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Ab initio calculations are utilized as an input to develop a simple model of polarization in epitaxial short-
period CaTiO3/SrTiO3/BaTiO3 superlattices grown on a SrTiO3 substrate. The model is then combined with
a genetic algorithm technique to optimize the arrangement of individual CaTiO3, SrTiO3, and BaTiO3 layers in
a superlattice, predicting structures with the highest possible polarization and a low in-plane lattice constant
mismatch with the substrate. This modeling procedure can be applied to a wide range of layered perovskite-
oxide nanostructures providing guidance for experimental development of nanoelectromechanical devices with
substantially improved polar properties.
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Modern epitaxial thin film techniques make it possible to
synthesize artificial multicomponent perovskite-oxide super-
lattices whose polar properties can be precisely tailored for a
wide variety of applications.1–3 For example, it was recently
demonstrated that hundreds of atomically thin individual lay-
ers of CaTiO3 �CT�, SrTiO3 �ST�, and BaTiO3 �BT� could be
grown on a perovskite ST substrate, yielding superlattices
with compositionally abrupt interfaces and atomically
smooth surfaces.2,3 It was also shown that—since relaxed
lattice constants of CT and BT are 0.07 Å smaller and
0.11 Å larger than that of ST �aST=3.905 Å�, respectively—
epitaxial strain in the constituent layers of these structures
can be substantial. Due to the strong coupling between strain
and polarization in ferroelectric perovskites, this can result in
substantial enhancement of the polarization relative to that of
the bulk constituents, as has been observed3 in accordance
with theoretical predictions.4

We recently studied such strain-induced polarization en-
hancement in two- and three-component ferroelectric CT/
ST/BT superlattices epitaxially matched to a cubic ST
substrate.5 First-principles methods, namely density-
functional theory �DFT� and the modern theory of
polarization,6 were used to compute the structure and polar-
ization of a small number of short-period structures with the
same or similar compositions as those grown and character-
ized by Lee et al.3,7 Unfortunately, the substantial computa-
tional costs associated with these first-principles techniques,
growing rapidly as the period of the superlattice increases,
make it impossible to perform the calculations necessary to
answer a broader and more interesting question: How should
we arrange individual CT, ST, and BT layers in a given su-
perlattice to obtain the largest possible polarization enhance-
ment? In this paper we address this question by using our ab
initio results5 as an input to create a simple model for polar-
ization in CT/BT/ST superlattices, and then employing this
model in conjunction with a genetic optimization algorithm
technique to identify the optimal candidate structures.

In previous work,4 a simple continuum model was intro-
duced based on first-principles calculations of ST/BT super-
lattices; a similar model was subsequently applied to ST/PT
�PT stands for PbTiO3� superlattices.8 The main premise was
to assume that the constituent layers were linear dielectrics
�in the case of the ferroelectric constituent, possessing also a
nonzero spontaneous polarization�, and to obtain the value of

the uniform polarization in each layer by solving the equa-
tions of macroscopic electrostatics. With appropriate choices
for the two dielectric constants, this model could reproduce
the approximate constancy of the local polarization in the
superlattice, giving a nonzero polarization in the ST layer,
and the dependence of the polarization on the ratio of the
thickness of the ST and BT layers. However, the electrostatic
continuum character of this model could not reproduce the
dependence of the polarization on the absolute thickness of
the constituent layers, clearly present in our first-principles
results for CT/ST/BT superlattices. For example, the polar-
ization of the �ST�1�BT�1 superlattice is noticeably smaller
than that of �ST�2�BT�2.

Here, we present a model that includes this “size effect,”
based on the following expression for the energy of the su-
perlattice as a function of the scalar polarization pi of indi-
vidual unit-cell layers i

E = �
i

��ipi
2 + �ipi

4� + �
i

Ji,i+1pipi+1. �1�

Here �i and �i describe the anharmonic potential of a single
unit-cell layer, and Ji,i+1 represents the coupling between
nearest-neighbor layers. These parameters take values that
depend on the identity of the layer; for example, �i takes the
values �C , �S , �B for a CT, ST, or BT layer, respectively.
Similarly, �i takes the values �C, �S, �B, and there are six
interface terms JCC, JSS, JBB, JCS, JCB, and JSB.

To compute the energy for arbitrary values of the unit-cell
layer polarizations pi would thus require knowledge of 12
parameters. However, the approximate constancy of the po-
larization across unit-cell layers observed in the first-
principles results suggests a simplification in which, for each
superlattice, pi is taken to be uniform and equal to the overall
polarization. Substituting pi= p into Eq. �1�, we find that

E�p� = Ap2 + Bp4, �2�

where

A = �
�

N��� + �
�����

N���J���, �3�
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B = �
�

N���, �4�

and N� and N��� are the number of layers of type � and the
number of interfaces of type ��� appearing in the superlattice
sequence. The fact that NC=NCC+ �NCS+NCB� /2, and simi-
larly for NS and NB, for any periodic sequence of layers,
implies that the three �� parameters and the six J��� param-
eters enter Eq. �3� in a linearly dependent way. We can then
define

J̃��� = J��� +
�� + ���

2
, �5�

in order to rewrite Eq. �3� as

A = �
�����

N���J̃���. �6�

That is, we have eliminated the �� parameters; from now on,
we consider our model to be determined by the nine inde-

pendent parameters �C, �S, �B, J̃CC, J̃SS, J̃BB, J̃CS, J̃CB, and

J̃SB. In this case, taking the �CT�2�ST�2�BT�4 superlattice as

an example and using Eqs. �6� and �4� we get A= J̃CC+ J̃SS

+3J̃BB+ J̃CS+ J̃SB+ J̃CB and B=2�C+2�S+4�B.

We obtain the values of the nine model parameters

��� , J̃���� by fitting to the first-principles results for the six
two-component superlattices we considered. For each par-
ticular superlattice, the quadratic �A� and quatric �B� energy-
decomposition coefficients can be determined from first-
principles superlattice polarization pmin and its ground-state
energy E�pmin� relative to the structure constrained to have
zero polarization9 �see Table I�. These quantities are related
to coefficients A and B as follows:

E�pmin� � �E = Apmin
2 + Bpmin

4 , �7a�

	dE�p�
dp

	
p=pmin

= 0 Þ A + 2Bpmin
2 = 0. �7b�

The resulting parameters ��� , J̃���� are shown in Table
II.10 The ab initio ground-state superlattice energies �relative
to the corresponding nonpolar structures� and polarizations
are shown in the second and third columns of Table I. The
values of fitted superlattice polarizations as well as the dif-
ferences between them and their ab initio derived counter-
parts are shown in columns 4 and 5 of the same table. The
fitted polarization differences for the two-component super-
lattices are not presented, since they are, by construction,
equal to the ab initio ones. For the rest of the structures the
model shows a remarkable agreement with first-principles
results �
�pmin
�4% �. For the three-component superlattices

that possess inequivalent polarizations along �001� and �001̄�
due to the breaking of inversion symmetry,5,11 one could, in
principle, compare with the larger polarization, the smaller
one, or their average. We find empirically that the fit is best
when compared with the larger polarization, so we have cho-
sen to present these values in the table. The model performs
poorly only for the strained bulk CT, whose first-principles
value of polarization �computed in Ref. 5� represents an ex-
treme limiting case12 and cannot be well reproduced by the
model, which is fitted to the superlattice calculations.

The availability of such a convenient expression for com-
puting polarization with nearly ab initio precision allows us
to predictively identify the arrangements of the CT, ST, and
BT layers in a superlattice that would result in the largest
possible polarization enhancement. While for short-period
superlattices �N�10�, this could be done by straightforward
enumeration, the number of configurations increases rapidly
with N, necessitating a more sophisticated optimization pro-
cedure for longer-period superlattices.13 Here we use a ge-
netic algorithm14,15 in which a particular CT/ST/BT superlat-
tice of a given period N is represented by a “chromosome”
containing a sequence of C, S, and B “genes.” For example,
a �CT�2�BT�1�ST�2�BT�1 superlattice of period 6 is encoded
as a CCBSSB chromosome. The genetic algorithm also

TABLE I. The ab initio ground-state superlattice energies rela-
tive to the nonpolar structures, the values of ab initio and fitted
superlattice polarizations, as well as the differences between the
two for the two- and three-component superlattices of Ref. 5.

System
�E

�eV�

pmin


�C/m2�

pmin

fit 

�C/m2�


�pmin

�%�

Strained bulk:

CT −0.019 0.434 0.370 14.85

BT −0.044 0.368 0.363 1.30

Two-component:

�CT�1�ST�1 −0.005 0.026 0.026

�ST�1�BT�1 −0.025 0.231 0.231

�CT�1�BT�1 −0.039 0.231 0.231

�CT�2�ST�2 −0.007 0.168 0.168

�ST�2�BT�2 −0.039 0.245 0.245

�CT�2�BT�2 −0.081 0.306 0.306

Three-component:

�CT�1�ST�1�BT�1 −0.034 0.200 0.194 2.98

�CT�2�ST�2�BT�2 −0.057 0.242 0.249 2.94

�CT�2�ST�2�BT�4 −0.131 0.298 0.287 3.83

�CT�3�ST�3�BT�3 −0.082 0.260 0.265 1.91

TABLE II. Fitting parameters used to predict polarization in CT/ST/BT superlattices.

�C �S �B J̃CC J̃SS J̃BB J̃CS J̃CB J̃SB

0.584562 0.648676 0.833222 −0.159671 0.022111 −0.219844 −0.000834 −0.075701 −0.079061
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makes it easy for us to impose constraints on the optimiza-
tion, such as limiting the thickness of individual layers or the
average in-plane lattice constant of the superlattice, as dis-
cussed further below.

Our specific implementation of the genetic optimization
algorithm is as follows. We create an initial population of M
chromosomes �M is usually in between 2N and 3N� by ran-
domly assigning C, S, or B values to each gene in each
chromosome. The polarization of each chromosome is com-
puted using Eq. �7b�, and the chromosome’s “fitness” is
taken to be equal to the polarization. The current generation
of chromosomes is then replaced by the offspring-
chromosome generation, created as follows: First, the three
chromosomes with the highest fitness �the so-called elite
chromosomes� are copied into the offspring generation with-
out change to preserve the best solutions from the previous
generation. Second, the remaining M-3 members of the next
generation are created by applying the following three-step
procedure. �i� Two “parent” chromosomes are selected from
the current generation by the so-called roulette wheel selec-
tion procedure,16 which chooses a chromosome with a prob-
ability proportional to its fitness. �ii� With a probability of
10%, the offspring is taken to be identical to the parent with
better fitness. The remaining 90% of the time, a “crossover”
procedure is applied. We use a single-point crossover opera-
tor that randomly selects a single crossover point on the
chromosome and copies the genes from one parent up to that
point, and from the other after that point. �iii� Finally, the
offspring is subjected to a “mutation” operator, which
changes the current value of each gene into one of the two
other available variants—gene S, for example, could be
changed to either C or B—with a low probability �in our case
1%�. This entire selection and breeding process is continued
for a large number of generations, after which the best avail-
able chromosomes are identified. The number of generations
required to converge to a stationary population is directly
proportional to N, with 500 generations being enough for
most superlattices mentioned below. For each set of param-
eters, i.e., the superlattice period and possible layer-
sequencing restrictions, we perform five separate optimiza-
tion runs to ensure convergence to a consistent solution.

For any given N, if we impose no restrictions on the num-
ber of consecutively repeating layers of the same type, then
the optimal configuration turns out to be pure CT or BT �the
fitted polarizations of bulk CT and BT are very close �see
Table I��. The former solution dominates in long-period su-
perlattices, while in shorter-period ones �N�10� the latter
solution is found more often. This happens because, as
shown in Table I, in thin superlattice layers BT has larger
polarization than CT, which biases the optimization proce-
dure towards BT. However, as is well known, neither of
these configurations can be experimentally realized because
when grown beyond a critical thickness, CT or BT relaxes to
its natural in-plane lattice constant and the strain-induced
polarization enhancement is lost. Thus we constrain our op-
timization procedure so that only superlattices containing up
to a given number k of consecutive layers of the same type
are allowed.

With this “epitaxial growth” constraint, the optimal super-
lattices that we find fall into two families depending on the

relation between N and k. For even N and k�N /2 or for odd
N and k� �N−1� /2, the best solutions have the form of
�XT�k�YT�N−k or �XT�k�YT�N−k−1�ST�1, where �X ,Y� is �B ,C�
or �C ,B�. On the other hand, optimal superlattices for
smaller k �relative to the same period N� contain a number
of CT/ST/BT stripes and can be reduced to combinations of
the best solutions of the same form as above but with
smaller periods. For example, for �N ,k�= �12,4� we find
three optimal superlattices with polarizations in
the range of 0.32–0.33 C/m2: �CT�4�BT�4�CT�2�BT�2,
�CT�3�BT�4�CT�2�BT�3, and �CT�2�BT�4�CT�2�BT�4. Each of
these superlattices splits into two shorter ones with smaller N
and k. These are �8,4� �CT�4�BT�4 and �4,2� �CT�2�BT�2 for
the first, �7,4� �CT�3�BT�4 and �5,3� �CT�2�BT�3 for the sec-
ond, and two instances of �6,4� �CT�2�BT�4 for the third op-
timal superlattice, respectively. In what follows we restrict
the discussion to solutions for large k only, assuming that in
the opposite case optimal superlattices for any particular N
could be constructed by merging together an appropriate
number of the best large-k solutions for shorter periods.

We have carried out first-principles calculations for a few
short-period optimal superlattices to check that their ab initio
polarizations agree well with those predicted by the model.
We use a plane-wave-based DFT-local-density approxima-
tion method17 with ultrasoft pseudopotentials18 for structural
relaxation of the superlattices and the Berry-phase method of
the modern polarization theory6 to compute their total polar-
ization. The details of the calculations are the same as in Ref.
5. The results are presented in Table III and show that the
good agreement between ab initio and fitted values of polar-
ization in short-period CT/ST/BT superlattices is preserved.

Another feature of the superlattice relevant to the feasibil-
ity of its experimental realization is the mismatch between
the equilibrium in-plane lattice constant of the superlattice
�estimated by averaging over the unstrained lattice constants
of individual layers� and the lattice constant of the ST sub-
strate. The low substrate mismatch restriction tends to
balance the number of CT �aCT�aST� and BT �aBT	aST�
layers in the superlattice. With this additional screening step,
we find that the most polar CT/ST/BT superlattices that
emerge from the genetic optimization procedure have the
following form: �CT�N/2�BT�N/2 for even N, and
�CT��N−1�/2�ST�1�BT��N−1�/2 for odd N. It is worth pointing
out that adding one or two ST layers to CT and BT contain-
ing superlattices destroys their inversion symmetry without
seriously reducing polarization. The lack of the center of

TABLE III. Comparison between ab initio polarizations pmin

and fitted polarizations pmin
fit for a few polar short-period superlat-

tices identified by the genetic algorithm optimization procedure.

System �N ,k�

pmin


�C/m2�

pmin

fit 

�C/m2�


�pmin

�%�

�CT�1�BT�3 �4,3� 0.315 0.310 1.6

�ST�2�BT�3 �5,3� 0.279 0.275 1.2

�CT�2�BT�4 �6,4� 0.342 0.328 4.1

�CT�3�ST�1�BT�3 �7,3� 0.313 0.305 2.6
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inversion makes the superlattice polarizations along �001�
and �001̄� unequal, which provides for even greater flexibil-
ity in fine-tuning of the polar properties of such structures.

In Table IV we assemble a number of short-period CT/
ST/BT superlattices that were identified by the genetic algo-
rithm optimization procedure as being the most polar super-
lattices with a lattice mismatch of less than 0.5%, which
should allow them to be grown coherently.7 The following
first-principles lattice constants were used for the substrate-
mismatch analysis: aCT=3.813 Å �cubic�, aST=3.858 Å �cu-
bic�, and aBT=3.929 Å �tetragonal�. On average, the polar-
izations of the superlattices presented in Table IV are
predicted to be 10–30% higher than the computed polariza-
tions of the previously investigated structures5 shown in
Table I.

To conclude, we have used a first-principles-based one-
dimensional chain model for polarization in multicomponent
perovskite-oxide ferroelectric superlattices combined with a
genetic algorithm optimization procedure to study the con-
nection between the polar properties of a superlattice and its
layer sequence. We predict specific layering arrangements
that produce superlattices simultaneously possessing the
highest possible polarization and a low in-plane lattice-
constant mismatch with the substrate. Our method could be
applied to superlattices containing individual components
other than CT, ST, and BT, or more than three components,
as long as the polarization profile across the superlattice re-
mains sufficiently flat. Various additional restrictions on the
arrangement of components could easily be added to the ge-
netic algorithm optimization to design structures that are cus-
tom tailored for specific applications. Our predictions are for
ideal structures that are defect-free and fully switchable.
Since the remanent polarization of experimentally grown
perovskite-oxide ferroelectric superlattices is substantially
reduced due to structural defects and incomplete switching
of ferroelectric domains, the computed values are expected
to be higher than those observed. Nevertheless, since our
technique identifies the most polar layer sequences regard-
less of the absolute polarization and quickly eliminates un-
favorable arrangements, it can be used as a valuable tool to
guide the experimental efforts in the quest for more efficient
nanoelectromechanical devices with tailored and/or substan-
tially enhanced properties.
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