
Wannier-Based Definition of Layer Polarizations in Perovskite Superlattices

Xifan Wu, Oswaldo Diéguez, Karin M. Rabe, and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

(Received 9 June 2006; published 8 September 2006)

In insulators, the method of Marzari and Vanderbilt [Phys. Rev. B 56, 12 847 (1997)] can be used to
generate maximally localized Wannier functions whose centers are related to the electronic polarization.
In the case of layered insulators, this approach can be adapted to provide a natural definition of the local
polarization associated with each layer, based on the locations of the nuclear charges and one-dimensional
Wannier centers comprising each layer. Here, we use this approach to compute and analyze layer
polarizations of ferroelectric perovskite superlattices, including changes in layer polarizations induced
by sublattice displacements (i.e., layer-decomposed Born effective charges) and local symmetry breaking
at the interfaces. The method provides a powerful tool for analyzing the polarization-related properties of
complex layered oxide systems.
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Multicomponent superlattices based on the ABO3 pe-
rovskite structure have received much attention recently
due to the exciting properties they possess as multifunc-
tional materials (see Ref. [1] and references therein).
Experimental studies using modern layer-by-layer epitax-
ial growth techniques have gone hand in hand with accu-
rate first-principles calculations that have helped to
interpret experimental results and to guide the search for
superlattice compounds with tailored properties. For ex-
ample, a compositional perturbation that breaks inversion
symmetry was predicted [2] to allow tuning of the dielec-
tric and piezoelectric response, as confirmed later when
such superlattices could be grown experimentally [3,4]. In
addition, strained-layer superlattices can show a substan-
tial enhancement of spontaneous polarization; such effects
have been observed [4] and analyzed using first-principles
calculations [5,6].

One issue that has received much attention theoretically
is how to quantify the concept of local polarization. This
can be very useful in isolating the contributions of con-
stituent layers to dielectric and piezoelectric properties
[2,3], separating the effects of factors such as epitaxial
strain and applied electric fields [5–8], and understanding
the enhancement or suppression of spontaneous polariza-
tion [5,6]. A local description is also essential for charac-
terizing and understanding interface contributions to such
properties. Among previously proposed local approaches
[8,9], that of Meyer and Vanderbilt [9] has been one of the
most commonly used [5–7]. Based on a linear approxima-
tion involving effective charges and small ionic distortions
from a higher-symmetry nonpolar reference structure, this
simple model captures the essential physics and provides a
semiquantitative description useful for understanding
many aspects of the behavior of multicomponent super-
lattices. However, as we shall discuss, it is neither exact nor
unique.

A first-principles method for identifying local dipoles
and computing their dipole moments in an extended sys-
tem has been proposed in Refs. [10,11], based on express-

ing the electric polarization in terms of the centers of
charge of Wannier functions (WFs) [12,13] that are maxi-
mally localized along the direction of interest [14]. The
method was successfully applied to analyze the permittiv-
ity of ultrathin Si-SiO2 heterostructures [10,11].

Here, we further develop a closely related method and
apply them to ferroelectric perovskite superlattices, where
the polarization, particularly that along the growth direc-
tion z, is of central physical importance. We introduce a
WF-based expression for the ‘‘layer polarization’’ (LP)
along z associated with each charge-neutral AO or BO2

layer in an (001) superlattice built from II-VI ABO3 per-
ovskites such as BaTiO3, SrTiO3, and PbTiO3. Unlike the
approach of Ref. [9], the present one is exact (i.e., the sum
of LPs relates exactly to the total supercell polarization)
and is entirely free of arbitrary choices in its implementa-
tion. We will present examples showing how this approach
naturally provides an insightful local description of the
polarization behavior of perovskite superlattices, both at
zero electric field and under nonzero electrical bias, and, in
particular, yields valuable information about the highly
localized atomic and electronic rearrangements at the
interfaces.

The modern theory of polarization [12] is routinely used
to compute the polarization of a crystal as a sum of ionic
and electronic (Berry phase) contributions. In the Wannier
representation, this takes the form
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where � and m run over ion cores (of charge Q� located at
R�) and Wannier centers (of charge �2e located at �rm),
respectively, in the unit cell of volume V. In the case of a II-
VI perovskite superlattice, one may hope to decompose the
system into neutral layers (that is, AO or BO2 subunits) and
define a layer polarization
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in which the sums are restricted to entities belonging to
layer j. Here S is the basal cell area and we are now
focusing only on z components. The LP pj thus defined
has units of dipole moment per unit area, and the total
polarization, with units of dipole moment per volume, is
exactly related to the sum of LPs via Pz � c�1P

jpj where
c � V=S is the supercell lattice constant along z. For such
a decomposition to be meaningful, we need (i) to resolve
the arbitrariness associated with the positions of the
Wannier centers, and (ii) to be satisfied that the Wannier
centers can be assigned to layers without ambiguity. We
shall show below by example that (ii) is satisfied for the
systems of interest, and thus we next turn our attention to
issue (i).

As is well-known, the Wannier centers �rm � hWmjrjWmi
are not unique because the electronic structure is invariant
to unitary rotations among the WFs (corresponding, e.g., to
different choices of phases of the Bloch functions in k
space). Marzari and Vanderbilt [13] introduced a method
for obtaining a unique set of WFs by choosing the ones that
minimize the sum of second-moment spreads (spatial var-
iances) of the WFs. In a three-dimensional system, this
involves finding a best possible compromise between mini-
mal spread in x, y, and z directions, and an iterative
procedure is needed to find this compromise solution.

Here, we are interested only in polarizations along z, and
can limit ourselves to minimizing the spread only in that
direction [10,11]. Moreover, we can use a hybrid represen-
tation of the electronic ground state that is Bloch-like in x
and y and Wannier-like only along z [14]. We start from a
conventional band-structure calculation carried out on a
mesh of reciprocal points k � �kx; ky; kz� and adopt the
relabeling g � �kx; ky� and k � kz. That is, each 2D vector
g labels a string of J k points running along the z direction
with separation b � 2�=Jc. Our task is then to transform
the Bloch functions j g;nki (n � 1; . . . ; N) into hybrid WFs
[14] jWg;mi (m � 1; . . . ; N) via a 1D Wannier transform,
where N is the number of occupied bands. We will then let
�zm in Eq. (2) be the average of �zm�g� � hWg;mjzjWg;mi over
the 2D mesh of g points. Since the 1D Wannier transform is
done independently at each g, we drop the g label in the
following paragraph.

The case of maximally localized WFs in 1D was treated
explicitly in Sec. IV.C.1 of Ref. [13]. There, it was shown
that the WFs that minimize the spread functional are
identical to the eigenfunctions of the projected position
operator PzP, where P �

P
nkj nkih nkj is the band pro-

jection operator. It was also shown how they could be
obtained from a parallel-transport-based construction us-
ing the singular value decomposition (SVD) of the over-
lap matrices between neighboring k points, M�k�mn �
humkjun;k�bi, where umk is the periodic part of the Bloch
function  mk.

The SVD isM � V�Wy where V andW are unitary and
� is positive real diagonal. For small b, � approaches the
unit matrix, and omitting � to write ~M � UVy can be

regarded as a way of constructing a purified version of M
that is exactly unitary. Then � �

QJ
k�1

~M�k� defines a
global unitary matrix describing the parallel transport of
the states on the k-point string, and its unimodular eigen-
values �m define the Wannier centers via �zm �
��c=2�� Im ln�m. Note that no iterative procedure is re-
quired; these 1D Wannier locations can be obtained by a
straightforward small-matrix diagonalization. A procedure
that is similar in spirit, but slightly different in detail, has
recently been proposed elsewhere [15].

In Fig. 1, we present the resulting values of �zm�g� for an
ab initio calculation on a 10-atom tetragonal supercell
composed of alternating SrTiO3 (ST) and BaTiO3 (BT)
units, which we refer to as a 1ST/1BT superlattice. We did
all calculations using the ABINIT code [16], which imple-
ments density-functional theory within the local-density
approximation [17]. We adopted Teter norm-conserving
pseudopotentials [18] for which the valence states are
(5s5p6s) for Ba, (4s4p5s) for Sr, (3s3p3d4s) for Ti, and
(2s2p) for O. We used a plane-wave energy cutoff of 45
Ha, a 6� 6� 3 Monkhorst-Pack self-consistency mesh,
and a 12� 12� 3 band-structure mesh. We assumed per-
fect epitaxial growth of the superlattices on a cubic ST
substrate having a theoretical equilibrium lattice constant
of 7.265 bohr and tetragonal P4mm symmetry.

The key feature visible in the �z�g� dispersion relation in
Fig. 1 is that the WF centers separate quite naturally into
distinct layers as anticipated. The 1D Wannier positions �z
are almost independent of g � �kx; ky�, and there are robust
gaps between layers. Moreover, we find eight Wannier
centers in each BaO or SrO layer and 12 in each TiO2

layer (four for each cation semicore shell and four for each
oxygen 2s2p shell), so that the layers are neutral as ex-
pected. All this demonstrates that the proposed Wannier-
based approach does indeed lead to a natural and robust
decomposition into easily identified neutral layers.

It is then straightforward to define the LP pj associated
with each layer according to Eq. (2). For comparison with
other definitions, we also introduce the corresponding local
polarization Pj � pj=cj having the correct units of polar-
ization (dipole per unit volume), where cj is chosen as half
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FIG. 1 (color online). Dispersion of WF center positions for a
1BT/1ST superlattice as a function of g � �kx; ky�.
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the distance between the two neighboring cations. In
Fig. 2, we show the local polarization profile calculated
in this way for the case of a 1ST/2BT superlattice (15-atom
supercell). The details are the same as for the calculation of
the 1ST/1BT superlattice, except that we use a 6� 6� 2
k-point sampling. We compare our results with the ones
obtained from the commonly applied approximate scheme
[9] in which the local polarization is estimated by multi-
plying the Born effective charges of the atoms in a unit cell
layer by their displacements relative to a reference struc-
ture. The effective charges are obtained from linear re-
sponse calculations in the ferroelectric ground state. By its
very nature, this approximate scheme [9] has only half the
spatial resolution of our new scheme, since it applies only
to entire ABO3 cells. (Note that it cannot easily be ex-
tended down to the resolution of AO and BO2 layers
because the sum of Z� values in such a layer does not
vanish, so that the definition would depend on choice of
reference structure in an unsatisfactory way.)

The results shown in Fig. 2 are consistent with the
findings of previous theoretical studies [5] showing that
the SrTiO3 portion of the supercell becomes polarized to
almost the same degree as the BaTiO3 portion. However,
the improved resolution associated with the new approach
is also clearly evident in the figure. For example, one can
now see that the polarization tends to be larger in the AO
layers than in the TiO2 layers (see next paragraph).
Moreover, our new approach is free of three limitations
of the approximate one [5–7,9]. First, we avoid the choice
between an A- or B-centered analysis. Second, we do not
have the problem of choosing an arbitrary local reference
structure as the basis for the definition of the atomic dis-
placements. Third, our LPs pj sum to give the exact total
polarization of the entire supercell, whereas the approxi-
mate ones do not.

The Born effective charges Z�, defined as the first de-
rivatives of polarization with respect to atomic displace-
ments, describe the dynamics of the charge transfer
induced by such displacements. We now illustrate how
the LP concept can be used to decompose the Z� for an
atom in one layer into contributions from neighboring
layers [19]. This is demonstrated in Table I for the case

of a supercell of tetragonal bulk BT that has been tripled
along [001] (3BT supercell). Each of the four symmetry-
inequivalent atoms (Ti and Ok in a TiO2 layer and Ba and
O? in a BaO layer) was displaced along z in turn, and the
changes in all six LPs in the supercell were computed. For
Ba, O? and Ok, the induced polarizations are dominated by
contributions from the same atomic layer, at the level of
around 45%. In contrast, for the Ti atom, the contributions
from the first neighboring layers are almost as large as from
the layer itself. This is consistent with the well-known role
of the Ti�3d�-O�2p� hybridization in giving rise to the
anomalous Born effective charges in these perovskites
[20], and the fact that the WFs that embody this hybrid-
ization reside on the O atoms. Thus, a motion of the Ti
atoms along [001] modulates this hybridization and shifts
the centers of the WFs residing on the neighboring BaO
layers. This effect also helps explain why the LPs for AO
layers are larger than for TiO2 layers in Fig. 2.

We further illustrate the utility of the LP analysis by
considering its behavior in a macroscopic electric field E
[21] applied along [001]. We used a constrained-
polarization mapping technique [22] generalized to include
volume relaxation [23] to find the minimum-energy con-
figuration for each given polarization. The resulting LPs pj
vs total polarization are shown for the 1ST/2BT supercell
in the left-hand panels of Fig. 3. We see that each LP is
roughly linear in the total polarization for all six layers, but
with nonlinearities appearing at large values of polariza-
tion. For each data point, we extracted the corresponding
macroscopic electric field value, and plotted the LPs
against this field in the right-hand panels of Fig. 3. The
results show a strongly nonlinear dependence, typical of
that found for total polarization as a function of electric
field in ferroelectric materials.

The most striking features seen in Fig. 3 are for the two
interface layers (TiO2 layers 1B and 3B). They show local
breaking of inversion symmetry; that is, the LP as a func-
tion of macroscopic field does not pass through the origin,
at which for the system as a whole the symmetry of the
P4=mmm space group requires P � 0 and E � 0. One of
these interface TiO2 layers has a nearest-neighbor SrO
layer above and a BaO layer below, and the other vice
versa, the two interface layers being related by a mirror
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FIG. 2 (color online). Local polarization profile of 1ST/2BT
supercell, from effective charge approximation based on A
centered (open square) or B centered (open diamonds) analysis,
and from layer polarization analysis (filled circles). The overall
supercell polarization is 0:22 C=m2.

TABLE I. Layer decomposition of the [001] Born effective
charges in a 3BT supercell. Total effective charges are given in
the last row.

Ti (1B) Ba (1A) Ok (1A) O? (1B)

BaO (1A) 1.433 1.268 �2:448 �0:225
TiO2 (1B) 1.872 0.148 �0:231 �0:930
BaO (2A) 1.262 0.434 �1:027 �0:191
TiO2 (2B) 0.619 0.296 �0:542 �0:216
BaO (3A) 1.211 0.435 �1:046 �0:348
TiO2 (3B) 0.636 0.191 �0:264 �0:217

Z� 7.033 2.772 �5:557 �2:127
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symmetry. The LP approach give us much more precise
information about the response of these interfaces to ap-
plied fields than could be obtained from an analysis of
either the total polarization, or of the local polarizations as
previously defined (involving a smearing over three se-
quential atomic layers). We expect that this method of
analysis of interface layers will be invaluable for identify-
ing the interface contributions to the properties of super-
lattices with more than two components, particularly those
with globally broken inversion symmetry [2,23]. Similar
considerations apply to BaO layers 2A and 3A, which also
see an environment of broken inversion symmetry. For
these, however, the symmetry breaking enters only at the
level of second-neighbor layers, so the effects are smaller
in magnitude.

In summary, we have introduced a definition of the layer
polarization (LP) in a multicomponent perovskite super-
lattice that is exactly related to the polarization of the full
system and does not require choosing an arbitrary refer-
ence configuration. For each atomic layer, the LP is
uniquely determined by the spatial locations of ionic and
WF centers, and it can easily be computed in any first-
principles code as a post-processing step after standard
electronic structure calculations. Although this polariza-
tion is not directly measurable experimentally, we show
examples in which the LP precisely quantifies polar dis-
tortions throughout the superlattice, the high resolution of
the definition being particularly relevant for inspecting the
behavior of interface layers. Immediate applications in-
clude modeling of interface effects on total polarization
of multicomponent superlattices [23], systematic studies of

self-poling effects in superlattices [23], and studies of the
coupling of phonons to the interfaces. For superlattices
containing magnetic constituents, the spin degeneracy as-
sumption can be relaxed, so that the WF centers will have
additional local spin ordering information.
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FIG. 3 (color online). Layer polarization as a function of
(a) total polarization of the supercell, and (b) macroscopic
electric field in the supercell, for six consecutive layers in the
1ST/2BT supercell. Labeling of layers follows Fig. 1.
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