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7. Kinetic energy and work

e Kinetic Energy: energy associated to the motion
of an object
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e \Work-Kinetic Energy Theorem
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e Variable force, curved trajectory

trajectory trajectory

ds = vdt infinitesimal displacement




e Example: A ball tied at the end of a string of
length » moves on a circular trajectory under an ap-
plied force F' = Fy.
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e \Work done by a spring force
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e Example: an object of mass m slides across a
horizontal frictionless surface with speed v. It then
runs into and compresses a spring of spring constant
k. When the object is momentarily stopped by the
spring, by what distance d is the spring compressed?

The spring force does
negative work, decreasing

speed and kinetic energy. V4
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The spring force does
negative work, decreasing
speed and kinetic energy.
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spring force:
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e Power: time rate at which work is done by a force.

[_rome Page |
If a force does an amount of work W in an amount of
time At, the average power during that time interval [ eree |
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The instantaneous power P is the instantaneous
time rate of doing work
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e Units: Watt

1 Watt =1W =11J/s




8. Potential energy. Conservation of energy

e Potential energy: energy associated with the
configuration of a system of objects that exert
forces on one another.

e Can be converted into Kinetic energy by allowing
the system to evolve freely



A ball at the top of a hill has
potential energy but no kinetic energy

A ball rolling down
a hill has both kinetic
and potential energy.

A ball at the bottom
of the hill which is not
rolling has neither
potential nor kinetic
energy.

Gravitational potential
energy

Elastic potential
energy




e \Work and potential energy
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Second part of motion:
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First part of motion:

Wp, = AK <0, K \,
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energy transferred from kinetic
energy to elastic potential en- [

ergy.
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Second part of motion: EEXZED
Wr, = AK > 0, K & | e

energy transferred from elastic [FEE
potential energy to kinetic en-

ergy.
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First part of motion:
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Constant acceleration model:
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Second part of motion:
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First part of motion:
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e Note that in both examples examples

Wl—st part — —WQ—nd part

Gravitational force:

A(mgy) = —WFp, K + mgy = constant
Elastic force:

5 kx?
A(kx®/2) = =W K + = constant




Naturally led to:

e Gravitational potential energy:.

U, = mgy

e Elastic potential energy:

kx?
Us = —
2
e Energy conservation:
K + U, = constant K + Ug = constant



I-Clicker

Which of the following statements is true?

A) W) > wy)
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D) none of the above.



Answer

Which of the following statements is true?

A) W) > wy)

9

a b
B) Wi < Wy
C) W(a) W(b>

D) none of the above.
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I-Clicker

Which of the following statements is true?

A) W) > wy)
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D) none of the above.



Answer

Which of the following statements is true?

A) W) > wy)
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a b
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C) W(a) W(b>

D) none of the above.






e Conservative Forces

[ tome Page_|
The work done by the force depends only on the
initial and final position of the object, not on the path [ eree |

in between. Kl
) NN

The net work done by a conservative force on a
particle moving around any closed path is zero.



The force is conservative.
Any choice of path between

. 2 the points gives the same
amount of work.

And a round trip gives
& 2 a total work of zero.

(b)

Consequence: when the configuration change is
reversed the work changes sign:

Wa—)b — — Wb—)a



e Examples: gravitational force, elastic force

e Potential energy for conservative forces: define
U such that:

AU =U; —U; = =W,
Note:

e W,_,; iIs path independent, hence this is a con-
sistent relation

e Choosing Uy = 0 for some reference configura-
tion:
Ua — _WO—>a




e Gravitational potential energy
AUy = mg(yr — vi)

Reference configuration: ground level
Uys(0) =0 = U =mgy

e Elastic potential energy

k
AU = 5(:13?0 — 1)

Reference configuration: relaxed spring

k2
U,(0) =0 = Us:%




Conservation of Mechanical Energy

In an isolated system where only conservative
forces cause energy changes, the Kkinetic energy

and potential energy can change, but their sum,
the mechanical energy Emec Of the system,
cannot change.

Conservative forces, isolated system = U + K = constant



I-Clicker

A block of mass m slides down a curved slope as
shwon below. What is the final speed of the block?
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Answer

A block of mass m slides down a frictionless curved
slope as shown below. What is the final speed of the
block?

Block I A) v =29y
\/,T\ B) v = v/2gy>
I
O v=v29(u — )
_— .\‘I: D) none of the above

Energy conservation:

mgy1 = mgys +mv°/2 = v= \/ 2g(y1 — y2)




e Non-conservative (dissipative) forces:
e W depends on the path

e [ here is no potential energy U associated to a
configuration such that

AU = -W

e Examples: Kkinetic friction, drag



Example:
e Suppose an object is

[ e launched from A to B on
O—— - ®— a rough horizontal surface
A (1) B with kinetic friction coeffi-

cient uy

(1) along a straight line

(2) on a circular trajectory
(tied to a string)

)B
1 (2)
T_\/> WA—>B — WB—)A ?



Wi, 5 = —mxmgdag

@) v m
WA—>B — /A fr-ds = _EﬂkmgdAB

In conclusion:

(1) (2)
WA—>B 7é WB—>A



