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METHODS

First principles density functional theory (DFT) cal-
culations were performed using Vienna Ab Initio Sim-
ulation Package (VASP), which uses the projector aug-
mented wave method [1–4]. PBEsol exchange correlation
functional [5] is used in conjunction with the DFT+U as
introduced by Dudarev et al. [6]. The value of U has
been chosen as UIr = 2 eV and UNi = 4 eV for Ir and Ni
respectively. This choice of U gives the magnetic (spin
+ orbital) moments of µIr ∼ 0.6µB and µNi ∼ 1.8µB ,
which are in reasonable agreement with µIr ∼ 0.5µB and
µNi ∼ 1.5µB observed in experiment [7]. Small variations
in the values of U ’s give rise to quantitative changes, but
the magnetic ground state does not change. A plane-
wave basis cutoff energy of 500 eV, and a 8 × 8 × 8
k-point grid for the 22 atom primitive unit cell, which
corresponds to one k-point per ∼ 0.02 2π/Å, is found
to provide good convergence of the electronic properties.
Spin-orbit coupling is taken into account in all calcula-
tions unless otherwise stated.

CRYSTAL AND MAGNETIC STRUCTURE

Sr3NiIrO6 crystallizes in the K4CdCl6 structure, which
consists of parallel one-dimensional chains of alternating,
face sharing NiO6 and IrO6 polyhedra (Fig. 1a and Table
I) [8, 9]. Its space group is trigonal R3̄c, and the 3-fold
rotation axis passes through the cations, parallel to the
chains, along the crystallographic c axis (Fig. 1b). There
are three 2-fold rotation axes perpendicular to the 3-fold
one, passing through the Ni cations, and inversion cen-
ters on the Ir cations. Ir ions are surrounded by oxygen
octahedra whereas Ni ions are at the center of oxygen
trigonal prisms. The octahedra and prisms are face shar-
ing with each other, which enables strong direct cation -
cation direct interactions [10].

ORBITAL CONFIGURATIONS OF Ir4+ AND Ni2+

The site symmetries of the Ir and Ni cations in
Sr3NiIrO6 are 3̄ and 32 respectively, as shown in Ta-
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FIG. 1. (Color Online) Crystal structure of Sr3NiIrO6 consists
of one-dimensional chains along the c axis that consist of face-
sharing NiO6 and IrO6 polyhedra. There is a 3-fold rotational
symmetry axis along each chain, as well as 2-fold axes passing
through the Ni sites, and inversion centers on the Ir sites.

ble I and Fig. 1. Both of them have their d orbitals
split into 2+2+1. This splitting can be considered the
result of coexisting cubic and trigonal crystal fields on
each ion. The ratio of the trigonal to cubic crystal field
strengths is expected to be larger for the Ni ion, because
it is on a trigonal prismatic site, whereas Ir is on a (only
slightly distorted) octahedral site [11, 12]. Using a cubic
point group as reference, we can consider a higher energy
eg-like doublet, and three lower energy t2g-like orbitals
which are split into 2+1 [13]. (Henceforth, we omit the
‘-like’ suffix and simply refer to eg and t2g states.) The
relative energies of the t2g singlet and the doublet is not
determined by symmetry. The t2g doublet transforms
as the same irrep as the eg doublet, and hence can mix
with it. (In the following, we ignore this mixing, which is
not important for the current discussion.) A convenient
choice of cartesian basis is one with the ẑ along the crys-



2

Space Group: R3̄c
Space Group Number: 167
Lattice constants: a = 9.578 Å

c = 11.132 Å

Ion Wyckoff Position Site Symmetry
Sr 18e 1̄
Ni 6a 32
Ir 6b 3̄
O 36f 1

TABLE I. Details of the crystal structure of Sr3NiIrO6. Crys-
tal structure data taken from Nguyen et al. [9].

tallographic c axis (chain direction), and the x̂ and ŷ on
the a-b plane (Fig. 1c). With this axis choice, the three
t2g orbitals can be written as

|A〉 = |3z2 − r2〉 (1)

|E+〉 = − i√
3
|xy〉+ i√

6
|xz〉+ 1√

6
|yz〉− 1√

3
|x2−y2〉 (2)

|E−〉 = +
i√
3
|xy〉− i√

6
|xz〉+ 1√

6
|yz〉− 1√

3
|x2−y2〉 (3)

in terms of the cubic harmonics.
Under a cubic crystal field, the spin-orbit coupling is

known to mix and split the t2g cubic harmonic orbitals to
give rise to the higher energy pair of so called Jeff = 1/2
states. For an octahedron that has corners along the
cartesian axes, these |J1/2, ↑〉 and |J1/2, ↓〉 states are often
written as

|J1/2, ↑〉 =
1√
3

(−|xy, ↓〉 − i|xz, ↑〉+ |yz, ↑〉) (4)

and

|J1/2, ↓〉 =
1√
3

(+|xy, ↑〉+ i|xz, ↓〉+ |yz, ↓〉) . (5)

These states exhibit spin-orbital entanglement in the
sense that the |xy〉 part has an opposite spin to the rest.
Similarly, with our choice of axes for the Ir atom (where
the corners of the octahedra are along the 〈111〉) and the

trigonal crystal field, diagonalizing the ~L · ~S operator in
the t2g subspace gives the Jeff = 1/2 states as

|J1/2, ↑〉 =
1√
|γ|2 + 2

(
iγ|A, ↓〉+

√
2|E+, ↑〉

)
(6)

and

|J1/2, ↓〉 =
1√
|γ|2 + 2

(
iγ|A, ↑〉+

√
2|E−, ↓〉

)
(7)

where we ignored the mixing with the eg orbitals. Here,
the magnetic moments of either state are along the ẑ

direction, which is the crystallographic c axis. In the
absence of the trigonal crystal field, γ = 1, and these
states have exactly 33.3̄% |A〉 = |3z2−r2〉 character with
spin opposite to the rest of the state. This is very close
to the first principles result of 36% |3z2 − r2〉 character
for the t2g hole on Ir, showing that the trigonal field is
not strong enough to significantly change the orbital and
spin characteristics of the Ir ion.
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FIG. 2. (Color Online) (a) Densities of states of the Ni ion
projected onto the d orbitals in the FiM state with magnetic
moments along the z axis (magnetic ground state). (b) Energy
resolved expectation value of the z component of spin, 〈Sz〉
for the d orbitals of the Ni ion in the FiM state with magnetic
moments along the z axis.

The Ni2+ cation has 8 electrons, and its t2g-like orbitals
are completely filled. The unoccupied DOS between 1.5
and 2.0 eV’s is that of the two holes in the half-filled
eg-like orbitals, which have no |3z2 − r2〉 character as
expected.

MAGNON SPECTRUM

In this section, we calculate the magnon spectrum of
Sr3NiIrO6 using the model
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E =
∑
n

[
J‖
(
M Ir
n,z(M

Ni
n,z +MNi

n+1,z)
)

+ J⊥
(
M Ir
n,x(MNi

n,x +MNi
n+1,x) +M Ir

n,y(MNi
n,y +MNi

n+1,y)
)]

(8)

with parameters from first principles to show that a
model without single ion anisotropy is sufficient to ex-
plain the large gap in the magnon spectrum.

We introduce new operators, Q̂ and R̂, for the pseudo-
spins of the two ions:

MNi
n,z = Q̂zn (9)

MNi
n,x =

1

2

(
Q̂+
n + Q̂−n

)
= Q̂x (10)

MNi
n,y =

1

2i

(
Q̂+
n − Q̂−n

)
= Q̂y (11)

M Ir
n,z = −R̂zn (12)

M Ir
n,x = −1

2

(
R̂+
n + R̂−n

)
= −R̂x (13)

M Ir
n,y =

1

2i

(
R̂+
n − R̂−n

)
= R̂y (14)

Both Q̂ and R̂ satisfy the usual commutation relations
such as [Q̂i, Q̂j ] = i~εijkQ̂k.

The magnetic hamiltonian takes the form:

H =
∑
n

{
−J‖

[
Q̂zn(R̂zn + R̂zn+1)

]
+ J⊥

[
Q̂xn(R̂xn + R̂xn+1)− Q̂yn(R̂yn + R̂yn+1)

]}
(15)

We now make the approximations that Q̂znR̂
∓
m = µNiR̂

∓
m

and R̂znQ̂
∓
m = µIrQ̂

∓
m This approximation is valid in the

ordered state for small amplitude of excitations [14, 15].
It gives

1

~
[R̂−n ,H] = −2J‖µNiR̂

−
n − J⊥µIr(Q̂

+
n + Q̂+

n−1) (16)

1

~
[Q̂+

n ,H] = +2J‖µIrQ̂
+
n + J⊥µNi(R̂

−
n + R̂−n+1) (17)

Introducing the Fourier transformed operators

Q̂+
q =

∑
n

e−iqnQ̂+
n (18)

R̂−q =
∑
n

e−iqnR̂−n (19)

we obtain their time evolution as

i
∂

∂t
R̂−q =

1

~
[H, R̂−q ] = J⊥µIr(1 + e−iqc)Q̂+

q + 2J‖µNiR̂
−
q

(20)
and

i
∂

∂t
Q̂+
q =

1

~
[H, Q̂+

q ] = −J⊥µNi(1 + e+iqc)R̂−q − 2J‖µIrQ̂
+
q

(21)
where c is the lattice constant along the [001] direction
and q is the wavevector along the same axis. We can

write these two equations as

i
∂

∂t

(
Q̂+
q

R̂−q

)
= M

(
Q̂+
q

R̂−q

)
(22)

M =

(
−2J‖µIr −J⊥(1 + eiqc)µNi

J⊥(1 + e−iqc)µIr 2J‖µNi

)
(23)

We define the magnon creation/annihilation operators
for the two branches via a matrix K that diagonalizes
M : (

Q̂+
q

R̂−q

)
= K

(
α̂q
β̂†q

)
(24)

which leads to(
−ωq,αα̂†q
ωq,β β̂q

)
= K−1MK

(
α̂†q
β̂q

)
(25)

Now H =
∑
q

[
ωq,αα̂

†
qα̂q + ωq,β β̂

†
q β̂q

]
. We define the

components of K as

K =

(
uq v∗q√
σvq

√
σu∗q

)
(26)

so that

K−1 =

(
u∗q −v∗q/

√
σ

−vq uq/
√
σ

)
(27)

where we have imposed |u|2 − |v|2 = 1. The offdiagonal
elements of K−1MK are set to zero to solve for u and v,
and the diagonal elements (one of which is multiplied by
−1 gives the energies of the two magnon modes as
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ωα,q = J‖(µNi − µIr) +
√
J2
‖ (µNi + µIr)2 − 2J2

⊥µNiµIr(1 + cos qc) (28)

ωβ,q = −J‖(µNi − µIr) +
√
J2
‖ (µNi + µIr)2 − 2J2

⊥µNiµIr(1 + cos qc) (29)

According to these expressions, the ratio of the band-
width to the gap is ∼ J2

⊥/J
2
‖ . In other words, they

readily reproduce the gap being much larger than the
dispersion. The magnon spectra, plotted in Fig. 4(c) in
the main text, are consistent with the experimental ob-
servations that there is a large gap both between the two
magnon branches, and with the lower branch and zero
energy. The quantitative agreement is not perfect, for
example, the upper branch is experimentally observed to
be around 90 meV [16]. Fine tuning the U parameters in
our DFT+U calculations can provide better agreement.

We note that the sign of J⊥ does not enter to the en-
ergy expression for the magnons, so the magnon spectra
do not provide any evidence for the sign difference be-
tween J‖ and J⊥. However, the relative intensities of the
two branches can carry information about this sign dif-
ference. At the Γ point (q = 0), the components of the
matrix K that diagonalizes M give

uq=0

vq=0
= −

J‖(1 + σ)

2J⊥
√
σ

(
1±

√
1− σ|2J⊥|2

(J‖)2(1 + σ)2

)
(30)

(We have defined σ = µIr/µNi, and only the root with
the + sign gives u > v.) Plugging in J‖ ∼ −2J⊥ and
µNi ∼ 3µNi, we get u ∼ 4v. This means that the lower
lying β branch is dominated by Ni, whereas the α branch
is dominated by Ir, consistent with the fact that RIXS
does not observe the lower branch [16, 17].

Equation 30 indicates that the relative sign of u and v
depends on the sign of J⊥. This sign difference enters the
expression of the cross sections for creation of a magnon
with q (

d2σ

dΩdE

)
α,q

∝ (uq +
√
σvq)

2 (31)

(
d2σ

dΩdE

)
β,q

∝ (
√
σuq + vq)

2 (32)

where, for simplicity, we ignored the differences between
Debye-Waller factors and atomic form factors of Ni and
Ir [15]. A precise calculation of the cross sections should
take these differences into account and is beyond the
scope of this study. Nevertheless, from these equations
it is evident that the relative intensity difference between
the two magnon branches depends strongly on the rela-
tive signs of u and v, which in turn depend on the relative
signs of J‖ and J⊥. So far, the only neutron scattering

study on this compound [17] could not observe the higher
energy branch, and as a result there is no data available
to compare our prediction with.

TIGHT BINDING MODEL

In order to figure out the important Hamiltonian ma-
trix elements that correspond to dominant hopings be-
tween the Ir and Ni ions, we performed a Wannier func-
tion calculation to extract a tight binding model. For
simplicity, we performed the first principles DFT calcu-
lation at this step without the +U correction and with
no spin orbit coupling. This gives a simple tight binding
model that can be used as a qualitative guide for deter-
mining the sign of the superexchange interactions.

We considered the isolated group of bands near the
Fermi level that spans a 2.5 eV range and has 16 bands in
it. These 16 bands come from the t2g orbitals on Ir and all
5 d orbitals of the Ni ion. The resultant wannier functions
are well localized on the ions and has a maximum Im/Re
ratio of less than 1.5 · 10−3. In Fig. 3 we show some
examples of the Wannier functions we obtained. Both
the Ni and Ir Wannier orbitals have d character, with
the Ir ones having significantly larger spread (3.59 Å2,
compared to 1.85 Å2) and stronger hybridization with
the Oxygen anions as expected.

(a) (b) (c) (d)

FIG. 3. Some examples of the Wannier functions calculated
for the d bands in Sr3NiIrO6. The golden, silver, and red
atoms are Ir, Ni, and O respectively. (a) The |A〉 orbital like
function on Ni. (b-d) The three Ir Wannier functions, an
almost equal superposition of which give the |A〉 orbital of Ir.

Using the outcome of the Wannier calculation, the 8×8
Hamiltonian matrix for a nearest neighbor Ni-Ir pair can
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be written as

H =



3.49 0 0 0 0 0 0 0.35
0 4.05 0 0 0 0 0.16 0
0 0 4.05 0 0 0.16 0 0
0 0 0 4.47 0 0.23 0.13 0
0 0 0 0 4.47 0.13 −0.23 0
0 0 0.16 0.23 0.13 4.03 0 0
0 0.16 0 0.13 −0.23 0 4.03 0

0.35 0 0 0 0 0 0 4.18


(33)

in a basis that diagonalizes the local atomic hamiltonians.
(For simplicity, we set any matrix element that is smaller
than 0.03 to zero.) In our notation, the first five compo-
nents are for the Ni orbitals, and the last three are for Ir
orbitals. The diagonal elements of this matrix correctly
gives the crystal field splittings for the local atomic envi-
ronments: The Ni d-orbitals are split 1 + 2 + 2, and the
lowest lying, singlet orbital(at 3.49 eV) is the |3z2 − r2〉-
like orbital shown in Fig. 3a (with 2% mixing with other
orbitals). The singlet Ir orbital (at 4.18 eV) is an al-
most equal superposition of the three Ir Wannier func-
tions shown in Fig. 3b-d, and so it is also |3z2 − r2〉-like,
as expected from the Ir’s trigonal site symmetry and the
DFT DOS shown in the main text.

Ir - t2g

E+

A

E-

Ni

E0+ E0-

E1+ E1-

A

t1

t2

t3

t4

FIG. 4. The nonzero Hamiltonian matrix elements between a
nearest neighbor pair of Ir and Ni ions.

In Fig. 4 and Table II, we sketch the inter-atomic
Hamiltonian elements. The largest hopping t1 is be-
tween the singlet (|A〉) orbitals on each atom. This is in
line with the expectation that in face-sharing polyhedral
geometries, there is usually large direct cation - cation
interactions. This is because (i) in the face-sharing ge-
ometry the Ni and Ir are closer to each other than in
other (corner or edge sharing) geometries, so their d or-
bitals can overlap (which increases direct d-d hopping td)
[10], and (ii) the Ni-O-Ir angle is very far from 180◦, so
there is not a single oxygen p orbital that is extended
towards both the cations (which decreases the oxygen
mediated d-O-d hopping tO). There is also considerable
hopping (t2 and t3) between the Ir doublet orbitals (E∓)

and both of the lower lying, occupied Ni doublet orbitals
(E1∓). Finally, there is also a significant hopping ele-
ment (t4) between the Ir doublet and the higher lying,
partially occupied Ni doublet (E0∓), however, each Ir
E∓ has nonzero hopping to only one of the Ni E0∓. De-
pending on the magnitude of the Hubbard U on either
atom as well, each of these hopping elements will give
rise to magnetic interactions of different strengths. It is
possible to estimate the signs of different terms using the
fact that superexchange between partially filled orbitals
is AFM (since excitation of one electron from one atom
to the other is possible only if the spins are antiparallel),
whereas the superexchange between a fully occupied and
a partially occupied orbital is ferromagnetic (due to the
energy gain via the intra-atomic Hund’s coupling in the
fully occupied orbital’s ion). In the magnetic DFT+U
calculation, all Ir t2g orbitals have 1/3 of a hole, the A
and E0∓ orbitals Ni are fully occupied, and the E1∓ of
Ni are half-occupied. As a result, the t1 and t4 lead to
a ferromagnetic coupling between total Ni spin and the
spins of the A and E∓ orbitals respectively of Ir; and t2
and t3 lead to an antiferromagnetic coupling between the
Ni spin moment and the spins on the E∓ orbitals on Ir.

The spin-orbit coupling of the Ir ion creates a spin-
orbital configuration where the different orbitals have
opposite spins. In the magnetic ground state, where the
magnetic moments of either ion as well as the spin expec-
tation values are along the z axis (parallel to the chain
direction), the Ir |A〉 orbital has opposite spin to the Ir
|E∓〉, as shown in Figs. 6 and 7. In this configuration, the
superexchange processes due to t1 anti-aligns the spins of
Ni ion and the Ir |A〉 orbital, and hence leads to an an-
tiferromagnetic/ferrimagnetic coupling between the two
ions. t2 and t3 also favor anti-parallel alignment of the Ir
and Ni pseudo-spins, and the combination of these three
terms dominate and results in the intra-chain ferrimag-
netic configuration observed in this compound. However,
the sign of this coupling changes when we consider a con-
figuration when the magnetic moments are aligned in the
x-y plane (perpendicular to the chain directions). In this
configuration, the electron in the Jeff = 1/2 orbitals will
be in a state |J1/2, ↑x〉 where its magnetic moment is par-
allel to the x axis. In terms of the Jeff = 1/2 states with
moments along ∓z, this state can be written as in Eq. 3
of the main text:

|J1/2, ↑x〉 =
(
iγ
√

2|A, ↑x〉+ |E+, ↑x〉+ |E−, ↑x〉

+ |E+, ↓x〉 − |E−, ↓x〉
)
/
√

2(|γ|2 + 2) (34)

Note that in our notation, the arrows without subscript
refer to (pseudo-)spin directions along the z axis, so
| ↑x〉 = |↑〉+ | ↓〉) /

√
2, etc. The spin configuration of

the Ir orbitals are different in |J1/2, ↑x〉 than they are
in |J1/2, ↑〉, and as a result, the superexchange processes
that the hoppings t1−4 give rise to change sign. Most im-
portantly, the |A〉 orbital on the Ir ion now has the same
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Ir orbital Ni orbital Coupling between Coupling between
spins of orbitals total pseudo-spins (z)

t1 = 0.35 |A〉 |A〉 FM AFM
t2 = 0.23 |E∓〉 |E1∓〉 AFM AFM
t3 = 0.13 |E∓〉 |E1±〉 AFM AFM
t4 = 0.16 |E∓〉 |E0±〉 FM FM

TABLE II. The hopping amplitudes, the orbitals that they involve on each atom, and the sign of the superexchange that they
give rise to. A FM coupling between the |A〉 orbital on the Ir and the Ni magnetic moment effectively is an antiferromagnetic
coupling between the two atoms if the total magnetic moment of the Ir ion is along the z axis.

spin direction as the total Ir moment, and as a result, the
superexchange process that t1 gives rise to couples the Ir
and Ni moments ferromagnetically. The other hoppings
t2−4 are less important when the magnetic moments are
along the x direction since the Ir |E±〉 orbitals do not
have a spin moment along this direction. The result is a
ferromagnetic coupling when the magnetic moments are
in the x direction, which explains the sign of the J⊥ term
in the main text.

U DEPENDENCE OF MAGNETIC
INTERACTIONS

In order to show that the choice of the U parameters
used in DFT+U calculations does not introduce a qual-
itative error in the results presented in this manuscript,
in Table III we report values of the anisotropic exchange
coupling between nearest neighbor Ni and Ir ions for dif-
ferent values of U on Ni and Ir ions. The strength of the
magnetic interactions depend sensitively on the choice
of U , as expected. However, for all values of of U ’s
we tested, the main point of this study that the near-
est neighbor exchange interaction is radically anisotropic
(the signs of J⊥ and J‖ are opposite to each other) re-
mains valid.

U J‖ (meV) J⊥ (meV)
UNi = 5 eV 15.0 -6.3
UIr = 2 eV
UNi = 5 eV 16.9 -6.4
UIr = 1 eV
UNi = 4 eV 19.0 -8.4
UIr = 2 eV
UNi = 4 eV 24.1 -10.8
UIr = 1 eV
UNi = 3 eV 37.4 -18.4
UIr = 1 eV
UNi = 2 eV 26.3 -2.6
UIr = 1 eV

TABLE III. The values of J‖ and J⊥ for different values of
Hubbard U on Ni and Ir ions.

SINGLE ION ANISOTROPY

As discussed in the main text, an anisotropic exchange
model with additional strong single ion anisotropy (SIA)
on the Ni ion was used to explain the magnon spectrum
of Sr3NiIrO6 in Ref. [16]. The Ni2+ cation in Sr3NiIrO6

has its d orbitals split into 1+2+2, and has 2 holes on
the higher energy doublet. This configuration leads to
a quenched orbital angular momentum. On the other
hand, the crystal field splitting of Ni is not very large
(a fact that is usually valid for trigonal prismatic co-
ordination environments, but can also be deduced from
the Wannier model), and hence this quenching cannot
be very strong. As a result, even though we don’t expect
SIA to be the dominant source of anisotropy, we cannot
preclude that it has a measurable effect.

In this section, we fit different models to the data re-
ported in Fig. 4 of the main text, to show that a model
with SIA can also explain the energy values for differ-
ent magnetic configurations, obtained from first princi-
ples calculations. We consider three models:

• Model I: Anisotropic exchange without SIA. (Fig.
5a) This is the minimal model that we used in the
main text.

• Model II: Isotropic exchange with SIA on Ni. (Fig.
5b) This model considers the interaction between

Ni and Ir to be ordinary Heisenberg type (∼ ~Si ·~Sj).
This model has the same number of parameters as
Model I.

• Model III: Anistropic exchange with SIA on Ni.
(Fig. 5c) This is the most general model that takes
into account both the interaction and the SIA on
Ni as sources of anisotropy.

Within the error bars of DFT, all of these three models
provide fits to the data of comparable quality. The best
fit is obtained by model III, which has the largest number
of fitted parameters. As a result, the energy values we
obtain from DFT alone are not sufficient to conclusively
differentiate between different models and say that the
SIA does not have a considerable effect.

The character of the magnetic configurations we could
stabilize in DFT, on the other hand, strongly suggests the
presence of a radically anisotropic exchange. We could
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FIG. 5. Energy as a function of the angle between the mag-
netic moments of nearest-neighbor atoms, as obtained from
first principles calculations, and different models fitted to the
first principles data. (a) Model I, anisotropic exchange (same
as in the main text). (b) Model II, isotropic exchange with
SIA on the Ni ion, (c) Model III, anisotropic exchange with
SIA on the Ni ion.

only stabilize states with (i) anti-parallel magnetic mo-
ment components along the c axis, and (ii) parallel mag-
netic moment components on the ab plane. We could
not stabilize the ferrimagnetic state with anti-parallel
moments in the ab plane. This is the reason that in
the main text, we use only a model with anisotropic ex-
change, which is the model with smallest number of pa-
rameters that can both reproduce the energy values cal-
culated, and explain the particular magnetic states that
could be stabilized.

Obtaining both the magnitude of anisotropic exchange
and SIA was unfortunately not possible, because the
magnetic configurations we could stabilize, which had
90◦ − φNi ≈ φIr − 90◦ (Fig. 4b of main text), render
a model with both anisotropic exchange and SIA under-
determined, and it is not possible to find a unique fit. For
example, even though the fitted data looks almost identi-
cal in Fig. 5 b and c for models I and II, the magnitudes
of the SIA terms for them are quite different; 2.0 meV
and 1.4 meV respectively. The difference between the
J‖ values from model I and III are even more different;
19.5 meV and 9.3 meV respectively. A more advanced
first principles method that either utilizes constrained

magnetic moments [18] or Green’s functions approaches
[19] is required to be able to extract the magnitude of
the SIA in this compound.
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