
Physics 417: Problem Set 3 (Due in class Wednesday 10/2)

Problem 1: Dirac delta function

Solve either problem 1 or problem 1’. Then treat the other problem as

extra credit.

In class we said that

δ(x) =
1

2π

∫ ∞

−∞
dk eikx (1)

In this problem we will derive this important identity by putting x on an interval and

discretizing the momentum. To begin, consider a smooth periodic function f(x) defined

on the interval x ∈ [−L
2
, L
2
], i.e. it satisfies f(−L

2
) = f(L

2
). A basic fact about such

functions is that they can be represented using the Fourier series:

f(x) =

∞∑

n=−∞
fn exp

(
2πinx

L

)
(2)

for some coefficients fn called the Fourier coefficients. Now let us define

D(x) ≡
1

L

∞∑

n=−∞
exp

(
2πinx

L

)
(3)

We want to show that D(x), in the limit L→ ∞, becomes the Dirac delta function.

(a) Show using geometric series (ignoring the fact that it technically doesn’t converge) that

D(x) = 0 if x 6= 0.

(b) Show that

1

L

∫ L
2

−L
2

dx f(x) exp

(
−
2πimx

L

)
= fm (4)

for any integer m. (This is the inverse Fourier transform.)

(c) Using the definition of D(x) and the results in (a) and (b), show that

∫ x2

x1

dxD(x)f(x) = f(0) (5)

for any interval [x1, x2] containing x = 0. So in the limit L→ ∞, we see that D(x) → δ(x).

(d) Finally, by converting the sum over n in (3) into an integral over k in the L→ ∞ limit,

show that it becomes the desired identity (1).
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Problem 1’: another derivation of the Dirac delta function identity

Solve either problem 1 or problem 1’. Then treat the other problem as

extra credit.

In this problem we will derive (1) a different way, by regularizing the integral. As

we saw in class, the integral is very singular, so let’s regularize it by putting in a small

exponential damping factor:

D̂(x) =
1

2π

∫ ∞

−∞
dk eikx−ǫk2

(6)

We want to compute D̂(x) for ǫ > 0 where it is well-defined, and then show that as ǫ→ 0,

D̂(x) acquires the defining properties of the delta function.

(a) Perform the Gaussian integral over k and obtain a formula for D̂(x).

(b) Using your formula in (a), show that as ǫ→ 0, D̂(x) → 0 for x 6= 0.

(c) Now consider the integral

I =

∫ x2

x1

dx D̂(x)f(x) (7)

for a general function f(x). Using your previous results, show that as ǫ → 0, I → f(0) if

[x1, x2] contains x = 0. (Don’t worry about the general properties of f(x) – smoothness,

fall-off at infinity, etc. – you can assume whatever is needed.) (You might want to read

about the saddle point approximation.)

Problem 2: More properties of the delta function

The delta function is defined by the following properties:

δ(x) = 0 if x 6= 0
∫ ∞

−∞
δ(x)f(x) = f(0) for any function f(x)

(8)

Use these to prove the following additional properties of the delta function:

(a) δ(y) = δ(−y)

(b) f(y)δ(y − a) = f(a)δ(y − a)

(c) δ(ay) = |a|−1δ(y) (make sure to check both signs of a!)
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(d) δ(f(y)) =
∑

i
1

|f ′(yi)|δ(y−yi) provided f
′(yi) 6= 0, where the sum is over all yi satisfying

f(yi) = 0 (hint: use (c)!)

(e) Let Θ(x) =
{
0 x < 0
1 x > 0

be the step function. Show that Θ′(x) = δ(x).

Problem 3: Wavefunctions vs. Dirac notation

Consider a state whose momentum-space wavefunction is:

〈k|ψ〉 =





0 for k < −k0/2
N for −k0/2 < k < k0/2
0 for k > k0/2

(9)

(a) Determine N by requiring that the momentum-space wavefunction is properly normal-

ized.

(b) Determine the position-space wavefunction, ψ(x) = 〈x|ψ〉. Check that it is normalized

correctly by directly integrating over x. (You will need the integral
∫∞
−∞

sin2 x
x2 = π.)

(c) Sketch 〈k|ψ〉 and 〈x|ψ〉.

Problem 4: Gaussian wavepackets

In class we introduced the Gaussian wavepacket:

ψ(x) = 〈x|ψ〉 = N exp

(
−
(x− x̄)2

4σ2
x

)
× exp(ik̄ x) (10)

where σx, x̄, and k̄ are real numbers and N is a real normalization. We said it described

a state with minimum uncertainty.

(a) Determine N by requiring that ψ(x) is properly normalized. (The answer is N =
1

(2π)1/4
√
σx

.)

(b) Choose some values for these parameters and sketch a plot of Re(ψ(x)) and |ψ(x)|2.

(c) Compute 〈X〉, 〈P 〉, 〈(∆X)2〉, 〈(∆P )2〉, and verify that the Heisenberg uncertainty

principle is indeed minimized.

(d) Compute the momentum space wavefunction 〈k|ψ〉 and comment on your result.
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