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9. Center of Mass. Linear Momentum 11

e Previously: inelastic collisions in 1D
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e Ellastic collisions in 1D: both linear momentum
and Kinetic energy are conserved




e Generic setup — stationary target
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Here is the generic setup O the system is con-
for an elastic collision with served:
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Note: the kinetic energy of each colliding body may
change, but the total Kkinetic energy of the system
does not change.



Here is the generic setup
for an elastic collision with

a stationary target. L | Home Page |
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1D elastic collision — stationary target

maq — M2 2m1
U1f = V14 Va2f = V14
mi1 + mo m1 + ma

Note:
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o vif >0 if m1 > ma; vip <O if m1 < mo

o vif =0, voy = vy; If m; = my (identical particles)



e Generic setup — moving target

Here is the generic setup
for an elastic collision with
a moving target.
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M1V1; + M2V2; = M1V1f + MoVay
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1D elastic collision — moving target
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e Example: two pendulums

e How high will
the 1st ball recoil
after collision?

e \Which way will
it swing?

° How high
will the 2nd
ball swing after
collision?




e Step 1:

1
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e Step 2: collision
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e Collisions in 2D

A glancing collision
that conserves

both momentum and
kinetic energy.
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e Linear momentum con-
served:

D1i + D2i = P1f + Doy

e Stationary target:
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e If elastic, kinetic energy also conserved:
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e Systems with varying mass

The ejection of mass from
the rocket's rear increases [t poge |
the rocket's speed.
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(a) accelerating rocket at time t in inertial frame

(b) accelerating rocket at time t 4 dt in the same
frame

v—>v+dv, dv>0 M — M +dM, dM <0



The ejection of mass from
the rocket's rear increases
the rocket's speed.

/ System boundary Va System boundary
M > -dM M+ dM v+ dv
U
(a) x (b) x

e Suppose the relative speed v, between the rocket
and exhaust products is known.

e How do we find the acceleration?



The ejection of mass from
the rocket's rear increases
the rocket's speed.

/ System boundary Va System boundary
M > -dM M+ dM v+ dv
u_b " u_b
U
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Rocket + exhaust products = isolated closed system

U

Linear momentum conserved

ﬁa:ﬁb Pa,x:Pb,zc



The ejection of mass from
the rocket's rear increases
the rocket's speed.

/ System boundary Va System boundary
M > -dM M+ dM v+ dv
U
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Por = Mv Py, = (M +dM)(vy + dvz) + (—dM)uy,

Note: wu, the z-component of the velocity of the
exhaust products relative to the inertial frame

Vy + dvz = Uz + Vrel



(a)

The ejection of mass from
the rocket's rear increases
the rocket's speed.

/ System boundary Va System boundary
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The ejection of mass from
the rocket's rear increases
the rocket's speed.

/ System boundary Va System boundary
M ) —dM M+ dM v+ dv
u_b " u_b
U
x (b)
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Mag; = —vrel = Ruyel
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The 1st rocket equation




The ejection of mass from
the rocket's rear increases

the rocket's speed.
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The 2nd rocket equation
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10. Rotation

e A rigid body is a body
that can rotate with all its
parts locked together and
without any change in its
shape.

e A fixed axis means
that the rotation occurs
about an axis that does
not move.




e Rotation variables

Z
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Rotauon _ Body This line is part
of the body and
perpendicular to
the rotation axis.

e Reference line
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e rotation axis = z-
axis

e reference line:

— perpendicular
to rotation axis.

— rotates with the
body




The body has rotated
counterclockwise
Y by angle 6. This is the

positive direction.
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Rotation
axis

This dot means that
the rotation axis is
out toward you.

e Angular position:

g="1
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s length of circular arc 1]

r radius of circle

e Positive direction:
counterclockwise




Reference line

This change in

the angle is e Angular displace-
the angular ment:
Att displacement
of the body AO = 0, — 0
during this time
change.

X

of_

Rotation axis

AO > 0 counterclockwise

AO < 0 clockwise



Reference line

e Average angular pesmy

This change in

the angle is velocity:

the angular AB e poce ]
displacement Wavg = ——

of the body At L« J[» ]

during this time e Units: rad/S.
change.
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e INnstantaneous angular velocity:
AG do
w = lim
At—0 At dt




e Average angular acceleration:
Aw w2 —wy

(0 = — =
YITAL T ta—ty

e INnstantaneous angular acceleration:
Aw dw

a = lim =
At—0 At dt

e Units: rad/s”.



Axis Axis

Y >
Vo ®
This right-hand rule T
establishes the
direction of the (a) (b) (¢)
angular velocity
vector.

Fig. 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the
spindle. (b) The angular velocity of the rotating record can be represented by the vector @,
lying along the axis and pointing down, as shown. (c¢) We establish the direction of the an-
gular velocity vector as downward by using a right-hand rule. When the fingers of the right
hand curl around the record and point the way it is moving, the extended thumb points in
the direction of .

Are angular variables vectors?



e Constant angular acceleration

Table 10-1
Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration - “
Equation Linear Missing Angular
Number Equation Variable Equation 0
(2-11) v=v,+at X — X 60— 6, w=w+ at
(2-15) X — Xo = vyt + jat? % w 0 — 6, = wyt + st -
(2-16) v = v} + 2a(x — xp) t t o = of + 2a(0 — 6))
(2-17) x = xo = 3(vo + V)t a a 60— 6 =5(w+ o)y |
(2-18) x — xy = vt — jat? Vo wy 0 — 6, = wt — iat?

Constant angular acceleration < Constant linear ac-
celeration



