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We present a perturbative treatment of the response properties of insulating crystals under a dc bias field, and
use this to study the effects of such bias fields on the Born effective charge tensor and dielectric tensor of
insulators. We start out by expanding a variational field-dependent total-energy functional with respect to the
electric field within the framework of density-functional perturbation theory. The second-order term in the
expansion of the total energy is then minimized with respect to the first-order wave functions, from which the
Born effective charge tensor and dielectric tensor are easily computed. We demonstrate an implementation of
the method and perform illustrative calculations for the III-V semiconductors AlAs and GaAs under finite bias
field.
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I. INTRODUCTION

The dielectric tensor and Born �or dynamical� effective
charge tensor are of fundamental importance in understand-
ing and modeling the response of an insulator to an electric
field.1 They give, respectively, the first-order polarization and
atomic force appearing in response to a first-order change in
the macroscopic electric field. While one is most often inter-
ested in evaluating these response tensors at zero field, there
is increasing interest in finite-field properties. For example,
the study of bulk ferroelectrics,2–4 ferroelectric films5 and
superlattices4,6 in finite field, and lattice vibrations in polar
crystals in finite field7 have recently generated interest.
While it may sometimes be reasonable to model the dielec-
tric behavior by assuming that the dielectric and Born effec-
tive charge tensors have a negligible dependence on the bias
field, it is important to be able to quantify such approxima-
tions and to compute the field dependence when it is physi-
cally important to do so �e.g., for describing nonlinear opti-
cal phenomena such as second-harmonic generation�.

Density-functional perturbation theory8,9 �DFPT� provides
a powerful tool for calculating the second-order derivatives
of the total energy of a periodic solid with respect to external
perturbations such as atomic sublattice displacements or a
homogeneous electric field. In contrast to the case of sublat-
tice displacements, for which the perturbing potential re-
mains periodic, the treatment of homogeneous electric fields
is subtle because the corresponding potential acquires a term
that is linear in real space, thereby breaking the translational
symmetry and violating the conditions of Bloch’s theorem.
For this reason, electric-field perturbations have often been
studied in the past using the long-wave method, in which the
linear potential resulting from the applied electric field is
obtained by considering a sinusoidal potential in the limit
that its wave vector goes to zero. In this approach, however,
the response tensor can be evaluated only at zero electric
field, and it also requires as an ingredient the calculation of
the derivatives of the ground-state wave functions with re-
spect to the wave vector.

Recently, Nunes and Gonze introduced an electric-field-
dependent energy functional expressed in terms of the Berry-

phase polarization.10 This approach was initially introduced
in order to provide an alternative framework for the DFPT
treatment of electric-field perturbations �evaluated at zero
field� in which the long-wave method is entirely avoided.
More recently, it has been pointed out that the Nunes-Gonze
functional could also serve as the basis for a calculation of
the ground-state properties in finite electric field.11,12 �Here,
the phrase “ground state” is used advisedly; because of Zener
tunneling, the state of interest is actually a long-lived
resonance.13� In this approach, the energy functional is mini-
mized with respect to a set of field-polarized Bloch functions
that form a natural representation of the one-particle density
matrix even though they are no longer eigenstates of the
Hamiltonian.11,13 The introduction of this approach has also
made possible the calculation of the dielectric and Born ef-
fective charge tensors at finite electric fields using finite-
difference methods.11

In a recent paper,7 we developed a perturbative method,
within this framework, for computing the phonon properties
of insulators at finite electric fields. The starting point was
the Nunes-Gonze electric-field-dependent energy functional,
which represents the effect of the electric field by including
its coupling to the Berry-phase polarization.10 This total-
energy functional was expanded up to the second order in
atomic displacements. The linear response of the field-
polarized Bloch functions to the atomic displacements was
obtained by minimizing the second-order term in the expan-
sion of the total-energy functional with respect to the first-
order changes in the Bloch functions. Finally, the force-
constant matrix was constructed based on these first-order
Bloch functions. This method provides a tractable and effi-
cient computational scheme for computing phonon proper-
ties at finite electric field, and suggests that a similar treat-
ment of other response properties of insulators in finite
electric field should be possible.

In this paper, we follow the approach of Ref. 7 to develop
a method for computing the dielectric and Born effective
charge tensors at finite electric field. Again, using the Nunes-
Gonze energy functional,10 we compute the first-order re-
sponses of the electronic wave functions to a small change in
the electric field. We then use these to construct the second-
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order derivatives of the total energy with respect to electric
field �to give the dielectric tensors evaluated at nonzero field�
and the mixed derivatives with respect to electric field and
atomic sublattice displacement �to give the Born effective
charge tensors evaluated at nonzero field�.

The paper is organized as follows. In Sec. II, the second-
order perturbation expansion of the total-energy functional
with respect to electric fields is derived and the steepest-
descent directions are identified. The expressions for com-
puting the dielectric and Born effective charge tensors are
also given. In Sec. III, we describe the implementation of the
approach in the ABINIT code package,14 and present test cal-
culations for the III-V semiconductors AlAs and GaAs.
�Since we are mainly interested in the purely electronic ef-
fects here, we do not include the strains that might occur in
response to the electric field; these could easily be included
by employing structural-relaxation methods at finite field.11�
By comparing with the results of finite-difference calcula-
tions, we demonstrate the correctness of the different formu-
lation and the internal consistency of the theory. A brief sum-
mary and conclusion are presented in Sec. IV.

II. METHOD

A. Perturbation expansion of the enthalpy functional

We start from the electric enthalpy functional10,11

F�R;�;E� = EKS�R;�� − �E · P��� , �1�

where R, E, �, and P are, respectively, the atomic coordi-
nates, the electric field, the cell volume, and the macroscopic
polarization, EKS is the Kohn-Sham energy functional at zero
electric field, and atomic units are used throughout. After
minimizing this functional, the field-polarized Bloch func-
tions � may be regarded as depending implicitly on the elec-
tric field E. Our treatment of this functional will parallel the
treatment given in our previous work �Ref. 7�.

In the present case, we take the electric field E to consist
of two parts, a finite part E�0� and a small variation �E. In the
following, we consider the perturbation expansion of the
functional in Eq. �1� with respect to the small variation �E
under the orthonormality constraints

��mk��nk� = �mn. �2�

The wave functions are to be relaxed, subject to these con-
straints, in such a way as to minimize the electric enthalpy
functional

F = FKS + FBP + FLM, �3�

where FKS=EKS is the Kohn-Sham energy �as it would be
calculated at E=0�, FBP=−�E ·P contains the coupling of the
Berry-phase polarization P to the electric field, and the con-
straint is implemented by the inclusion of the Lagrange-
multiplier term FLM. The first and last of these terms are
given by

FKS =
f

Nk
�
kn

occ

��nk�T + vext��nk� + EHxc�n� �4�

and

FLM = −
f

Nk
�

k,mn

occ

�k,mn���mk��nk� − �mn� , �5�

where f is the spin degeneracy �normally f =2�, Nk is the
number of k points, and �k,mn is the matrix of Lagrange
multipliers. In a notation similar to that of Ref. 7, the second
term may be written as

FBP = −
ef

2�
�
i=1

3 E · ai

N�
�i� �

k
Dk,k+gi

. �6�

Here, ai are the three primitive real-space lattice vectors, and
the mesh of Nk k points is defined by mesh vectors gi
=bi /N�i�, where bi is the reciprocal-lattice vector dual to ai.
Thus, Nk=N�1�N�2�N�3�, and we also define N

�

�i�=Nk /N�i� as
the number of k-point strings running in direction i. Finally,

Dkk� = Im ln det Skk�, �7�

where the overlap matrix is defined as

�Skk��mn = �umk�unk�� . �8�

In order to obtain the desired response properties, we now
wish to expand the finite-field enthalpy functional FKS up to
the second order in the electric field. We shall assume for the
moment that the electric field is applied in Cartesian direc-
tion � only. The expansion of FKS with respect to atomic
displacements was already obtained in Ref. 7, and the expan-
sion with respect to electric field can be carried through in a
very similar way. Indeed, the second-order expansions of
FKS and FLM can essentially be transcribed from Ref. 7 with
the first-order wave functions with respect to displacement
replaced here by the first-order wave functions with respect
to electric field, giving

FKS
�2� =

1

2

�2FKS

�E�
2 =

f

Nk
�
k

�
n=1

occ

�unk
E��T + vext�unk

E�� + EHxc
E�E� �9�

and

FLM
�2� = −

f

Nk
�
k,n

occ

�k,nn
�0� �unk

E��unk
E�� . �10�

As in Ref. 7, terms that can be eliminated by use of the
“2n+1 theorem” �e.g., �unk

E�E��T+vext�unk
�0��� have been

dropped. The first-order wave functions are

�unkj

E� � =
��unkj

�

�E�

�11�

and the second-order EHxc are

EHxc
E�E� =

�2EHxc

2�E��E�

. �12�

In these and subsequent equations, the partial derivatives in-
dicate that the structural coordinates R are being held fixed
�while, however, the wave functions �unk� are allowed to
vary�.

The second-order expansion of FBP with respect to elec-
tric field requires somewhat more care. We find
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FBP
�2� =

1

2

�2FBP

�E�
2 = −

�

2

�2�E · P�

�E�
2 = − ��ê� · PE� + E�0� · PE�E�� ,

�13�

where ê� is the unit vector along Cartesian direction �. The
first term in the last line of Eq. �13� is special to the case of
the electric-field perturbation, while the second term can be
derived in close correspondence to the case of displacement
perturbations in Ref. 7. The first-order variation of P with
field E� is

PE� = −
ef

2��
�
i=1

3
ai

N�
�i��

k
Dk,k+gi

�1� �14�

and its second-order variation is

PE�E� = −
ef

4��
�
i=1

3
ai

N�
�i��

k
Dk,k+gi

�2� , �15�

where

Dk,k+gi

�1� = Im Tr�Sk,k+gi

�1� Qk+gi,k
� �16�

and

Dk,k+gi

�2� = Im Tr�2Sk,k+gi

�2� Qk+gi,k
− Sk,k+gi

�1� Qk+gi,k
Sk,k+gi

�1� Qk+gi,k
� .

�17�

In these equations, “Tr” indicates a trace of the bracketed
matrix over band indices, and Q, S�1�, and S�2� are defined
with respect to the series expansion of the overlap matrix via

Skk��E�� = Skk�
�0� + E�Skk�

�1� + E�
2Skk�

�2� + ¯ �18�

and

Qkk� = �Sk�k
�0� �−1. �19�

The first- and second-order expansions of the overlap matrix
take the form

Sk,k�,mn
�1� = �umk

E� �unk�
�0� � + �umk

�0� �unk�
E� � �20�

and

Sk,k�,mn
�2� = �umk

E� �unk�
E� � . �21�

In the last equation above, terms like �umk
E�E� �u

nk�
�0� � have again

been dropped by virtue of the 2n+1 theorem.

B. First-order wave functions with respect
to electric-field perturbation

The second-order term in the expansion of the energy
functional, given by the sum F�2�=FKS

�2� +FBP
�2�+FLM

�2� of the ex-
pressions in Eqs. �9�, �13�, and �10�, respectively, is mini-
mized with respect to the first-order wave functions �unk

E��
using standard conjugate-gradient methods. The steepest-
descent direction is obtained from the gradient of F�2� with
respect to �unk

E��, whose contributions take the form

�FKS
�2�

�unk
E�* =

f

Nk
	�T + vext

�0���unk
E�� +

�EHxc
E�E�

�unk
E�* 
 , �22�

�FBP
�2�

�unk
E�* =

ief

4�
�
i=1

3 E�0� · ai

N�
�i� ��Cmk,k+gi

� − �Cmk,k−gi
��

+
ief

4�
�
i=1

3
ê� · ai

N�
�i� ��Dmk,k+gi

� − �Dmk,k−gi
�� , �23�

and

�FLM
�2�

�unk
E�* =

f

Nk
�nk

�0��unk
E�� . �24�

Here,

Cmkk� = ��uk�
E��Qk�k − �uk�

�0��Qk�kSkk�
�1� Qk�k�m, �25�

Dmkk� = ��uk�
�0��Qk�k�m, �26�

and �nk
�0� is the diagonal zero-order matrix of Lagrange mul-

tipliers. Convergence of the conjugate-gradient procedure
yields a set of first-order wave functions �unk

E��. These then
become the essential ingredients for constructing the dielec-
tric and Born charge tensors as discussed below.

C. Dielectric permittivity tensor

The dielectric permittivity tensor can be written as

��	

 = ��	 + 4���	, �27�

where the electric susceptibility tensor ��	 at a finite electric
field is defined as

��	 = −
1

�
� �2F�E�

�E��E	
�

E=E�0�
= � �P�

�E	
�

E=E�0�
= ê� · PE	.

�28�

The derivative PE	 of the polarization with respect to electric
field is already given by Eq. �14�. Since the first-order wave
functions �unk

E�� have already been obtained in Sec. II B, it is
straightforward to evaluate Eq. �28� and thus obtain the po-
larizability and permittivity.

The dielectric responses above are the static responses
computed with atomic coordinates frozen. That is, they cor-
respond to the dielectric response that would be measured at
frequencies low compared to electronic frequencies but high
compared to any infrared-active phonon modes. The true
static susceptibility could be computed by including the lat-
tice displacements �and, if appropriate, the piezoelectric
strains� using, e.g., the methods of Ref. 15.

D. Born effective charge tensor

The electronic contribution to the Born effective charge
tensor at finite electric field takes the form

Z�,�	
* = − � �2F�E�

�E���,	
�

E=E�0�
. �29�

This expression can be calculated equivalently in two differ-
ent ways. First, introducing the force f�,�=−�F�E� /��,� act-
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ing on atom � in direction �, it can be written as

Z�,�	
* =

�f�,	

�E�

. �30�

Using the Hellmann-Feynman theorem, the expression for
the force is given as

f�,	 =
f

Nk
�
k

�
n=1

occ

�unk
�0���T + vext��,	�unk

�0�� , �31�

and taking an additional derivative with respect to electric
field yields

Z�,�	
* =

2f

Nk
�
k

�
n=1

occ

�unk
�0���T + vext��,	�unk

E�� . �32�

This has essentially the same form as Eq. �43� in Ref. 9,
except that here the zero-order wave functions are already
polarized by the preexisting finite electric field.

Alternatively, Eq. �29� can be computed as the derivative
of the polarization with respect to the displacement,

Z�,�	
* = �

�P�

��,	
= �ê� · P�,	. �33�

Here, P�,	 takes a form very similar to that of Eq. �14�,
except that the first-order changes �unkj

E� � in the wave func-
tions in response to an electric field are replaced by the cor-
responding changes �unkj

�,	� in response to a sublattice dis-
placement. The computation of the �unkj

�,	� has already been
described in detail in Ref. 7.

The computation of the first-order derivatives of the wave
functions is typically the most time-consuming step of the
linear-response calculation. Therefore, for a complicated unit
cell with many atoms M per cell, the computation of the
three derivatives �uE�� will be much cheaper than that of the
3M derivatives �u�,	�, and the method of Eq. �32� will there-
fore be significantly faster than the method of Eq. �33�. In the
special case that the displacement derivatives �u�,	� have al-
ready been computed for some other reason �e.g., for the
purpose of computing the phonon frequencies in finite field�,
the use of the latter method may be advantageous. In any
case, a comparison of the two methods should provide a
useful check on the internal consistency of the theory and its
computational implementation.

III. TEST CALCULATIONS FOR III-V SEMICONDUCTORS

In order to check our method, we have performed test
calculations on two prototypical III-V semiconductors, AlAs
and GaAs, for which the electronic contribution to the polar-
ization is typically comparable to the ionic contribution.4 The
calculation is carried out using the plane-wave pseudopoten-
tial method based on density-functional theory with local-
density approximation �LDA�. We use Troullier-Martins
norm-conserving pseudopotentials16 in which the 3d states
on the Ga and As atoms are treated as core states. �The
omission of the semicore 3d states from the valence on the
Ga atom may limit the accuracy of the Ga pseudopotential

somewhat.� A 16�16�16 Monkhorst-Pack mesh is used for
the k-point sampling. More computational details can be
found in our preceding paper.7

The calculation of the dielectric permittivity tensor and
the Born effective charge tensor is carried out in three steps.
First, a ground-state calculation at finite electric field is per-
formed using the Berry-phase approach11 implemented in the
ABINIT code, and the field-polarized Bloch functions are
stored for the later linear-response calculation. Second, the
linear-response calculation is carried out to obtain the first-
order response of Bloch functions. Third, the matrix ele-
ments of the dielectric and Born effective charge tensors are
computed using these first-order responses.

The first column of Table I shows the calculated elec-
tronic dielectric constants of AlAs and GaAs at zero electric
field, and the remaining ones show the nonzero changes in
the dielectric tensor elements after the application of an elec-
tric field E�0� of 3.08�108 V/m along the �100� direction.
The results obtained with the linear-response approach of Eq.
�28� are compared with those calculated by finite differences.
In the latter case, polarizations are computed at several val-
ues of the electric field in steps of 3.08�105 V/m, and the
dielectric tensor is calculated using a finite-difference ver-
sion of Eq. �28�. It can be seen that the agreement between
the linear-response and the finite-difference results is excel-
lent, demonstrating the internal consistency between the two
approaches.

In Table II, we present similar results for the cation Born
effective charges of the same two materials, first at zero field
and then again under application of a field of E�0� of 3.08

TABLE I. Calculated electronic dielectric constants of AlAs and
GaAs at zero field, and changes resulting from an electric field of
3.08�108 V/m along the �100� direction. “LR” and “FD” denote
the results of linear-response �Eq. �28�� and finite-difference calcu-
lations, respectively.

�
 ��
,23 ��
,11 ��
,33

AlAs LR 9.681 0.039 0.027 0.013

FD 9.681 0.040 0.027 0.013

GaAs LR 13.315 0.202 0.211 0.104

FD 13.319 0.203 0.207 0.098

TABLE II. Calculated cation Born effective charges of AlAs and
GaAs at zero field, and changes resulting from an electric field of
3.08�108 V/m along the �100� direction. “LR” and “FD” denote
the results of linear-response �Eq. �32�� and finite-difference calcu-
lations, respectively.

Z*
�Z23

*

��10−3�
�Z11

*

��10−3�
�Z33

*

��10−3�

AlAs LR 2.110 17.23 −0.06 −0.13

FD 2.110 17.22 −0.05 −0.11

GaAs LR 2.186 52.88 −3.42 −3.17

FD 2.186 52.83 −3.36 −3.14
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�108 V/m along the �100� direction. The linear-response
results were obtained using Eq. �32�, but we also computed
the corresponding values using Eq. �33� and found agree-
ment between the two linear-response approaches with a
maximum fractional error smaller than 10−6 for all values
reported. For the finite-difference comparison, the polariza-
tions were computed at several values of the atomic displace-
ments in steps of 10−3 bohr and the Born charge tensors were
calculated using a finite-difference version of Eq. �33�. It can
again be seen the agreement between the linear-response and
the finite-difference results is excellent.

We emphasize that the values of ��
 and �Z* reported in
Tables I and II are purely electronic or “frozen-ion” ones—
that is, the sublattice displacements that would be induced by
a truly static electric field E�0� are not included. The results
with ionic relaxations included are presented in Table III. It
is evident that the ionic relaxations have a negligible effect
on the diagonal elements of the dielectric tensor, but they do
moderately affect the off-diagonal elements. For the Born
effective charge tensors, the effects of ionic relaxations are
substantial for both diagonal and off-diagonal elements.

The values of �
 and Z* reported in Tables I and II are in
good agreement with other theoretical values in the
literature17–19 and with experiment. The symmetry is such
that the applied electric field along x breaks the degeneracy
between the diagonal elements of the �
 and Z* tensors so
that �
,11��
,22=�
,33 and Z11

* �Z22
* =Z33

* , and introduces
nonzero off-diagonal elements �
,23=�
,32 and Z23

* =Z32
* .

Symmetry considerations also imply that �
,23 and Z23
*

should appear to first order in E�0�, while ��
,11, ��
,33,
�Z11

* , and �Z33
* should be quadratic in E�0�. This is confirmed

by our numerical calculations. Indeed, by repeating calcula-
tions like those shown in Tables I and II for several values of
E�0� and fitting to obtain the coefficients of the linear and
quadratic dependences, we can extract information about the
nonlinear dielectric response and the Raman tensor. The
second- and third-order nonlinear dielectric tensors are de-
fined as

�123
�2� =

1

2

�2P2

�E1�E3
=

1

2

��23

�E1
�34�

and

�1111
�3� =

1

6

�3P1

�E1
3 =

1

6

�2�11

�E1
2 , �35�

while the Raman polarizability tensor is defined by

�TO =
�2f2

�E1�E3
=

�Z23

�E1
, �36�

where f is the force on the cation sublattice induced by the
electric field. In practice, we calculate �23, �11, and Z23

* for a
series of finite electric fields oriented along the x axis with
values of E�0� ranging from zero to 5.14�108 V/m in incre-
ments of one-fifth of the maximum value. Fitting these data
to a polynomial in E�0� then gives the values of �123

�2� , �1111
�3� ,

and �TO. Note that �TO can alternatively be expressed as

�TO = �
��23

�1
, �37�

where 1 is a cation sublattice displacement and �23 is com-
puted at zero field. We have also computed �TO by fitting to
a series of calculations of this type, and find values of �TO
that agree with those obtained from Eq. �36� within 0.3%.

The results for the �123
�2� and �TO values as computed from

Eqs. �34� and �36� are presented in Table IV for AlAs, to-
gether with some previous theoretical and experimental val-
ues for comparison. In view of the fact that the calculation of
higher-order tensor elements tends to be delicate, the agree-
ment is generally quite good. In particular, Veithen et al.20

have shown �see their Fig. 1� that the results for �123
�2� can be

quite sensitive to the method of discretization in k space and
the fineness of the k-point mesh. For GaAs, we find �123

�2�

=293pm/V and �TO=−24.1 Å2 �which is close to the value
in Ref. 22�, but these numbers are of questionable accuracy
because of our use of a Ga pseudopotential that does not
include the 3d semicore orbitals in the valence. We obtain
�1111

�3� values of 3.90�10−11 and 33.8�10−11 esu for AlAs
and GaAs, respectively. We are not aware of previous theo-
retical values of �1111

�3� with which to compare; this quantity is
beyond the reach of the 2n+1 theorem using first-order wave
function responses only, and so is difficult to compute by

TABLE III. Calculated changes in electronic dielectric constants
and cation Born effective charges of AlAs and GaAs resulting from
an electric field of 3.08�108 V/m along the �100� direction. Here,
ions are fully relaxed in response to the electric field.

AlAs GaAs

��
,23 0.024 0.145

��
,11 0.027 0.209

��
,33 0.013 0.101

�Z23
* ��10−3� 15.97 53.16

�Z11
* ��10−3� −1.41 −1.65

�Z33
* ��10−3� −0.43 −1.84

TABLE IV. Values of second-order dielectric susceptibility and
Raman matrix elements in AlAs, as defined by Eqs. �34� and �36�,
respectively, compared with previous theory and experiment.

�123
�2�

�pm/V�
��TO�
�Å2�

Present work 62 8.0

Theory,a Ref. 11 64

Theory,b Ref. 20 70 8.5

Theory,a Ref. 21 79 9.0

Theory,b Ref. 22 7.4

Experiment, Ref. 23 78±20

aUsing finite-difference approach.
bUsing �2n+1�-theorem approach.

FIRST-PRINCIPLES PERTURBATIVE COMPUTATION OF… PHYSICAL REVIEW B 75, 115116 �2007�

115116-5



pure DFPT methods. Experimental values ranging from 3.9
�10−11 to 18�10−11 esu for GaAs �Ref. 24� can be found in
the literature.

The discrepancies noted above between theory and theory,
and between theory and experiment, may have many pos-
sible causes. In addition to some of the computational and
convergence issues mentioned above, the adequacy of the
LDA approximation itself is also a serious question. Because
the LDA tends to underestimate gaps, some authors have
included a so-called “scissors correction” in order to widen
the gap artificially; this tends to decrease the magnitude of
response tensors.25 On the experimental side, the difficulty in
obtaining reproducible results is surely also an issue. Never-
theless, we emphasize that the relative accuracy of the values
reported in Tables I and II, which were done under the same
computational conditions �same pseudopotentials, k-point
meshes, etc.�, demonstrates the correctness of our finite-field
linear-response formulation and the internal consistency of
the computational framework that we employ.

IV. SUMMARY

We have developed a linear-response method for comput-
ing dielectric constants and Born effective charges in the
presence of a finite electric field. We have demonstrated the
reliability of our approach by implementing it in the context
of the ABINIT code package14 and performing test calcula-

tions on two III-V semiconductors, AlAs and GaAs. We have
confirmed that the results calculated using our linear-
response approach are consistent with those obtained from
finite-difference calculations carried out within the same
framework. In general, our results are also in good agree-
ment with other theoretical calculations and with experiment.

A major advantage of the present approach is that, unlike
the conventional long-wave linear-response method,8 it can
be applied to obtain response tensors in finite electric field.
While it is possible to obtain similar information from a set
of finite-difference calculations carried out for some chosen
set of applied electric fields, the linear-response approach is
more direct, and it avoids the troublesome truncation errors
that may arise in a finite-difference approach. In the future, it
may be of interest to extend the finite-field DFPT treatment
not just to phonon perturbations �presented in Ref. 7� and
electric-field perturbations �presented here� but also to other
perturbations such as those associated with strain or chemi-
cal composition. Taken together, these developments should
allow for much greater flexibility in the calculation of mate-
rials properties of insulators under electrical bias and facili-
tate the study of higher-order nonlinear dielectric properties.
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