Page

Title Page

Page 28 of 40

Go Back

Full Screen

Close

## Average velocity from t = 0 to time t:

v Linear  $\Rightarrow$   $v_{\text{avg}} = \frac{v + v_0}{2} = v_0 + \frac{at}{2}$ 

By definition

$$v_{\text{avg}} = \frac{x - x_0}{t - 0} = \frac{x - x_0}{t},$$
  $x_0 = \text{position at } t = 0.$ 

$$x_0 = \text{position at } t = 0$$





Home Page

Title Page

Page 29 of 40

Go Back

Full Screen

Close

#### Third equation $v \leftrightarrow x$

$$v = v_0 + at \quad \Rightarrow \quad at = v - v_0$$

$$x = x_0 + v_0 t + at^2/2$$
  $\Rightarrow$   $ax = ax_0 + v_0(at) + (at)^2/2$ 

Substitution:

$$ax = ax_0 + v_0(v - v_0) + (v - v_0)^2/2$$
 No t here!

Algebra:  $(v - v_0)^2 = v^2 + v_0^2 - 2vv_0$ . Then

$$v^2 = v_0^2 + 2a(x - x_0)$$

Home Page

Title Page

•

Page 30 of 40

Go Back

Full Screen

Close

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

$$v = v_0 + at$$

$$a = constant$$



Close

#### Another useful formula:

$$v^2 = v_0^2 + 2a(x - x_0)$$

# Warning!

The above equations are **not** valid if  $a \neq$ **constant**.

Home Page

Title Page

Page 32 of 40

Go Back

Full Screen

Close

# For general motion with $a \neq \text{constant}$ :

$$v = \int a(t)dt + c,$$
  $x = \int v(t)dt + c'$ 

$$\int f(t)dt = \text{integral (anti-derivative) of } f(t)$$

c,c' constants determined from initial conditions

$$v(0) = v_0, x(0) = x_0.$$

Home Page

Title Page

**←** 

Page 33 of 40

Go Back

Full Screen

Close

#### Free-fall acceleration

• Free-fall: motion of objects close to Earth's surface in absence of all external forces except for their weight.

• In vacuum all objects accelerate downwards at the same constant rate.

$$a_{\text{apple}} = a_{\text{feather}}$$



Home Page

Title Page

4

Page 34 of 40

Go Back

Full Screen

Close

#### Constant acceleration model

 $v^2 = v_0^2 - 2g(y - y_0)$ 



- $\bullet$  y = height with respect to Earth's surface.
- $a = -g = -9.8 \,\mathrm{m/s^2}$  for all objects if air resistance is negligible.
- $g = 9.8 \,\mathrm{m/s^2}$  magnitude of acceleration.

Home Page

Title Page

Page 35 of 40

Go Back

Full Screen

Close

#### i-Clicker

An object is dropped from rest at time t=0 and it falls freely with constant acceleration  $a=-9.8\,\mathrm{m/s^2}$ . This implies that:

- (A) It falls 9.8 m during each second.
- (B) It falls  $9.8 \mathrm{\ m}$  only during the first second.
- (C) Its speed increases by  $9.8\,\mathrm{m/s}$  during each second.
- (D) Its speed increases by  $9.8\,\mathrm{m/s}$  only during the first second.
- (E) Its speed does not change.

Home Page

Title Page

Page 36 of 40

Go Back

Full Screen

Close

#### **Answer**

An object is dropped from rest at time t=0 and it falls freely with constant acceleration  $a=-9.8\,\mathrm{m/s^2}$ . This implies that:

- (A) It falls 9.8 m during each second.
- (B) It falls  $9.8~\mathrm{m}$  only during the first second.
- (C) Its speed increases by  $9.8\,\mathrm{m/s}$  during each second.
- (D) Its speed increases by  $9.8\,\mathrm{m/s}$  only during the first second.
- (E) Its speed does not change.  $a = \text{constant} \Rightarrow \Delta v = a\Delta t \text{ for any time interval.}$

Home Page

Title Page

**>>** 

Page 37 of 40

Go Back

Full Screen

Close

#### i-Clicker

Ignoring air resistance, if you drop an object, it accelerates downward at  $9.8\,\mathrm{m/s^2}$ . What will its acceleration be if instead you throw it down.

- (A)  $9.8 \,\mathrm{m/s^2}$
- (B) More than  $9.8 \,\mathrm{m/s^2}$ .
- (C) Less than  $9.8 \,\mathrm{m/s^2}$
- (D)0
- (E) not constant

Home Page

Title Page

Page 38 of 40

Go Back

Full Screen

Close

#### Answer

Ignoring air resistance, if you drop an object, it accelerates downward at  $9.8 \, \mathrm{m/s^2}$ . What will its acceleration be if instead you throw it down.

- (A)  $9.8 \,\mathrm{m/s^2}$
- (B) More than  $9.8 \,\mathrm{m/s^2}$ .
- (C) Less than  $9.8 \,\mathrm{m/s^2}$
- (D) 0
- (E) not constant

The acceleration is independent of initial velocity.

Home Page

Title Page

**←** 

Page 39 of 40

Go Back

Full Screen

Close

# Next class: Wednesday September 9th

#### **Vectors**

9th edition: Ch. 3.1-3.8

10th edition: Ch 3.1-3.3

Home Page

Title Page

**▶**▶

4

Page 40 of 40

Go Back

Full Screen

Close