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Midterm I summary

100 90 80 70 60 50 40 30 20

39 43 56 28 11 5 3 0 1

Average: 82.00
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7. Kinetic energy and work

• Kinetic Energy: energy associated to the motion
of an object

K =
1

2
mv2
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• Work done by an applied force

• Work done by the force ~F

W = Fdcosφ = ~F · ~d

~d = (∆x)̂i

displacement vector
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• Work-Kinetic Energy Theorem

∆K = Wnet Kf = Ki +Wnet

Wnet =
∑

W =
∑

~F · ~d =
(∑

~F
)
· ~d = ~Fnet · ~d
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• Variable force, curved trajectory

W =

∫
trajectory

dW =

∫
trajectory

~F · d~s

d~s = ~vdt infinitesimal displacement

F

ds
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• Example: A ball tied at the end of a string of
length r moves on a circular trajectory under an ap-
plied force ~F = F ĵ.

F
ds

q

q

T

~Fnet = ~F + ~T
~Fnet · d~s = ~F · d~s = Fdscosθ

W =

∫ π/2

0

F cosθ rdθ

= Fr

∫ π/2

0

cosθ dθ

= Fr
(
sin(π/2)− sin(0)) = Fr

mv2

2
=
mv2

0

2
+ Fr ⇒ v =

√
v2

0 +
2Fr

m
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• Work done by a spring force

• Hooke’s Law

~Fs = −k~d

• always opposed to
displacement
(restoring force)

• k > 0 spring constant
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Ws =

∫ xf

xi

Fxdx

=

∫ xf

xi

−kxdx

= (−k)

∫ xf

xi

xdx

= (−k/2)
(
x2
f − x2

i )

Ws =
1

2
kx2

i −
1

2
kx2

f



Home Page

Title Page

JJ II

J I

Page 10 of 37

Go Back

Full Screen

Close

Quit

• Example: an object of mass m slides across a
horizontal frictionless surface with speed v. It then
runs into and compresses a spring of spring constant
k. When the object is momentarily stopped by the
spring, by what distance d is the spring compressed?
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Total work done by the
spring force:

Ws =
kx2

i

2
−
kx2

f

2
= −

kd2

2

Work-kinetic energy the-
orem

Ws = Kf −Ki = −
mv2

2

mv2

2
=
kd2

2
⇒ d = v

√
m

k
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• Power: time rate at which work is done by a force.

If a force does an amount of work W in an amount of
time ∆t, the average power during that time interval
is:

Paverage =
W

∆t
The instantaneous power P is the instantaneous

time rate of doing work

P =
dW

dt
dW = ~F · d~s = ~F · ~vdt P = ~F · ~v
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• Units: Watt

1 Watt = 1 W = 1 J/s
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8. Potential energy. Conservation of energy

• Potential energy: energy associated with the
configuration of a system of objects that exert
forces on one another.

• can be converted into kinetic energy by allowing
the system to evolve freely
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Elastic potential
energy
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• Work and potential energy

First part of motion:

WFg = ∆K < 0, K ↘
energy transferred from kinetic
energy to gravitational poten-
tial energy.

Second part of motion:

WFg = ∆K > 0, K ↗
energy transferred from gravi-
tational potential energy to ki-
netic energy.
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First part of motion:

WFs = ∆K < 0, K ↘
energy transferred from kinetic
energy to elastic potential en-
ergy.

Second part of motion:

WFs = ∆K > 0, K ↗
energy transferred from elastic
potential energy to kinetic en-
ergy.
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First part of motion:

WFg = mg(y0 − ymax)

∆K = −
mv2

0

2
Constant acceleration model:

mv2
0

2
= mg(ymax − y0)

Second part of motion:

WFg = mg(ymax − y0)

∆K =
mv2

2
Constant acceleration model:

mv2

2
= mg(ymax − y0)
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First part of motion:

WFs = −
kx2

max

2

WFs = ∆K = −
mv2

0

2
mv2

0

2
=
kx2

max

2

Second part of motion:

WFs =
kx2

max

2

WFs = ∆K =
mv2

2
mv2

2
=
kx2

max

2
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• Note that in both examples examples

W1−st part = −W2−nd part

Gravitational force:

∆(mgy) = −WFg K +mgy = constant

Elastic force:

∆(kx2/2) = −Ws K +
kx2

2
= constant
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Naturally led to:

• Gravitational potential energy:

Ug = mgy

• Elastic potential energy:

Us =
kx2

2

• Energy conservation:

K + Ug = constant K + Us = constant
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i-Clicker

Which of the following statements is true?

h h

a b
q qa b

A) W
(a)
Fg

> W
(b)
Fg

B) W
(a)
Fg

< W
(b)
Fg

C) W
(a)
Fg

= W
(b)
Fg

D) none of the above.
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Answer

Which of the following statements is true?

h h

a b
q qa b

A) W
(a)
Fg

> W
(b)
Fg

B) W
(a)
Fg

< W
(b)
Fg

C) W
(a)
Fg

= W
(b)
Fg

D) none of the above.
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g

gxgy

F

F F
q

W = ~Fg · ~d = Fgx∆x

Fgx = mgsinθ

∆x =
h

sinθ

W = mgh
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i-Clicker

Which of the following statements is true?

h

a

h

b

A) W
(a)
Fg

> W
(b)
Fg

B) W
(a)
Fg

< W
(b)
Fg

C) W
(a)
Fg

= W
(b)
Fg

D) none of the above.
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Answer

Which of the following statements is true?

h

a

h

b

A) W
(a)
Fg

> W
(b)
Fg

B) W
(a)
Fg

< W
(b)
Fg

C) W
(a)
Fg

= W
(b)
Fg

D) none of the above.
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F

ds

ds

ds
g

x

y

Wg =

∫
~Fg · d~s

~Fg · d~s = mgdsy

Wg =

∫ h

0

mgdsy

= mg

∫ h

0

dsy

= mgh.

W = mgh
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• Conservative Forces

The work done by the force depends only on the
initial and final position of the object, not on the path
in between.

m

The net work done by a conservative force on a
particle moving around any closed path is zero.
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Consequence: when the configuration change is
reversed the work changes sign:

Wa→b = −Wb→a
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• Examples: gravitational force, elastic force

• Potential energy for conservative forces: define
U such that:

∆U = Uf − Ui = −Wi→f

Note:

• Wi→f is path independent, hence this is a con-
sistent relation

• Choosing U0 = 0 for some reference configura-
tion:

Ua = −W0→a
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• Gravitational potential energy

∆Ug = mg(yf − yi)

Reference configuration: ground level

Ug(0) = 0 ⇒ U = mgy

• Elastic potential energy

∆Us =
k

2
(x2

f − x2
i )

Reference configuration: relaxed spring

Us(0) = 0 ⇒ Us =
kx2

2
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Conservation of Mechanical Energy

In an isolated system where only conservative

forces cause energy changes, the kinetic energy

and potential energy can change, but their sum,

the mechanical energy Emec of the system,

cannot change.

Conservative forces, isolated system ⇒ U +K = constant
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i-Clicker

A block of mass m slides down a curved slope as
shwon below. What is the final speed of the block?

A) v =
√

2gy1

B) v =
√

2gy2

C) v =
√

2g(y1 − y2)

D) none of the above
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Answer

A block of mass m slides down a frictionless curved
slope as shown below. What is the final speed of the
block?

A) v =
√

2gy1

B) v =
√

2gy2

C) v =
√

2g(y1 − y2)

D) none of the above

Energy conservation:

mgy1 = mgy2 +mv2/2 ⇒ v =
√

2g(y1 − y2)
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• Non-conservative (dissipative) forces:

• W depends on the path

• There is no potential energy U associated to a
configuration such that

∆U = −W

• Examples: kinetic friction, drag
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Example:

v

v

0

0u u
A B

A B

(1)

(2)

• Suppose an object is
launched from A to B on
a rough horizontal surface
with kinetic friction coeffi-
cient µk

(1) along a straight line

(2) on a circular trajectory
(tied to a string)

W
(1)
A→B = W

(2)
B→A ?
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W
(1)
A→B = −µkmgdAB

W
(2)
A→B =

∫ B

A

~fk · d~s = −
π

2
µkmgdAB

In conclusion:

W
(1)
A→B 6= W

(2)
B→A


