Rutgers University Department of Physics & Astronomy

01:750:271 Honors Physics I Fall 2015

Lecture 10

Midterm I summary

 $100 \ 90 \ 80 \ 70 \ 60 \ 50 \ 40 \ 30 \ 20$

 $39 \ 43 \ 56 \ 28 \ 11 \ 5 \ 3 \ 0 \ 1$

Average: 82.00

7. Kinetic energy and work

• Kinetic Energy: energy associated to the motion of an object

$$K = \frac{1}{2}mv^2$$

• Work done by an applied force

• Work done by the force \vec{F} $W = F d \cos \phi = \vec{F} \cdot \vec{d}$

$$\vec{d} = (\Delta x)\hat{i}$$

displacement vector

• Work-Kinetic Energy Theorem

 $\begin{pmatrix} \text{change in the kinetic} \\ \text{energy of a particle} \end{pmatrix} = \begin{pmatrix} \text{net work done on} \\ \text{the particle} \end{pmatrix}.$

 $\Delta K = W_{\text{net}} \qquad K_f = K_i + W_{\text{net}}$

$$W_{\text{net}} = \sum W = \sum \vec{F} \cdot \vec{d} = \left(\sum \vec{F}\right) \cdot \vec{d} = \vec{F}_{\text{net}} \cdot \vec{d}$$

Home Page
Title Page
••
Page 5 of 37
Go Back
Full Screen
Close
Quit

• Variable force, curved trajectory

$$W = \int_{\text{trajectory}} dW = \int_{\text{trajectory}} \vec{F} \cdot d\vec{s}$$

 $d\vec{s} = \vec{v}dt$ infinitesimal displacement

Home Page
Title Page
••
Page 6 of 37
Go Back
Full Screen
Close
Quit

• **Example:** A ball tied at the end of a string of length r moves on a circular trajectory under an applied force $\vec{F} = F\hat{j}$.

Home Page

Title Page

Go Back

Close

Quit

• Work done by a spring force

• Hooke's Law

$$\vec{F_s} = -k\vec{d}$$

- always opposed to displacement (restoring force)
- k > 0 spring constant

Home Page
Title Page
Page 8 of 37
Go Back
Full Screen
Close
Quit

$$egin{aligned} V_s &= \int_{x_i}^{x_f} F_x dx \ &= \int_{x_i}^{x_f} -kx dx \ &= (-k) \int_{x_i}^{x_f} x dx \ &= (-k/2) \left(x_f^2 - x_i^2
ight) \end{aligned}$$

Home Page

 $W_{s} = \frac{1}{2}kx_{i}^{2} - \frac{1}{2}kx_{f}^{2}$ Full Screen

Quit

Close

• **Example:** an object of mass m slides across a horizontal frictionless surface with speed v. It then runs into and compresses a spring of spring constant k. When the object is momentarily stopped by the spring, by what distance d is the spring compressed?

Full Screen

Close

Quit

• **Power**: time rate at which work is done by a force.

If a force does an amount of work W in an amount of time Δt , the **average power** during that time interval is:

 $P_{\rm average} = \frac{W}{\Delta t}$ The instantaneous power P is the instantaneous time rate of doing work

$$P = \frac{dW}{dt} \qquad dW = \vec{F} \cdot d\vec{s} = \vec{F} \cdot \vec{v}dt \qquad P = \vec{F} \cdot \vec{v}$$

• Units: Watt

1 Watt = 1 W = 1 J/s

Home Page Title Page 44 ◀ Page 13 of 37 Go Back Full Screen Close Quit

8. Potential energy. Conservation of energy

- **Potential energy:** energy associated with the configuration of a system of objects that exert forces on one another.
- can be converted into kinetic energy by allowing the system to evolve freely

Gravitational potential energy

Elastic potential energy

Page 15 of 37
Go Back
Full Screen
Close
Quit

Home Page

Title Page

• Work and potential energy

Negative work done by the gravitational force Positive work done by the gravitational force First part of motion:

$$W_{F_g} = \Delta K < 0, \qquad K \quad \searrow$$

energy transferred from kinetic energy to gravitational potential energy.

Second part of motion:

$$W_{F_g} = \Delta K > 0, \qquad K \nearrow$$

energy transferred from gravitational potential energy to kinetic energy.

Home Page Title Page Page 16 of 37 Go Back Full Screen Close Quit

First part of motion: $W_{F_s} = \Delta K < 0, \qquad K \searrow$ energy transferred from kinetic energy to elastic potential energy.

Second part of motion:

$$W_{F_s} = \Delta K > 0, \qquad K \nearrow$$

energy transferred from elastic potential energy to kinetic energy.

$$W_{F_s}=rac{kx_{ ext{max}}^2}{2}$$
 $W_{F_s}=\Delta K=rac{mv^2}{2}$
 $rac{mv^2}{2}=rac{kx_{ ext{max}}^2}{2}$

• Note that in both examples examples

$$W_{1-{
m st}\ {
m part}}=-W_{2-{
m nd}\ {
m part}}$$

Gravitational force:

 $\Delta(mgy) = -W_{F_g}$ K + mgy = constant

Elastic force:

$$\Delta(kx^2/2) = -W_s \qquad K + \frac{kx^2}{2} = \text{constant}$$

Naturally led to:

• Gravitational potential energy:

$$U_g = mgy$$

• Elastic potential energy:

$$U_s = \frac{kx^2}{2}$$

• Energy conservation:

 $K + U_g = \text{constant}$ $K + U_s = \text{constant}$

i-Clicker

Which of the following statements is true?

	Home Page
	Title Page
	••
	Page 22 of 37
)	Go Back
	Full Screen
	Close
	Quit

Answer

Which of the following statements is true?

A) $W_{F_g}^{(a)} > W_{F_g}^{(b)}$ B) $W_{F_g}^{(a)} < W_{F_g}^{(b)}$ $C) \ W^{(a)}_{F_q} = W^{(b)}_{F_q}$ D) none of the above

	Home Page
	Title Page
	••
	Page 23 of 37
<u>ې</u> .	Go Back
	Full Screen
	Close
	Quit

$$V = \vec{F}_g \cdot \vec{d} = F_{gx} \Delta x$$

 $F_{gx} = mg \sin heta$
 $\Delta x = rac{h}{\sin heta}$
 $W = mgh$

i-Clicker

Which of the following statements is true?

Full Screen

Home Page

Close

Quit

Answer

Which of the following statements is true?

Full Screen

Home Page

Close

Quit

$$W_g = \int \vec{F_g} \cdot d\vec{s}$$

$$ec{F_g} \cdot dec{s} = mgds_g$$

$$V_g = \int_0^h mg ds_y$$

= $mg \int_0^h ds_y$
= $mgh.$

W = mgh

Home Page
Title Page
•• ••
Page 27 of 37
Go Back
Full Screen
Close

• Conservative Forces

The work done by the force depends only on the initial and final position of the object, not on the path in between.

The net work done by a conservative force on a particle moving around any closed path is zero.

①

• **Examples:** gravitational force, elastic force

• **Potential energy for conservative forces:** define *U* such that:

$$\Delta U = U_f - U_i = -W_{i \to f}$$

Note:

 $\bullet \ W_{i \to f}$ is path independent, hence this is a consistent relation

• Choosing $U_0 = 0$ for some reference configuration:

$$U_a = -W_{0 \to a}$$

Home Page
Title Page
•••
Page 30 of 37
Go Back
Full Screen
Close
Quit

• Gravitational potential energy

$$\Delta U_g = mg(y_f - y_i)$$

Reference configuration: ground level

$$U_g(0) = 0 \Rightarrow U = mgy$$

• Elastic potential energy

$$\Delta U_s = \frac{k}{2}(x_f^2 - x_i^2)$$

Reference configuration: relaxed spring

$$U_s(0) = 0 \Rightarrow U_s = \frac{kx^2}{2}$$

Conservation of Mechanical Energy

In an isolated system where only conservative forces cause energy changes, the kinetic energy and potential energy can change, but their sum, the mechanical energy E_{mec} of the system, cannot change.

Conservative forces, isolated system $\Rightarrow U + K = \text{constant}$

i-Clicker

A block of mass m slides down a curved slope as shwon below. What is the final speed of the block?

opyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A) $v = \sqrt{2gy_1}$ B) $v = \sqrt{2gy_2}$ C) $v = \sqrt{2g(y_1 - y_2)}$ D) none of the above

Home Page
Title Page
•• ••
Page 33 of 37
Go Back
Full Screen
Close
Quit

Answer

A block of mass m slides down a frictionless curved slope as shown below. What is the final speed of the block?

 $mgy_1 = mgy_2 + mv^2/2 \ \Rightarrow \ v = \sqrt{2g(y_1 - y_2)}$

Energy conservation:

A)
$$v = \sqrt{2gy_1}$$

B) $v = \sqrt{2gy_2}$
C) $v = \sqrt{2g(y_1 - y_2)}$
D) none of the ab

ove

- Non-conservative (dissipative) forces:
 - $\bullet~W$ depends on the path
 - There is **no** potential energy U associated to a configuration such that

$$\Delta U = -W$$

• Examples: kinetic friction, drag

Example:

• Suppose an object is launched from A to B on a rough horizontal surface with kinetic friction coefficient μ_k

- (1) along a straight line
- (2) on a circular trajectory (tied to a string)

$$W_{A \to B}^{(1)} = W_{B \to A}^{(2)}$$
 ?

Home Page
Title Page
•• ••
Page 36 of 37
Go Back
Full Screen
Close
Quit

$$W^{(1)}_{A o B} = -\mu_k mg d_{AB}$$
 $W^{(2)}_{A o B} = \int_A^B \vec{f_k} \cdot d\vec{s} = -\frac{\pi}{2} \mu_k mg d_{AB}$

In conclusion:

$$W_{A \to B}^{(1)} \neq W_{B \to A}^{(2)}$$

Home Page
Title Page
•
Page 37 of 37
Go Back
Full Screen
Close
Quit