Physics 417: Problem Set 8 (DUE ON THURSDAY 11/14)

Problem 1: Spherical harmonics as angular momentum eigenfunctions

As we discussed in class, the spherical harmonics $Y_{\ell}^{m}(\theta, \phi)$ are eigenstates of angular momentum (or more precisely, they are the overlaps of these eigenstates with the position eigenkets on the sphere, $Y_{\ell}^{m}(\theta, \phi) = \langle \theta, \phi | \ell, m \rangle$). So they satisfy the differential equations

$$L^{2}Y_{\ell}^{m}(\theta,\phi) = \hbar^{2}\ell(\ell+1)Y_{\ell}^{m}(\theta,\phi)$$

$$L_{z}Y_{\ell}^{m}(\theta,\phi) = \hbar m Y_{\ell}^{m}(\theta,\phi)$$
(1)

where L_z and L^2 are in their representations as differential operators. Demonstrate (1) explicitly for $Y_2^1(\theta, \phi)$ and $Y_3^2(\theta, \phi)$.

Problem 2: More on orbital angular momentum

The wave function of a particle subjected to a spherically symmetrical potential V(r) is given by

$$\psi(\vec{x}) = (x + 2y + 3z)f(r)$$
(2)

for some function f(r).

(a) Is ψ an eigenfunction of L^2 ? If so, what is the ℓ -value? If not, what are the possible values of ℓ we may obtain when L^2 is measured?

(b) What are the probabilities for the particle to be found in various m_{ℓ} states?

(c) Suppose it is known that $\psi(x)$ is an energy eigenfunction with eigenvalue E. Derive a formula for V(r) in terms of f(r).

Problem 3: Griffiths 4.31

Problem 4: Griffiths 4.33

Problem 5: Addition of angular momentum

Consider the addition of angular momentum with $j_1 = 1$ and $j_2 = 1$.

- (a) What are the allowed values of m_1 and m_2 ?
- (b) What are the allowed values of j and m?

(c) Use table 4.8 of Griffiths to relate $|j = 2, m = 1\rangle$ and $|j = 2, m = 0\rangle$ to the $|m_1, m_2\rangle$ eigenstates. (Be careful to use the table correctly! Read the caption carefully!) In other words, in the notation of Griffiths, find the RHS of

$$|j,m\rangle = \sum_{m_1,m_2} C_{m_1m_2m}^{112} |m_1,m_2\rangle$$
(3)

for $|j = 2, m = 1\rangle$ and $|j = 2, m = 0\rangle$.

(d) Check your result in part (c) by applying J_{-} to the RHS of (3) for $|j = 2, m = 1\rangle$ and verifying that you obtain the RHS of (3) for $|j = 2, m = 0\rangle$.

EXTRA CREDIT WORTH ONE PROBLEM: Using the recursion relations, *derive* the $j_1 = 1, j_2 = 1$ entry of table 4.8 in Griffiths.