
Physics 417: Problem Set 11 SOLUTIONS

Problem 1: Griffiths 5.7

For distinguishable particles, the 3-particle state is:

ψ = ψa(x1)ψb(x2)ψc(x3) (1)

For identical bosons, it must be symmetric under interchange of any pair of particles:

ψ = N (ψa(x1)ψb(x2)ψc(x3) + (all perms))

= N (ψa(x1)ψb(x2)ψc(x3) + ψa(x1)ψb(x3)ψc(x2) + ψa(x2)ψb(x1)ψc(x3) + ψa(x2)ψb(x3)ψc(x1)

+ ψa(x3)ψb(x1)ψc(x2) + ψa(x3)ψb(x2)ψc(x1))

(2)

There are six distinct orthonormal terms, so the normalization factor is N = 1/
√

6.

For identical fermions, it must be anti-symmetric under interchange of any pair of

particles:

ψ = N (ψa(x1)ψb(x2)ψc(x3)± (all perms))

= N (ψa(x1)ψb(x2)ψc(x3)− ψa(x1)ψb(x3)ψc(x2)− ψa(x2)ψb(x1)ψc(x3) + ψa(x2)ψb(x3)ψc(x1)

+ ψa(x3)ψb(x1)ψc(x2)− ψa(x3)ψb(x2)ψc(x1))

(3)

There are again six distinct orthonormal terms, so the normalization factor is again N =

1/
√

6. Note that we could also get (3) from the Slater determinant:

ψ = det

ψa(x1) ψa(x2) ψa(x3)
ψb(x1) ψb(x2) ψb(x3)
ψc(x1) ψc(x2) ψc(x3)

 (4)

Problem 2: Griffiths 5.11

(a) We want to compute 〈1/|~r1 − ~r2|〉 for the ground state of helium neglecting inter-

electron interactions ψ0 = ψ100(r1)ψ100(r2). This is:

〈 1

|~r1 − ~r2|
〉 =

∫
d3r1d

3r2 |ψ0(r1, r2)|2 1

|~r1 − ~r2|

=
64

π2a6

∫
d3r1d

3r2 e
−4(r1+r2)/a 1

|~r1 − ~r2|

=
64

π2a6

∫
d3r1

∫
dr2dθ2dφ2r

2
2 sin θ2 e

−4(r1+r2)/a 1√
r21 + r22 − 2r1r2 cos θ2

(5)
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The dφ2 integral just gives 2π trivially. The θ2 integral can be done because it is a total

derivative:∫ π

0

dθ2
sin θ2√

r21 + r22 − 2r1r2 cos θ2
=

1

r1r2

√
r21 + r22 − 2r1r2 cos θ2

∣∣∣π
0

=
1

r1r2
(r1+r2−|r1−r2|)

(6)

Substituting this back into (5) yields

〈 1

|~r1 − ~r2|
〉 =

128

πa6

∫
d3r1

∫
dr2r

2
2 e
−4(r1+r2)/a 1

r1r2
(r1 + r2 − |r1 − r2|) (7)

To evaluate the remaining integral over r2, we have to split it into two parts, r2 < r1 and

r2 > r1:

〈 1

|~r1 − ~r2|
〉 =

128

πa6

∫
d3r1

(∫ r1

0

dr2r
2
2 e
−4(r1+r2)/a 1

r1r2
(r1 + r2 − (r1 − r2))

+

∫ ∞
r1

dr2r
2
2 e
−4(r1+r2)/a 1

r1r2
(r1 + r2 − (r2 − r1)

)

=
8

πa4

∫
d3r1

1

r1
e−8r1/a(a(−1 + e4r1/a)− 2r1)

= 4π × 8

πa4
×
∫
dr1 r

2
1 ×

1

r1
e−8r1/a(a(−1 + e4r1/a)− 2r1)

=
5

4a

(8)

(b) The electron-electron interaction energy for Helium is just e2/|~r1 − ~r2|. So using

first-order perturbation theory, we find the first order energy shift to the ground state

energy to be:

E
(1)
0 = e2〈 1

|~r1 − ~r2|
〉 =

5e2

4a
(9)

Let’s write this in terms of the ground state energy of hydrogen which is −E1 = e2

2a =

13.6 eV. Comparing with (9), we obtain

E
(1)
0 =

5

2
× 13.6 eV = 34 eV (10)

Adding this to the zeroth order ground state energy of −109 eV, we get E0 ≈ −75 eV

which is pretty close to the experimental value of −78.975 eV!

Problem 3: Griffiths 5.16
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(a) The Fermi energy of a free electron gas according to [5.42] and [5.43] is

EF =
h̄2

2m

(
3Nqπ2

V

)2/3

(11)

If we model copper as a free electron gas then it should have q = 1 because its electron

configuration is [Ar]3d104s1 so all shells are filled except the last one which contains a

single electron with ` = 0. Then to obtain EF we need to know N/V . We are given the

density an atomic weight of copper: 8.96 gm/cm3 and 63.5 gm/mol respectively. So its

N/V is

N

V
=

8.96 gm/cm3

63.5 gm/mol
× 6.022× 1023 particles/mol = 8.50× 1022 particles/cm3 (12)

Plugging this into (11) with m = 0.511 MeV c−2 and h̄ = 6.58× 10−16 eV s we obtain

EF ≈ 7 eV (13)

(b) The corresponding electron velocity assuming nonrelativistic electrons would be

vF =
√

2EF /m = 0.005c so the electrons are reasonably nonrelativistic.

(c) The Fermi temperature is

TF = EF /kB ≈ 7 eV/(8.61× 10−5 eV K−1) ≈ 8× 104 K (14)

so copper below its melting point is always “cold”.

(d) The degeneracy pressure for copper in this model is (according to [5.46]):

P =
(3π2)2/3h̄2

5m

(
N

V

)5/3

= 3.8× 1010 Pa (15)

This is a very big number! By comparison, the atmospheric pressure on the surface of the

Earth is only ∼ 105 Pa!

Problem 4: Fermions in a harmonic oscillator potential

Let’s first consider a more general version of this problem, and then solve it in the

two cases of interest. Suppose we have N spin 1/2 fermions in a potential well. Let the

well have energy levels labelled by an integer m ≥ 0. Let the energies be Em and suppose

that at each energy level, there is a total degeneracy dm allowed by the Pauli exclusion
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principle. This degeneracy, the total number of particles that we can put in this energy

level, could result from a variety of things, e.g. spin, orbital angular momentum, etc.

We are interested in the ground state of this system. This is obtained by filling up

the energy levels with electrons, each time picking the smallest possible m allowed by the

exclusion principle. Once a given level is filled (i.e. once the number of particles in that

level reaches dm), we move on to the next higher level. This process ends when we run out

of particles. Let’s call the highest level we’ve reached m = M . Then the total number of

particles N is given by

N =

M−1∑
m=0

dm + d̃ (16)

where 1 ≤ d̃ ≤ dM is the number of particles in the highest level. We need to treat

d̃ separately since we need to account for the possibility of partially filled levels. This

equation relates M to N , so we can view M as a function of N . Then the Fermi energy is

EM , and the ground state energy is

Egs =

M−1∑
m=0

Emdm + EM d̃ (17)

Now let’s apply it to the 1D and the 2D harmonic oscillators.

(a) Consider N identical spin 1/2 particles in a 1D harmonic oscillator potential

V = 1
2mω

2x2. What are the ground state energy and the Fermi energy? (Your answers

should be slightly different for N even and N odd!)

For a 1D harmonic oscillator, the energy levels are Em = (m+ 1
2 )h̄ω with m ≥ 0, and

the degeneracy is dm = 2 for spin up and spin down. Thus (16) becomes

N =
M−1∑
m=0

2 + d̃ = 2M + d̃ (18)

Meanwhile (17) becomes

Egs =

M−1∑
m=0

2(m+
1

2
)h̄ω + d̃(M +

1

2
)h̄ω = (M2 + d̃(M +

1

2
))h̄ω (19)

Finally, d̃ = 2 if N is even (the highest level is completely filled), and d̃ = 1 if N is odd

(the highest level is only half-filled). So for N even this gives Egs = (M + 1)2h̄ω with

N = 2(M + 1), so

EF = (M +
1

2
)h̄ω =

1

2
(N − 1)h̄ω

Egs =
1

4
N2h̄ω (N even)

(20)
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For N odd this gives Egs = (M2 +M + 1
2 )h̄ω with N = 2M + 1, so

EF = (M +
1

2
)h̄ω =

1

2
Nh̄ω

Egs =
1

4
(N2 + 1)h̄ω (N odd)

(21)

(b) Repeat for a 2D isotropic harmonic oscillator V = 1
2mω

2(x2 + y2) in the limit of

large N .

At large N we can ignore the partially filled levels and we can replace sums with

integrals, so we set d̃ = dM , and (16) and (17) become

N ≈
∫ M

dmdm

Egs ≈
∫ M

Emdmdm

(22)

For the 2D oscillator, the energies are just the sum of the energies of two decoupled

oscillators, Enxny
= (nx+ny+1)h̄ω with nx,y ≥ 0. So we identify the levelm = nx+ny ≥ 0.

The degeneracy of each level is the number of ways we can sum nx +ny = m keeping both

nx and ny nonnegative. This is (nx, ny) = (m, 0), (m− 1, 1), . . . , (0,m) for a total of m+ 1

pairs. To summarize, dm = 2(m + 1) (accounting for the spin) and Em = (m + 1)h̄ω.

Substituting these into (22), we obtain:

N ≈
∫ M

2(m+ 1)dm ≈M2

Egs ≈
∫ M

2(m+ 1)2h̄ωdm ≈ 2

3
M3

(23)

where we have dropped terms subleading in M . Therefore, in terms of N , the Fermi energy

and the ground state energy are:

EF = EM ≈Mh̄ω ≈
√
Nh̄ω

Egs ≈
2

3
M3h̄ω ≈ 2

3
N3/2h̄ω

(24)
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