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1 Structural Characterization of NdAlSi18

We characterized the structure of NdAlSi using powder x-ray diffraction, single crystal neutron19

diffraction, and Energy-Dispersive X-ray spectroscopy (EDX). The results are summarized in20

Table. S1. Both neutron diffraction and EDX measurements detected Si and Nd vacancies. The21

noncentrosymmetric I41md (#109) and centrosymmetric I41/amd (#141) space groups are indis-22

tinguishable with X-ray diffraction, and their contrast in neutron diffraction is small. We thus used23

second harmonic generation (SHG) measurements to distinguish between these space group. SHG24

is sensitive to a center of inversion in the unit cell. SHG is negligible in a centrosymmetric space25

group. The large SHG signal reported in the main text points to the noncentrosymmetric space26

group I41md (#109) and is inconsistent with the centrosymmetric space group I41/amd (#141).27

The SHG data were fit to functions appropriate to four different experimental configurations:28

1) incoming polarization rotating, output polarizer fixed with polarization parallel to the crystalline29

[010] axis, denoted IH(φ); 2) incoming polarization rotating, output polarizer fixed with polarization30

parallel to the [101] axis, denoted IV (φ); 3) incoming polarization rotating, outgoing polarizer31

rotated by 0◦ relative to the incoming polarization, denoted I‖(φ); and 4) incoming polarization32

rotating, outgoing polarizer rotated with polarization axis at 90◦ relative to the incoming polarization,33

denoted I⊥(φ).34

In the electric dipole approximation, the mathematical forms of these various responses for
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the [101] crystal face in the I41md space group (C4v point group) are given by

Ieee‖ (φ) =
1

32
cos2(φ) [(−2χeeexxz − χeeezxx + χeeezzz) cos(2φ) + 6χeeexxz + 3χeeezxx + χeeezzz]

2 (1)

Ieee⊥ (φ) =
1

8
sin2(φ)

[
(−2χeeexxz + χeeezxx + χeeezzz) cos2(φ) + 2χeeezxx sin2(φ)

]2 (2)

IeeeH (φ) =
1

8

[
(2χeeexxz + χeeezxx + χeeezzz) cos2(φ) + 2χeeezxx sin2(φ)

]2 (3)

IeeeV (φ) = 2 [χeeexxz sin(φ) cos(φ)]2 (4)

The data were fit to expressions [1-4] accounting for a rotation of the sample axes relative to35

the laboratory x-axis. This resulted in excellent fits to the data, as seen in Fig. S1. The SHG36

susceptibilities extracted from the fits are χeeexxz = − 115 ± 3 pm/V, χeeezxx = 94 ± 2 pm/V, and37

χeeezzz = 564 ± 5 pm/V. The competing space group assignment I41/amd (point group D4h) is38

centrosymmetric and thus should not produce as strong of a SHG response as detected here.39

2 Neutron scattering from NdAlSi40

We determined the spin polarization of the ferromagnetic (FM) k = (0, 0, 0) magnetic structure of41

NdAlSi by acquiring rocking scans at 17 symmetrically non-equivalent k = (0, 0, 0) Bragg positions42

covering both the (h, 0, l) and (h, h, l) planes. The nuclear and magnetic contributions to the Bragg43

diffraction were distinguished by collecting rocking scans within both the paramagnetic phase at44

10 K and in the commensurate phase at 1.6 K. The Cooper-Nathans formalism was used to calculate45

the resolution function of our triple-axis experiments 1 and convert the integrated intensities of46

rocking scans to fully Q-integrated Bragg intensities. Symmetry analysis reveals three possible47

irreducible representations (irreps) to describe the k = (0, 0, 0) magnetic structure below Tc1 2: Γ148
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and Γ3 that respectively correspond to ferromagnetic and antiferromagnetic structures where the49

spins are oriented along the c axis, and Γ5 that describes structures where the spins lie in the ab50

plane. The real parts of the basis vectors associated to each irrep are shown in Fig. S2A. Generally,51

the k = (0, 0, 0) spin structure can be described as any linear combinations of all the basis vectors52

within the three irreps. However, as discussed in the main text, Γ3 and Γ5 respectively produce53

magnetic Bragg reflections at Q = (1, 1, 0) and Q = (0, 0, l) positions that were not observed54

in our diffraction experiments. We used the Nd3+ f -electron form factor to refine the magnetic55

structure of NdAlSi 3. The final refinement of the neutron diffraction data is plotted in Fig. S3A56

and it corresponds to the Γ1 structure with µFM = 1.1(2)µB. We note that we also collected 1057

rocking scans at positions corresponding to the k = (3δ, 3δ, 0) component of the incommensurate58

spin structure of NdAlSi, and we found that the structure factor of this component matches that of59

the commensurate k = (0, 0, 0) component.60

We also determined the spin polarization of the antiferromagnetic (AFM) components of61

the spin structure in both the commensurate (δ = 0) and incommensurate phases (δ 6= 0). To do62

so, rocking scans at 46 symmetrically nonequivalent Bragg positions were collected within the63

manifold of Bragg peaks Q+ = G ± (1
3

+ δ, 1
3

+ δ, 0) and Q− = G ± (2
3

+ δ, 2
3

+ δ, 0) for both64

T = 1.6 K and 6 K. Here G refers to all nuclear allowed Bragg peaks. The symmetry analysis of65

the commensurate δ = 0 phase reveals six possible basis vectors divided into two different irreps66

(Γ1 and Γ2) 2, with real parts as shown in Fig. S2B. The two Nd ions located at r1=(0,0,0) and67

r2=(1/2,0,1/4) in the chemical unit cell have spins anti-parallel to each other for spin structures68

described by ~ψ1+ ~ψ2, ~ψ4- ~ψ5, and ~ψ3. These anti-parallel spin structures lead to strong Q− peaks69
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and no intensity at Q+ peaks. On the other hand, spin structures described by ~ψ1- ~ψ2, ~ψ4+ ~ψ5, or ~ψ670

have parallel Nd spins at r1 and r2. This situation leads to strong Q+ peaks and no intensity at Q−71

peaks. As seen in Fig. S3B, we observed intensities at Q− positions that are two order of magnitude72

greater than at Q+ so the spin structure is predominantly of the anti-parallel variety. However, since73

we do detect weak intensity at Q− positions there is also a weak common mode spin component for74

sites r1 and r2, which originates from an in-plane spin component µxy. The reduced mean squared75

deviation between model and data χ2 is shown as a function of in-plane component µxy and its76

direction θ relative to [110] in Fig. S3C. The minimum χ2 arises for θ=90°, which is the direction77

transverse to the ordering vector. The final refinement is shown in Fig. S3A where the best solution78

was obtained with ~ψ1=- ~ψ2 = 0.14(2)µB and ~ψ3=3.8(4)µB. Finally, the relative intensities of the79

k = (2
3

+ δ, 2
3

+ δ, 0) and k = (1
3

+ δ, 1
3

+ δ, 0) Bragg peaks within the incommensurate phase are80

indistinguishable from those of the Ising-like commensurate phase so no spin reorientation was81

observed above Tinc. As seen in Fig. S3D, the χ2 refinement of the in-plane component within the82

incommensurate phase is similar to the one obtained for the commensurate phase.83

For the AFM component, the spatial variation of the Nd moments is expressed as:84

µAFM(r) = 1.9(2)(exp (i[(
2

3

2

3
0) · r + θ]) + exp (−i[(2

3

2

3
0) · r + iθ])). (5)

This expression includes both the k = (2
3
, 2

3
, 0), and k = ( 2̄

3
, 2̄

3
, 0) components as required for85

the magnetic moment to be real for all r. While the diffraction pattern is independent of θ, the86

real space spin structure does depend on θ. For θ = π the spin structure can be described as87

(0-up-down) where 0 means there is no net magnetization on this site, whereas a θ = 0 phase88

shift leads to an (up-down-down) spin structure. Within the commensurate phase, once the FM89
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component of the structure is added (µFM = 1.1(2)µB), θ = 0(4)° is the only phase that allows for90

all the Nd moments to not exceed the 2.9(1)µB saturated moment determined by the magnetization91

data. The intensities of the k = (2
3

+ δ, 2
3

+ δ, 0) Bragg peaks increase above Tinc. A phase shift92

of θ = 12(5)° for the (2
3
, 2

3
, 0) and (1

3
, 1

3
, 0) components is needed to respect the same condition93

within the incommensurate phase.94

3 Electronic band structure of NdAlSi95

In this section, we present a detailed characterization of the band structure of NdAlSi for the96

different magnetic phases discussed in the main manuscript. We first analyze the band structure97

without spin-orbit coupling (SOC) for which the nonmagnetic case is shown in Fig. S4A. For these98

calculations, the Nd f states were kept in the core. Linear crossings appear along the high-symmetry99

lines of the first Brillouin zone. The inclusion of ferromagnetism in the calculation, now including100

the Nd f orbitals in the valence and applying an on-site f Hubbard U of 6 eV, induces a spin-101

exchange splitting between majority and minority spin channels as shown in Fig. S4B. Just like102

the nonmagnetic case, multiple linear crossing points appear along the high-symmetry direction.103

The majority and minority spin channels are colored in blue and red respectively. The majority and104

minority spin bands have a simple crossing along the Γ−X line, while the pattern of crossings is105

more complex along S ′−Z, with a tilted crossing very close to the Fermi level, which is in contrast106

to the nonmagnetic counterpart in Fig. S4A.107

We now investigate the band structure of NdAlSi including SOC, starting with the nonmagnetic108
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band structure shown in Fig. S4C. Because the f orbitals are frozen in the core, they play no role109

in the active states near the Fermi energy. In this situation, a tiny density of states of N(EF ) =110

0.0012 states/eV-cell appears at the Fermi level, composed mainly of Nd d, As s and p, and Si s111

and p orbitals. While there are several type-I linear band crossings near the Fermi level along the112

high-symmetry lines in the BZ without SOC (Fig. S4A), the presence of SOC in the nonmagnetic113

calculation causes the linear band crossing points, highlighted by the red boxes in Fig. S4C, to be114

gapped out along the high-symmetry directions. Instead, Weyl points now appear slightly off the115

high-symmetry planes in the BZ. The Wannier90 4 based tight-binding calculation confirms that116

there are 40 resulting Weyl nodes in the entire BZ, and the locations of the Weyl nodes are plotted117

in Figs. S4D-E for the top and side views of the BZ, respectively. Four pairs of nodes denoted W1118

are located near the zone-boundary S points, with two pairs near the mx and two near the my mirror119

planes shown by red dashed lines. Four more pairs named W2 lie above and below the kz = 0 plane,120

also near the mx and my planes, but now in the interior of the BZ, shown by dotted lines. Another121

twelve pairs of Weyl nodes denoted W3 are arranged around the mxy and mxȳ mirror planes, shown122

by dashed green lines. The colors of the Weyl nodes reflect their chiralities, with red and blue dots123

representing nodes with chiralities +1 and −1 respectively.124

The band structure calculation for the FM phase of NdAlSi including SOC are presented125

in the main manuscript (Fig. 5). As compared to the nonmagnetic case, the Weyl nodes W1 near126

the kz = 0 plane are unaffected by the magnetization along [001], but the nodes lying off the kz127

plane along the S ′ − Z direction undergo further splitting around the mx and my mirror planes.128

Correspondingly we defined two subtypes: W2 nodes close to the mx and my mirror planes, and129
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W’2 nodes away from them. Furthermore, splitting of the W3 nodes along the mxy and mxȳ mirror130

planes is observed, which gives rise to new pairs of Weyl nodes categorized into three types: W3131

nodes close to the kz = 0 plane, W’3 off the kz = 0 plane, and W”3 close to the kz = 0 plane132

but away from the location of the W3 nodes. To visualize their dispersions, we plot the projected133

band structure in the vicinity of some representative Weyl nodes in Fig. S5. Figure S5A shows134

the projected band structure plotted along the ky direction with the Fermi level coinciding with135

the Weyl nodes of type W1 with positive chirality, located 98.6 meV above the charge-neutrality136

Fermi level. The corresponding two-dimensional Fermi surface projected in the kx − ky plane is137

shown in Fig. S5B. Similarly, the band structure for a Fermi level aligned with Weyl node W2138

is projected along ky in Fig. S5C, and the same is done for W’2 in Fig. S5E. The Fermi surfaces139

projected in the kx − ky plane at these energy positions are shown in Fig. S5D and F respectively.140

The cyan-colored circles indicate the Weyl node positions for which the band structures are plotted.141

The band structure in Fig. S5E, around the W’2 nodes, appear to be of type II (hole and electron142

pocket touch each other at the node). The Weyl node W2 in Fig. S5C is at 9 meV and W’2 in Fig. E143

is at 72 meV above the charge-neutrality Fermi level. Finally, the band structures with Fermi level144

at the energy positions of the W3, W’3 and W”3 nodes are shown in Fig. S5G, I and K respectively145

with the corresponding Fermi surfaces projected in the kx − ky plane shown in Fig. S5H, J and L.146

The W3, W’3 and W”3 nodes are at 41 meV, 25 meV, and 48 meV above the charge-neutrality Fermi147

level, respectively.148

The computed band structure for the commensurate AFM d-u-u phase of NdAlSi (including149

SOC) is shown in Fig. S4F, from which 54 Weyl nodes are predicted. The electronic state appears150
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to have a semimetallic character whose details are extremely sensitive to the structural parameters151

of NdAlSi, which we know from our neutron diffraction experiment is further complicated by the152

presence of Si and Nd vacancies on the order of a few % (Table. S1). Thus, a robust characterization153

of the Weyl nodes in the d-u-u phase requires further analysis that is beyond the scope of the present154

manuscript.155

4 Quantum Oscillations, Determination of EF , and nesting vector in NdAlSi156

In the main text, we have determined the Fermi surface of NdAlSi in its ferromagnetic phase by157

comparing the quantum oscillations (QOs) observed in our high-field resistivity measurements wih158

DFT. Fig. S6A shows the resistivity of NdAlSi measured up to 35 T, where QOs are apparent at159

high fields. A smooth background was fitted to the data for fields above the metamagnetic (MM)160

transition, which is marked by a jump in resistivity. To isolate the QOs, we subtracted a smooth161

background for each temperature. The resulting resistivity data are shown in Fig. S6B. These162

data show that the ∆R = 0 axis passes through the center of the oscillations, and a monotonic163

decrease of the oscillatory amplitudes at all fields. Both observations justify our choice of the164

smooth background.165

Next, we performed a fast Fourier transformation (FFT) of the data in Fig. S6B. The resulting166

FFT spectrum is plotted in Fig. S6C. Based on this spectrum, three distinct frequencies Σ, β, and γ167

are identified, together with the second harmonic of the β frequency (2β). Note that the β frequency168

shifts downward as the temperature increases, which agrees with the data presented in the main169

9



text (Fig. 4C). We also determined the effective masses for the three Fermi pockets associated with170

the QOs peak at Σ, β, and γ. To do this, we fit the standard Lifshitz-Kosevich (LK) formula 5, 6 to171

their QOs amplitudes as a function of temperature (Fig. S6D). The frequencies and effective masses172

extracted from Fig. S6C and D are listed in Table S2.173

Having determined the experimental QOs frequencies, we now turn to the theoretical QO174

frequencies from DFT calculations. We determined EF by matching the experiment with the theory.175

Each EF corresponds to a specific Fermi surface, which generates a set of QO frequencies. We176

start from the EF determined by DFT (EDFT
F = 6.7473 eV , the neutrality point), adjust the EF177

below and above EDFT
F , compute QO frequencies for different values of EF until the calculated178

QO frequencies match with those we observed in the high-field experiment. For EF being 30 meV179

and 33 meV above EDFT
F , the QO frequencies comparable to Σ, β and γ are listed in Table S2. As180

shown in Table S2, both the theoretical frequencies and effective masses are in decent agreement181

with the experimental values. We thus choose EF = EDFT
F + 30(3) meV as the appropriate EF for182

the FM phase.183

5 The imprint of itinerant electrons’ chirality on magnetic order184

The defining property of Weyl electrons is their chirality – a Weyl electron’s spin and momentum185

are strongly correlated by the spin-orbit coupling. Here we argue that the magnetic order in NdAlSi186

exhibits features that are uniquely attributable to such spin-momentum correlations. Specifically,187

it is hard to explain the small tilting of the magnetic moments from the easy axis in NdAlSi188
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without the Dzyaloshinskii-Moriya (DM) and Kitaev-type RKKY interactions, which both require a189

chiral bias in the spin currents of itinerant electrons. The crystal fields that generate the easy-axis190

spin anisotropy, and the Heisenberg RKKY interactions from conventional Fermi surfaces, would191

by themselves produce a pristine Ising-like magnetic order (a non-chiral spin anisotropy of spin192

interactions could introduce a competition with the easy axis, but a non-trivial resolution of such a193

competition would be a qualitatively different kind of magnetic order, e.g. easy-plane).194

The theory of RKKY interactions in magnetic Weyl semimetals 7 predicts the existence of195

specific DM and Kitaev interactions between the local moments Si at lattice sites separated by196

rij = ri − rj:197

HDM =
∑
ij

fDM(rij) r̂ij(Si × Sj) (6)

HK =
∑
ij

fK(rij) (Sir̂ij)(Sj r̂ij) .

The functions fDM and fK decrease algebraically with the distance |rij| and implement the sign-198

changing spatial modulations of the RKKY interaction strength. The modulations are controlled by199

the wavevector distance ∆Q between a pair of Weyl nodes, and also by a momentum cut-off. Both200

types of interactions have an extended range beyond the nearest-neighbor sites, and correlate the201

spin n̂ of local moments with their separation direction r̂ij .202

We carried out Monte Carlo simulations of a classical-spin NdAlSi model that contains an203

approximate but faithful representation of the Heisenberg, DM and Kitaev interactions predicted by204
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this theory. The full simulated model is205

H =
∑
ij

fH(rij) n̂in̂j +
∑
ij

fK(rij) (n̂ir̂ij)(n̂j r̂ij) +
∑
ij

fDM(rij) r̂ij(n̂i × n̂j)−K
∑
i

(ẑn̂i) .

K is the single-site spin anisotropy scale, and the modulated functions of rij → r = (x, y, z) which206

contain the other couplings are:207

fH(r) = −
[
JH0 + JHQ cos

(
2πx

3

)
cos

(
2πy

3

)]
cos

(
π|r|
2ρ

)
θ(ρ− |r|) δz,0 −

∑
R

JHc(|R|) δr,R

fDM(r) = −
[
JDM0 + JDMQ cos

(
2πx

3

)
cos

(
2πy

3

)]
sin

(
π|r|
ρ′

)
θ(ρ′ − |r|) δz,0 −

∑
R

JDMc(|R|) δr,R

fK(r) = −
[
JK0 + JKQ cos

(
2πx

3

)
cos

(
2πy

3

)]
sin

(
π|r|
ρ′

)
θ(ρ′ − |r|) δz,0 −

∑
R

JKc(|R|) δr,R

All two-spin interactions within a single ab plane (z = 0) are parametrized by two couplings, one208

for a “uniform” component (0) and another for the component (Q) modulated at the inter-node209

wavevector Q which we assume to be
(
±2π

3
,±2π

3
, 0
)

for simplicity. The parameters ρ = 3, ρ′ = 4210

capture the extended range of these interactions. Note that only the Heisenberg interaction (H)211

is strongest at shortest distances. The couplings between different ab crystal layers are denoted212

by the index c, and the inter-layer site separations are labeled by R. The model includes the213

nearest-neighbor Heisenberg couplings up to the fourth adjacent layer, and up to the first adjacent214

layer for the weaker DM and Kitaev couplings.215

The Monte Carlo calculations based on the simplest Metropolis algorithm and lattice sizes216

with 153 and 303 sites quickly reveal that the dominant Heisenberg couplings JHQ ≥ JH0 > 0 and217

the anisotropy K > 0 stabilize the type of magnetic order seen experimentally in NdAlSi. The218

ferromagnetic inter-layer couplings then become frustrated and the Metropolis algorithm is unable219
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to find a long-ranged order in the c-axis direction. This frustration should be resolved by the laterally220

extended-range RKKY interactions which we didn’t model at this time. The spins are perfectly221

aligned with the c axis (z-direction) in the absence of DM and Kitaev interactions.222

Turning on the extended-range DM or Kitaev interactions within the ab-planes was found to223

have no visible effect on the magnetic order. Spin canting away from the c axis is here precluded by224

the easy-axis anisotropy: the DM interactions would favor a spin “spiral”, but resetting this spiral225

to the easy-axis extinguishes any local gains from the DM interactions and leaves behind only an226

energy cost of canting. Similarly, the in-plane Kitaev interactions do not produce enough gain by227

canting against the energy loss through the spin anisotropy. The DM and Kitaev interactions applied228

on the inter-layer lattice bonds are a different story – they introduce spin canting shown in Fig.S7,229

helped by the zigzag lattice bond arrangement along the c direction which breaks the inversion230

symmetry. The inter-layer Kitaev interactions are found to produce canting which is not consistent231

with the experiment, but the DM interactions with a negative coupling constant cant the spins in a232

manner consistent with the observed order, Fig.S7B.233
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Ions x y z Occ U11 U22 U33

Nd 0 0 0 0.96(3) 0.0039(1) 0.0028(1) 0.0019(1)

Al 0 0 0.5841(6) 1.0(2) 0.0070(1) 0.0019(1) 0.0002(8)

Si 0 0 0.4182(5) 0.94(3) 0.0029(1) 0.0026(1) 0.0019(1)

Table S1: Structural parameters of NdAlSi. The x, y, and z positions of the Nd, Al and Si ions

are tabulated with their occupation number (Occ) and their anisotropic displacement parameters

(U11, U22 and U33). These parameters were obtained from structural refinement of the single crystal

neutron diffraction data assuming the I41md (#109) space group with a = b = 4.1972(1) Å, and

c = 14.4915(6) Å refined at T = 100K.
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Figure S1: Second-harmonic generation data in NdAlSi. The second-harmonic generation

(SHG) data for incoming wavelength 1500 nm, outgoing wavelength 750 nm, and fits to bulk

electric dipolar SHG in the C4v point group as given by Eqs. [1-4] for (A) I‖, (B) I ⊥, (C) IV , and

(D) IH
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Figure S2: Symmetry analysis for NdAlSi. The real parts of the basis vectors for the k = (000)

and k = (2
3

2
3
0) spin structures within space group 109 are shown in A and B respectively.

16



Figure S3: Magnetic structure refinement of NdAlSi. The observed magnetic structure factor as

a function of the calculated structure factor for both the FM k = (000) and the AFM k = (2
3
, 2

3
, 0)

components are plotted in A. Low T = 1.6 K rocking scans at the Q = (2
3
, 2

3
, 0) and Q = (1

3
, 1

3
, 0)

Bragg positions are compared in B. Note that φ is the rocking angle offset from constructive Bragg

interference. In C, we plot the χ2 obtained from refining the commensurate spin structure of NdAlSi

as a function of the in-plane component µxy and its orientation θ relative to [110]. The same map is

provided for the incommensurate phase in panel D.
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Figure S4: Band structure of NdAlSi from first-principles calculations. Paramagnetic state in

the PBE approximation, with Nd f states in the core for panel A, and ferromagnetic state in the

PBE+U approximation, with Nd f states in the valence for panel B. Panel C is the paramagnetic

PBE+SOC band structure where the positions of the Weyl nodes in the first Brillouin zone are

shown in panel D and E for this calculation. Three types of Weyl nodes W1, W2 and W3 are marked.

The mirror planes are shown by dotted lines. Panel F is the PBE+SOC band structure calculation

for the u-d-d phase of NdAlSi.
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Figure S5: Band structures, Fermi surfaces, and Weyl node positions as calculated within

PBE+U+SOC. (A-B) Weyl nodes W1, (C-D) Weyl nodes W2. (E-F) Weyl nodes W’2. (G-H) Weyl

nodes W3. (I-J) Weyl nodes W’3. (K-L) Weyl nodes W”3.
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Figure S6: High-Field Quantum Oscillations in NdAlSi. Resistivity measured up to 35 T at

various temperatures with field along the c-axis in A. Shubnikov–de Haas oscillations appear

and grow in amplitude as the field increases. SdH oscillations as a function of 1/H at different

temperatures in B. The change in the oscillation frequencies can be seen from the shift of peak

positions as the temperature increases. The FFT spectrum based on the oscillations in panel B is

reported in C. Three distinct Fermi pockets are identified: Σ, β, and γ, and their frequencies at

0.316 K are 40 T, 66 T, and 101 T respectively. The peaks marked by 2β (F2β = 135 T at 0.316 K)

are identified as the second harmonics of β. Note that Σ frequency is different from α frequency

(Fα = 20 T at T = 1.8 K) in the d-u-u phase. The effective masses extracted for each Fermi pocket

using a standard Lifshitz-Kosevich formula are reported in D.
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Sources FΣ (T) m∗Σ (me) Fβ (T) m∗β (me) Fγ (T) m∗γ (me)

QO 40(5) 0.11(2) 66(5) 0.15(1) 101(5) 0.20(1)

DFT, +30 meV 34(1) 0.21(1) 81(1) 0.14(1) 103(4) 0.20(3)

DFT, +33 meV 40(1) 0.23(1) 78(1) 0.14(1) 98(4) 0.20(3)

Table S2: Comparison of Quantum Oscillation (QO) Frequencies. The frequencies of the Σ,

β, and γ pockets derived from resistivity measured up to 35 T, are listed with the results from the

DFT calculations. Σ is identified to be an electron pocket, while β and γ are hole pockets. The

“+XX meV” in the column “Sources” means the shift in EF from the DFT-determined EF for that

particular calculation. As a result of such shift, the frequencies change between the calculations

“DFT, +30 meV” and “DFT, +33 meV”. The error in EF is determined to be 3 meV based on the

change in EF from matching Fγ to FΣ.
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(a) (b)

(c) (d)

(e) (f)

Figure S7: NdAlSi spin configurations obtained by Monte Carlo. The left and right columns

show the ẑSz and x̂Sx + ŷSy components respectively of the local moments on the ab-plane lattice

sites (in a layer surrounded by a few other layers with the same magnetic order). The non-zero

couplings of the model (7) are JH0 = 0.4, JHQ = 0.7, JHc1 = 0.2, K = 1, and one of the DM or

Kitaev couplings on the nearest-neighbor inter-layer bonds: (a-b) JDMc = −0.6, (c-d) JDMc = +0.6,

(e-f) JKc = 0.6.
22



234 1. Cooper, M.J.T, Nathans, R The resolution function in neutron diffractometry. I. The resolution235

function of a neutron diffractometer and its application to phonon measurements. Acta Cryst.236

23(3), 357-367 (1967). URL https://doi.org/10.1107/S0365110X67002816.237

2. Rodriguez-Carvajal, J. Fullprof. in satellite meeting on powder diffraction of the XV congress238

of the IUCr 127, (1990).239

3. S. W. Lovesey, Theory of neutron scattering from condensed matter Vol 2, Clarendon Press,240

Oxford, 1984241

4. Pizzi, G., et al. Wannier90 as a community code: new features and applications. Journal of242

Physics: Condensed Matter 31.16, 165902 (2020). URL 10.1088/1361-648x/ab51ff.243

5. Shoenberg, D. Magnetic oscillations in Metals. Cambridge University Press,(2009).244

6. Willardson, R. K., Beer, A. C. Semiconductors and Semimetals. Academic Press 1, (1967).245
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