Physics 417: Problem Set 3 (Due in class Wednesday 10/2)

Problem 1: Dirac delta function
Solve either problem 1 or problem 1’°. Then treat the other problem as

extra credit.

In class we said that

5(z) i/oo dk et*® (1)
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In this problem we will derive this important identity by putting x on an interval and
discretizing the momentum. To begin, consider a smooth periodic function f(z) defined
on the interval z € [—L L] ie. it satisfies f(—L) = f(%). A basic fact about such
functions is that they can be represented using the Fourier series:

fo)= 3 few (222 2
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for some coefficients f,, called the Fourier coefficients. Now let us define

oo
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We want to show that D(z), in the limit L — oo, becomes the Dirac delta function.

(a) Show using geometric series (ignoring the fact that it technically doesn’t converge) that
D(z)=0if z #0.

(b) Show that

%/_z dz f(z)exp (— 27r;mx) = fm (4)
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for any integer m. (This is the inverse Fourier transform.)

(c) Using the definition of D(z) and the results in (a) and (b), show that

[ D)@ = 10 (5)

1

for any interval [z1, 2] containing = 0. So in the limit L — oo, we see that D(z) — 6(x).

(d) Finally, by converting the sum over n in (3) into an integral over k in the L — oo limit,

show that it becomes the desired identity (1).
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Problem 1’: another derivation of the Dirac delta function identity
Solve either problem 1 or problem 1’°. Then treat the other problem as

extra credit.

In this problem we will derive (1) a different way, by regularizing the integral. As
we saw in class, the integral is very singular, so let’s regularize it by putting in a small

exponential damping factor:

~ 1 o0 . 2
D(x) / dk eFr =<k (6)
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We want to compute ﬁ(az) for € > 0 where it is well-defined, and then show that as e — 0,

ﬁ(a:) acquires the defining properties of the delta function.
(a) Perform the Gaussian integral over k and obtain a formula for lA?(x)
(b) Using your formula in (a), show that as € — 0, D(z) — 0 for z # 0.

(¢) Now consider the integral

r= [ Bs) (7)

!
for a general function f(x). Using your previous results, show that as e — 0, I — f(0) if
[x1, x2] contains z = 0. (Don’t worry about the general properties of f(z) — smoothness,
fall-off at infinity, etc. — you can assume whatever is needed.) (You might want to read
about the saddle point approximation.)

Problem 2: More properties of the delta function

The delta function is defined by the following properties:
d(z)=01if z#0

> . (8)
/ d(z)f(z) = f(0) for any function f(x)

— 00

Use these to prove the following additional properties of the delta function:

(b) f(¥)o(y — a) = f(a)é(y —a)
(c) 6(ay) = |a|~16(y) (make sure to check both signs of a!)
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(d)o(f(y)=>, md(y—yl) provided f’(y;) # 0, where the sum is over all y; satisfying
0

f(y;) = 0 (hint: use (c)!)
0 z<0 . ’
(e) Let ©(z) = { 1 750 be the step function. Show that ©'(z) = d(z).

Problem 3: Wavefunctions vs. Dirac notation

Consider a state whose momentum-space wavefunction is:

0 for k< —ko/2
(k) =< N for —ko/2 < k < ko/2 (9)
0 for k> ko/2

(a) Determine N by requiring that the momentum-space wavefunction is properly normal-

ized.

(b) Determine the position-space wavefunction, ¢ (x) = (x|¢). Check that it is normalized

correctly by directly integrating over x. (You will need the integral ffooo S”;# =7.)
(c) Sketch (k|v) and (z|)).
Problem 4: Gaussian wavepackets
In class we introduced the Gaussian wavepacket:
6(0) = (ols) = Nexp (~ 20 e (10)

where 0,., T, and k are real numbers and N is a real normalization. We said it described

a state with minimum uncertainty.
(a) Determine AN by requiring that (x) is properly normalized. (The answer is N' =

1

e

(b) Choose some values for these parameters and sketch a plot of Re((z)) and |¢(x)|?.
(c) Compute (X), (P), ((AX)?), ((AP)?), and verify that the Heisenberg uncertainty

principle is indeed minimized.

(d) Compute the momentum space wavefunction (k|1)) and comment on your result.



