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I. SPIN TOROIDIZATION IN LINEAR RESPONSE THEORY

In this section we derive the spin toroidization using linear response theory, similar to the calculation of the orbital
magnetization in Phys. Rev. Lett. 99 197202 (2007). Without loss of generality, we only calculate the z-th component
of the spin toroidization.

As given by Eq. (3) in the main text, the spin toroidization is the response of the free energy density to an external
Zeeman field. Consider the perturbation due to the following Zeeman field

B = (h/2q)(sin(qx)ŷ − sin(qy)x̂) , (1)

where h is small. This Zeeman field has a curl

(h/2)(cos(qx) + cos(qy))ẑ , (2)

which reduces to h in the limit q → 0. Note that the symmetric part of the derivative of the Zeeman field (1) is
∂xBy + ∂yBx = (h/2)(cos(qx) − cos(qy)), which vanishes in the limit q → 0. As a result, the response of the free
energy density to this Zeeman field in the limit q → 0 is purely due to its curl.

At zero temperature, the free energy density reads F̂ = Ĥ − µN̂ . With the above Zeeman field, the change in F
can be divided into four parts:

δF (r) =
∑
nk

(δfnk)ψ?
nkF̂0ψnk + fnkψ

?
nkB · ŝψnk + fnk(δψ?

nkF̂0ψnk + ψ?
nkF̂0δψnk) . (3)

Here ψnk = eik·r|un(k)〉 is the Bloch function of the unperturbed Hamitonian Ĥ with εnk being the corresponding

eigenenergy, fnk is the Fermi function, and F̂0 is the unperturbed part of the free energy density.
The spin toroidization can be obtained from the appropriate Fourier component of δF (r):

Tz = − 2

V h

∫
dx δF (r)(cos(qx) + cos(qy)) . (4)

We first calculate the contribution from the y-th component of the Zeeman field. The perturbation to the wave
function can be easily calculated:

δψnk = −hgµB

4ih̄q

[∑
n′

ei(k+q)·r|n′k + q〉〈n′k + q|ŝy|nk〉
εnk − εn′k+q

− (q → −q)

]
. (5)

Here q = qx̂, and |nk〉 is short for |un(k)〉.
The first two terms in Eq. (3) cancel each other. The last two terms read

Tz =
gµB

4ih̄q

∑
nn′k

(εnk − µ)fnk

(
〈nk|n′k + q〉〈n′k + q|ŝy|nk〉

εnk − εn′k+q
− (q → −q)

)
+ c.c.

=
gµB

4ih̄q

∑
nn′k

[(εnk − µ)fnk − (εn′k+q − µ)fn′k+q]
〈nk|n′k + q〉〈n′k + q|sy|nk〉 − c.c.

εnk − εn′k+q
(6)

Now we take the limit q → 0 in the above expression. Terms in Eq. (6) with n 6= n′ reads

Tz1 = −gµB

4h̄

∑
n6=n′,k

[(εnk − µ)fnk − (εn′k − µ)fn′k]
(Ax)nn′(ŝy)n′n + c.c.

εnk − εn′k
, (7)
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where Ann′ = 〈nk|i∂k|n′k〉 is the interband Berry connection and sn′n = 〈n′k|ŝ|nk〉 is the interband element of the
spin operator. Terms in Eq. (6) with n = n′ reads

Tz2 =
gµB

4ih̄

∑
nk

fnk(〈∂xnk|sy|nk〉+ 〈nk|∂x|nk〉〈nk|ŝy|nk〉 − c.c.)

− gµB

4ih̄

∑
nk

(εnk − µ)f ′nk(〈∂xnk|ŝy|nk〉 − 〈nk|∂x|nk〉〈nk|ŝy|nk〉 − c.c.)

=
gµB

4h̄

∑
n 6=n′,k

fnk((Ax)nn′(ŝy)n′n + c.c.) . (8)

Note that to get the last equality in the above equation, we use the fact that at T = 0, f ′nk = δ(εnk − µ).
The total contribution from the y-th component of the Zeeman field is

Tz = Tz1 + Tz2 = −gµB

4h̄

∑
n 6=n′,k

(εn′k − µ)
fnk − fn′k

εnk − εn′k
((Ax)nn′(ŝy)n′n + c.c.) . (9)

We can also calculate the contribution from the x-th component of the Zeeman field. The final result reads

Tz = −gµB

4h̄

∑
n 6=n′,k

(εn′k − µ)
fnk − fn′k

εnk − εn′k
((Ax)nn′(ŝy)n′n − (x↔ y) + c.c.) (10)

= −gµB

2
Im

∑
n 6=n′,k

(εn′k − µ)
fnk − fn′k

(εnk − εn′k)2
(vnn′ × sn′n)z , (11)

where vnn′ = 〈nk|v̂|n′k〉 is the interband element of the velocity operator. This is the multi-band formula for the
spin toroidization. It reduces to Eq. (11) in the main text for a single band.

II. WANNIER REPRESENTATION

In this section we express the spin toroidization in terms of the Wannier functions. Denote by |w0(R,B)〉 the

Wannier function located at the lattice site R from band 0, derived from the local Hamiltonian Ĥc. The periodic part
of the Bloch function |ũ0〉 is given by

|ũ0〉 =
1√
N

∑
R

e−ik·(r−R)|w0(R,B)〉 , (12)

where N is the number of unit cells.
We begin with the spin toroidization formula in Eq. (10), which can be recast as

T = −gµB

4h̄

∑
n 6=0

∫
dk

(2π)3
(A0n × sn0 + c.c.)− gµB

2h̄

∑
n 6=0

∫
dk

(2π)3
εn − µ
ε0 − εn

(A0n × sn0 + c.c.) . (13)

The first term in Eq. (13) can be expressed in terms of |ũ0〉,∑
n 6=0

A0n × sn0 + c.c. = −i〈∂kũ0| × ŝ|ũ0〉|B→0 + i〈∂kũ0|ũ0〉|B→0 × 〈ũ0|ŝ|ũ0〉|B→0 + c.c. , (14)

where we have used the identity: |ũ0〉〈ũ0|+
∑

n 6=0 |ũn〉〈ũn| = I. Inserting Eq. (12) into the above expression yields

t1 =− gµB

4Nh̄

∑
R,R1

∫
dk

(2π)3
eik·(R1−R)〈w0(R,B)|(r −R)× ŝ|w0(R1,B)〉|B→0 + c.c.

+
gµB

4N2h̄

∑
R,R1,R2,R3

∫
dk

(2π)3
eik·(R1−R+R3−R2)〈w0(R,B)|r −R|w0(R1,B)〉|B→0

=− gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉|B→0

+
gµB

2h̄Vcell

∑
R1

〈w0(B)|r|w0(R1,B)〉|B→0 × 〈w0(R1,B)|ŝ|w0(B)〉|B→0 . (15)
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Here |w0(B)〉 = |w0(R,B)〉 with R = 0.

Next we focus on the second term of Eq. (13). Using −gµB ŝ/h̄ = ∂BĤc, we have,

−gµBsn0/h̄ = 〈ũn|∂BĤc|ũ0〉|B→0 = (ε̃0 − ε̃n)|B→0〈ũn|∂Bũ0〉|B→0 , (16)

and

−
∑
n 6=0

gµB

h̄

εn − µ
ε0 − εn

(A0n × sn0 + c.c.) = −i〈∂kũ0| × (Ĥc − µ)∂B|ũ0〉|B→0 + c.c. . (17)

The second term in Eq. (13) then becomes

t2 =
1

2

∫
dk

(2π)3
(−i〈∂kũ0| × (Ĥc − µ)∂B|ũ0〉+ c.c.)|B→0

=
1

Vcell
Re〈w0(B)|r × (Ĥc − µ)∂B|w0(B)〉|B→0 . (18)

Combining Eq. (15) and Eq. (18), we obtain the final expression [Eq. (17) in the main text] of the spin toroidization
in the Wannier representation,

T = − gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉|B=0

+
gµB

2h̄Vcell

∑
R

〈w0(B)|r|w0(R,B)〉|B→0 × 〈w0(R,B)|ŝ|w0(B)〉|B=0

+
1

Vcell
Re〈w0(B)|r(Ĥc − µ)× ∂B|w0(B)〉|B=0 . (19)

III. MOLECULAR INSULATOR LIMIT

Under this limit the first two terms in Eq. (19) becomes:

t1 = − gµB

2h̄Vcell
〈w0(B)|(r − r̄)× (ŝ− s̄)|w0(B)〉|B→0 , (20)

where r̄ = 〈w0(B)|r|w0(B)〉 is the expectation of the position, and s̄ = 〈w0(B)|ŝ|w0(B)〉 is the expectation of spin
Pauli matrix. Since the combined time reversal and space inversion symmetry is respected, we must have s̄ = 0.
Therefore,

t1 = − gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉|B→0 . (21)

Now we consider the remaining term in Eq. (19). In the molecular insulator limit, its form does not change. Note
that |w0(B)〉 and |wn(B)〉 becomes the molecular eigenfunctions and ε0 and εn become the molecular eigenenergy.
We further manipulate this term as follows:

t2 =
1

Vcell
Re〈w0(B)|r(Ĥc − µ)× ∂B|w0(B)〉|B→0

=
gµB

h̄Vcell

∑
n 6=0

[〈w0(B)|r|wn(B)〉 × 〈wn(B)|ŝ|w0(B)〉]
∣∣
B→0

− 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣
B→0

=
gµB

h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉

∣∣
B→0

− 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣
B→0

. (22)

where r̄ has been defined before, and stands for the position of electron under external magnetic field. Here ε0 − µ is
the free energy for state 0.

Therefore, the total toroidization under the molecular insulator limit reads:

T = t1 + t2

=
gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉

∣∣
B→0

− 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣
B→0

. (23)
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