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Time-reversal broken Weyl semimetals have attracted much attention recently, but certain aspects of their
behavior, including the evolution of their Fermi surface topology and anomalous Hall conductivity with Fermi-
level position, have remained underexplored. A promising route to obtain such materials may be to start with
a nonmagnetic Dirac semimetal and break time-reversal symmetry via magnetic doping or magnetic proximity.
Here we explore this scenario in the case of the Dirac semimetal Cd;As, based on first-principles density-
functional calculations and subsequent low-energy modeling of Cd;As, in the presence of a Zeeman field applied
along the symmetry axis. We clarify how each fourfold degenerate Dirac node splits into four Weyl nodes, two
with chirality &1 and two higher-order nodes with chirality £2. Using a minimal k - p model Hamiltonian
whose parameters are fit to the first-principles calculations, we detail the evolution of the Fermi surfaces and
their Chern numbers as the Fermi energy is scanned across the region of the Weyl nodes at fixed Zeeman field.
We also compute the intrinsic anomalous Hall conductivity as a function of the Fermi-level position, finding
a characteristic inverted-dome structure. Cd;As, is especially well suited to such a study because of its high

mobility, but the qualitative behavior revealed here should be applicable to other Dirac semimetals as well.
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I. INTRODUCTION

The compound Cd;As; has been widely studied in recent
years for its three-dimensional graphenelike characteristics
[1-6]. The existence of three-dimensional Dirac cones at the
Fermi level in this compound has attracted much attention in
the field of topological semimetals, as the only Dirac semimet-
als observed experimentally to date are Cd; As, [7] and Na3Bi
[8,9]. Cd3As, has many interesting properties in addition to
the existence of the Dirac cone, such as an abnormally large
g factor of around 20 [10], which still demands microscopic
understanding. Most of the interest in the past few years has
focused on the Dirac crossing, which is protected by the
crystalline Cy,, symmetry.

Starting from a Dirac Hamiltonian, a Weyl semimetal
phase [11] can be reached by breaking either inversion sym-
metry or time-reversal (TR) symmetry [12]. TR symmetry can
be broken by doping with magnetic ions, by proximity effects
near an interface to a magnetic material, or by application of
an external magnetic field.

In the first two cases, the TR breaking is most naturally
represented in terms of an effective Zeeman field acting on the
spins, while the last also brings in orbital effects. A previous
study of the Dirac semimetal Na3Bi and its evolution into a
Weyl semimetal phase under Zeeman field has been discussed
using tight-binding methods in Ref. [13], but this material
may not be an optimal choice for such a study in view of its
chemical instability.

Regarding orbital effects in Cds;As;, the quantum Hall
effect in a nanoplate of thickness 50 — 100 nm has been ex-
perimentally reported and attributed to Weyl orbit formation
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[14]. Thus, the appearance and evolution of the Weyl nodes
in Dirac materials with TR-broken perturbations is a topic of
pressing interest.

In this paper, we focus on the effects of a Zeeman field on
the nodal structure, Fermi-surface configuration, and anoma-
lous Hall conductivity of Cd;As,. Our work is motivated in
part by a recent proposal [15,16] that a Dirac semimetal could
be a platform for the realization of unconventional supercon-
ductivity in a TR-broken Weyl semimetal [16] resulting from
the presence of magnetic dopants or proximity to a magnetic
substrate or overlayer.

We start from realistic first-principles density functional
theory (DFT) calculations in which a Zeeman field is ap-
plied along the symmetry axis, and then construct a linearized
k - p model to describe the low-energy physics near the Dirac
point. While elementary discussions often describe the TR-
symmetry breaking as resulting in a splitting of the Dirac
node into a pair of Weyl nodes, we clarify that four Weyl
nodes appear instead. For a given strength of Zeeman field,
we give a detailed description of the evolution of the Fermi
surfaces of the electron and hole pockets and their nontrivial
Chern numbers as the Fermi level Ef is tuned over the range
of energies where the Weyl points occur. We also compute
and track the anomalous Hall conductivity, paying special
attention to its behavior as Er passes through the Weyl node
positions, predicting a characteristic signature that we suggest
as a target of future experimental observation.

II. ELECTRONIC STRUCTURE OF Cd3;As, UNDER
ZEEMAN FIELD

A. First-principles calculations

Figure 1(a) shows the crystal structure of the Cd;Asy,
corresponding to a defective antifluorite structure. The com-
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FIG. 1. (a) Conventional unit cell of Cd;As, with space group
141 /acd. (b) Brillouin zone of the primitive unit cell with posi-
tion of Dirac points. (¢) Cd s (red circles) and As p (blue circles)
character projected onto the energy manifold under nonmagnetic
PBE+SOC approximation. (d) PBE4+SOC band structure with linear
Dirac crossing at the Fermi level.

pound has an intermediate-temperature phase above 475 °C
with space group P4, /nmc [1] having 40 atoms in the prim-
itive cell. A high-temperature Fm3m antifluorite phase has
also been reported above 600 °C. There has been confusion
in the literature about the low-temperature phase that oc-
curs below 475 °C [7,17,18]. A previous work identified
the low-temperature phase as a noncentrosymmetric /4;cd
structure [17,18], and subsequent theoretical tight-binding
calculations were carried out on this structure to propose a
possible TR-symmetric Weyl semimetal phase with broken in-
version symmetry [3]. However, recent experiments [7] clarify
that this phase is indeed centrosymmetric, with space group
14 /acd containing 80 atoms per primitive cell. We focus on
the latter structure here. The conventional 160-atom cell is
shown in Fig. 1, and consists of eight layers of Cd atoms
and eight layers of As atoms stacked along the ¢ axis. The
structure can be regarded as an antifluorite structure with 25%
vacancies on the Cd sites, with each As atom having six Cd
nearest neighbors.

DFT calculations are carried out in a full-potential linear
augmented plane wave framework as implemented in the
WIEN2K package [19]. The Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [20] is employed. Spin-orbit
coupling (SOC) is taken into account using the second-order
variational approach implemented in the WIEN2K package.

The PBE band structure in Fig. 1(c) shows the nonmagnetic
band structure near the Fermi level. All bands are doubly
degenerate because of the presence of inversion and TR sym-
metry. Two of these degenerate bands cross each other at a
Dirac point (fourfold degeneracy) protected by C4 symmetry
at k, = +kp on the I'-Z path along the k, axis. The Cd s and
As p orbital projections shown in Fig. 1(c) indicate that the
crossing occurs between an s band with positive slope and a p
band with negative slope. By symmetry, there will be another
Dirac point at k, = (0,0, —kp) as shown in Fig. 1(b). The
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FIG. 2. (a) Nonmagnetic PBE+SOC band structure of cross-
ing Dirac bands along the I' — Z direction. (b) Same but along
X' —T'"—X' at k, = kp, i.e., passing through the Dirac point. (c),
(d) Same as (a), (b) but under a Zeeman field of 2 = 100 T along
the [001] direction. Inset of (c) shows four Weyl nodes labeled as w,
through wy.

zoomed view in Fig. 1(d) shows the crossing point along the
positive k, axis.

To study the Weyl semimetal phase of Cd;As,, we cal-
culate the band structure under an effective Zeeman field
introduced to represent the effect of doping with magnetic
impurities at a mean-field level. This is similar to the spirit of
previous works such as the study of the quantum anomalous
Hall effect in Cr-doped topological insulator films of Bi,Tes
[21,22]. We anticipate collinear easy-axis ferromagnetic order
and thus apply the field along the 2 symmetry axis. While our
theory treats the effective Zeeman field / as a free parameter,
we have chosen to present our results for 2 = 100 T, corre-
sponding to a splitting of 11.6 meV for a free electron, which
could be a reasonable spin-exchange field achievable by mag-
netic doping. Orbital magnetic effects, such as those that give
rise to magnetoresistance oscillations, are not considered in
our theory.

The effect of the Zeeman field on the band structure of
the Dirac semimetal is presented in Fig. 2. For reference,
Fig. 2(a) shows the band dispersion along the ['-Z symmetry
axis in the absence of the Zeeman field. The Dirac crossing
occurs at k, = kp = 0.037 10%‘1, and by definition at zero en-
ergy. Henceforth we also reset the origin of k, to coincide
with the Dirac point location kp, so subsequently &, is always
measured relative to kp. The dispersions of the two crossing
bands are roughly quadratic relative to I', but show a linear
crossing character when attention is focused sufficiently close
to kp.

Figure 2(b) shows the corresponding band structure plotted
along a straight line passing through the Dirac point and
parallel to X—-I"-X (hence labeled (X'-I""-X"). The crossing is
clearly linear sufficiently close to the Dirac point at the center,
with quadratic and higher variations further from I'’. By con-
trast, for the smaller P4,/nmc unit cell proposed previously
[1], we find that the corresponding curve has almost no linear
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component, with quadratic and higher behaviors dominating
even very close to the Dirac point.

Figures 2(c) and 2(d) show the corresponding results in the
presence of the effective Zeeman field of # = 100 T along the
z axis. The Kramers-degenerate bands are now all split by the
Zeeman field. Along the I'-Z direction shown in Fig. 2(c), the
crossing bands belong to different irreducible representations
of the C; rotation operator, so there is no avoided crossing.
Instead, each of the four crossings generates a Weyl node.
The structure in the vicinity of these crossings is shown in the
inset of Fig. 2(c), where the four crossing bands are shown
in red, green, orange, and blue in order of increasing energy.
The four Weyl nodes generated from the crossings are labeled
as w;, with w; connecting the bottom two bands, w, and w3
connecting the middle bands, and w4 connecting the top two
bands. Figure 2(d) shows the dispersion on the same X'-TI"'-X’
line as in Fig. 2(b); this line does not pass exactly through
any of the Weyl points, so the states are all nondegenerate at
I'". The dispersion looks like two copies of Fig. 2(b), slightly
shifted in energy by the Zeeman perturbation, and with each

J

showing an avoided crossings at I'' because of the influence of
SOC. The details of the structure in the vicinity of the avoided
crossings in Fig. 2(d) will become clearer in the context of the
effective k - p model that we introduce next.

B. Effective k - p Hamiltonian

To understand the behavior of this system and compute
its anomalous Hall conductivity for Fermi level positions
in the vicinity of the Weyl nodes, it is useful to intro-
duce a minimal effective k - p model for the bands in this
region. Following the work of Wang et al. [3,8], our ef-
fective Hamiltonian is written in the basis of spin-orbit
coupled states |Sl/27-lz =1/2), |P3/2,JZ =3/2), |Sl/27Jz =
—1/2), and |P33, J. = —3/2), where s and p states reside on
Cd and As atoms, respectively. After defining k relative to the
Dirac point at (0, 0, kp), expanding in powers of k, and keep-
ing the leading terms allowed by symmetry, the Hamiltonian
takes the form

vsk, + Bsh Ak, 0 Gk?
Ak_ —v,k, + Byh Gk* 0
H(k) = Pyt 1
() 0 Gk vsk, — Bsh —Ak_ M
Gk% 0 —Ak, —vyk, — Bph

The terms involving v, v,, and A describe a slightly tilted
Dirac cone with perfectly linear dispersion, where v, and v,
are the magnitudes of the Fermi velocities for the s and p
bands, respectively, and A determines the Fermi velocity in
the k, and k, directions, where ki = k, &£ ik,. Parameters B
and B, represent the effect of the Zeeman exchange field h
on the two sets of states. Quadratic terms involving kz2 and
k} + k; have been omitted on the grounds that they will not
be important when working in a small region of (k, E') space
close to the Dirac point, and because they do not induce any
Berry curvature.

By contrast, we have included the quadratic terms involv-
ing Gk%r and Gk?. These represent SOC and have important
qualitative and quantitative effects on the nature of the Fermi
surfaces and the anomalous Hall response. Without these
terms, the upper-left and lower-right 2 x 2 blocks of H(k)
(the spin-up and spin-down sectors) would be completely
uncoupled, leading to the existence of nodal loops where
spin-up and spin-down Fermi surfaces intersect. Wieder et al.
[23] pointed out [see their Supp. Eq. (237)] that the fourfold
rotational symmetry actually allows the Gki and Gk* terms
to be generalized to Gk + G/kfr and Gki + G'k2, respec-
tively, with G’ <« G. The inequality arises because G’, unlike
G, would vanish in the presence of continuous rotational
symmetry and is only induced by an additional weak crystal
field perturbation. We therefore neglect the G’ term in this
paper.

The parameters A, G, v;, vp, B, and B, are computed
from the PBE+SOC band structure calculations to make our
microscopic model Hamiltonian close to the realistic picture.
The parameter A is taken from the slope of the bands at the

(

Dirac crossing plotted in the (ky, k,) plane at k; = kp in the
absence of an external field, as shown in the Fig. 2(b). The
parameters vy and v, are given by the slopes of the Cd s
and As p bands at their crossing point, as in Fig. 2(a). The
parameters B, and B, describe the linear dependence of the
exchange splittings of the Cd s and As p bands on the strength
of the Zeeman field A, as determined by the band splittings
very close to the Weyl nodes.

The prefactor G of the off-diagonal ki and k* terms is
obtained from a close inspection of the bands near £ = Ef in
Fig. 2(d), where a tiny gap (not visible in the figure) arises at
each crossing between the second and third bands. In the ab-
sence of G, the spin-up and spin-down sectors would become
completely decoupled, Eq. (1) would become block diagonal,
and these avoided crossings would disappear. Thus, a nonzero
G is required for a qualitatively correct description. However,
the determination of G is rather sensitive to details of the
first-principles band structure, so we later allow it to vary to
study how these avoided crossings affect the anomalous Hall
conductivity.

The parameter values obtained as described above
from the first-principles calculations are A = 0.99eV-A,
v, = 2.68eV-A, v, = 0.56eV-A, B, = 0.054meV/T, , =
0.115meV/T, and G = 10 eV-A2. The last three were ob-
tained from calculations at # = 100 T, but their values are
not sensitive to variations of % in this range.

C. Chirality and Chern numbers of Fermi pockets

The k - p model described above allows for a convenient
description of the locations of the Weyl points, the shapes of
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FIG. 3. (a) Dispersion of the four Dirac-derived bands along the
k, axis within the k - p model. Bands are colored red, green, orange,
and blue in order of increasing energy; Weyl points w, w,, w3, and
wy are marked. (b) Electron pocket in third band (orange) and hole
pocket in second band (green) for Er = 0, as indicated by horizontal
orange and green lines in (a). Weyl point positions are shown by dots
on the k, axis.

the Fermi surfaces, and the behavior of the anomalous Hall
conductivity in the vicinity of the Dirac crossing.

As discussed earlier and illustrated in the inset of Fig. 2(c),
the single Dirac crossing in the absence of Zeeman field pro-
duces a set of four Weyl points on the k, axis in the presence of
the field. Within our k - p model, the bands are exactly linear
along the k, axis as illustrated in Fig. 3(a), and the locations
k. ; of the Weyl points w; ... w4 are

k1 =—=(Bp — Bh/(vs + vp),
k.o = —(Bs + Bph/(vs + vp),
k.3 = (Bs + Bp)h/(vs + vp),
kea = (Bp — B)h/(vs + vp).

The corresponding chiralities are x; = —1, x» = —2, x3 =
42, and x4 = +1, as obtained analytically [24-26] from the
model Hamiltonian. Our sign convention is such that a Weyl
node of positive chirality is a source and sink of Berry curva-
ture in the conduction and valence bands, respectively [27].
This is the opposite sign convention from that adopted in
Ref. [28] and some other works. As a reminder, w; connects
the bottom two bands, w, and ws connect the middle bands,
and w4 connects the top two bands of the four-band group.
With our model parameters, Weyl points w; and w,4 occur at
k,=F1.9x102 A" and E = F10.5meV, and w, and w3
occuratk, = F5.2x 102 A~ and E = F8.6 meV.

Next, we vary the Fermi level over the energy range
of the Weyl points and study the evolution of the Fermi
surfaces. For this purpose it is convenient to transform to
cylindrical (k,, kg, k;) coordinates, with kﬁ = kf —I—ky2 and
ky = tan“(ky/kx). The symmetry of Eq. (1) is such that
E(k) = E(k,, k;) independent of kg, so all Fermi surfaces
have cylindrical symmetry within this model, and it is con-
venient to plot Fermi surfaces in (k,, k) space. For example,
Fig. 3(b) shows the Fermi surfaces for the case Er = 0, the
nominal charge neutrality point. (The full 3D Fermi surface
would be obtained by rotating this figure about the k, axis.)
Referring back to Fig. 3(a), it is clear that the orange Fermi
surface is an electron pocket surrounding occupied Weyl point
w,, while the green one is a hole pocket surrounding unoc-
cupied Weyl node ws;. The small gap separating the orange
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FIG. 4. (a) Band structure showing several Fermi-level positions
(dashed lines) as Er is tuned across the energy range of the Weyl
nodes. (b) Contours of Fermi surfaces projected on the (k,, k,) plane
corresponding to each Fermi-level position, for G = 10eVA?2, with
k. and k, in units of 10~2A~!. Chern numbers of electron and hole
pockets are indicated.

and green Fermi surfaces in Fig. 3(b) is a consequence of the
nonzero G parameter in our model. Corresponding figures for
a range of Fermi energies spanning over the range of Weyl
points are shown in Fig. 4.

The Chern number C, of a Fermi pocket band in band n
is obtained by calculating the Berry flux passing through its
Fermi surface [29,30] according to

1
Co=—¢ dkQ,(k), A3)
27T Sk
where
Q=R Vp 4)

is the surface-normal component of the Berry curvature. Note
the sign convention: Vg is the Fermi velocity unit vector,
which is outward-directed for electron pockets and inward for
hole pockets as illustrated in Fig. 3(a). The Berry curvature
components in tensor notation (2,5 = €48, $2,,) are computed
using the Kubo formula

Qupn=2Im
m#n

(n|vg|m){mlvg|n)

(En—En)?* ©)

where v, = 0H/dk, are the velocity operators. In practice, we
carry out the calculation in cylindrical coordinates, computing
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Q. from matrix elements of v,, vy, and 2, from matrix
elements of vy and v,. To evaluate Eq. (4), we need to com-
bine these as Q = (2,vr,, + Q. Vr;)/IVr|. Then the Fermi
surface integral is carried out by discretizing each (k,, k;)
path describing a Fermi surface, such as the green curve in
Fig. 3(a). We then compute the needed ingredients at each
(ky, k) point along the path and sum, taking account of phase
space details such as the 2w coming from the k, integral.
We have checked that the results are always very close to
integer values as long as the discrete sampling is sufficiently
dense.

The resulting Fermi surface Chern numbers are shown for
a range of Fermi level positions in Fig. 4. The Fermi level
positions are indicated by black dashed lines in Fig. 4(a) and
the corresponding Fermi surfaces projected onto the k, — k;
plane are shown in Fig. 4(b).

Starting from the top of Fig. 4, where the Fermi level
crosses only the blue and orange bands, the Chern numbers
are +1 and —1 for these bands, respectively. This is con-
sistent with Gosalbez-Martinez et al. [28], where the Chern
number C, of a Fermi surface in band n was shown to be
equal to the sum of chiralities of the enclosed Weyl points
connecting to band #n — 1 minus the corresponding sum for
touchings with band n 4 1. For the blue band, there is only
a single contribution of the first type, coming from w4 with
x4 = +1, giving C4 = +1. For the orange band, w, and w3
contribute positively and w4 contributes negatively, giving
G=(=2)+H2)-(+)=-1

The remaining panels of Fig. 4 show the evolution of the
Fermi surfaces as the Fermi energy is swept through the
region of the Weyl points. We find topologically nontriv-
ial Fermi pockets in all cases, suggesting that Cd;As, may
be a promising material for realizing unconventional super-
conductivity based on topological Fermi surfaces in a Weyl
semimetal [15,16]. When the Fermi level is at the nominal
charge neutrality level of Er = 0, we find electron (orange)
and hole (green) pockets with Chern numbers F2, respec-
tively. The effect of the finite G=10 eVA? makes a small
separation between these pockets, as shown in Fig. 4(b), with
a separation that grows larger as G is increased. In the next
section, we investigate the effect of varying this parameter on
the Berry curvature and anomalous Hall conductivity of the
system.

D. Berry curvature

As we shall see, the parameter G in the k- p Hamil-
tonian plays an important role in producing Berry cur-
vature and influencing the anomalous Hall conductivity.
However, even when G =0, Berry curvature is present.
In this case, the separation between the electron and
hole pockets in Fig. 4(b) for Er near zero vanishes. In
this case, the spin-up and spin-down sectors of Eq. (1)
do not mix, and their ellipsoidal Fermi surfaces inter-
sect without any avoided crossing. Nevertheless, there is
still a nonzero Berry curvature, since Weyl points w;
and w4 are still present and serve as equal and op-
posite sources of Berry flux in the two spin sectors.
The fact that these are offset from one another along
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FIG. 5. (a)-(c) Band structure plotted versus k, for three dif-
ferent values of k, when G is zero. (d)—(f) Berry curvature of the
corresponding bands, color-coded accordingly.

the k, axis allows for a nonzero net anomalous Hall
conductivity.

Figures 5(a)—(c) show the band structure plotted versus
k, for three values of k,. At the critical value k;, = k;3 =
0.0052 A (not shown), the second and third bands have a
quadratic touching; this will become the location of Weyl
point w3, but with G = 0 it is still part of a surface of degen-
eracy between the second and third bands. The corresponding
Berry curvature of the bands is plotted in Figs. 5(d)-5(f).

Turning on a finite G causes a mixing of the spin-up
and spin-down sectors, so crossings between bands associ-
ated with these sectors are gapped almost everywhere. The
exceptions are the locations of the quadratic Weyl points w;
and w3, which survive the arrival of the finite G. Because G
multiplies ki and k% terms in Eq. (1), it is responsible for
the higher-order (¥ = =£2) nature of these Weyl points. The
band structures are shown in Figs. 6(a)-6(c) for a G value of
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FIG. 6. (a)-(c) Band structure plotted versus k, for three differ-
ent values of k, when G is 10 eVA2. (d)—(H) Berry curvature of the
corresponding bands, color coded accordingly.

165115-5



SANTU BAIDYA AND DAVID VANDERBILT

PHYSICAL REVIEW B 102, 165115 (2020)

10eVA2. There are now small avoided crossings between the
second and third bands in Figs. 6(a) and 6(b). Figures 6(d)—
6(f) show the corresponding Berry curvature on these bands,
showing very large peaks near the avoided crossings, with the
potential to make large contributions to the anomalous Hall
conductivity.

E. Anomalous Hall conductivity

Once the TR symmetry is broken by the presence of the
Zeeman field, a nonzero Hall conductivity o3 is expected
on symmetry grounds. We refer to this as anomalous Hall
conductivity since we have in mind that the magnetic order
has its origin in magnetic impurities or proximity effects.
We note in passing that Hall conductivity measurements have
been reported for Cds;As, nanoplates [14,31]. Here we report
the behavior of the intrinsic anomalous Hall conductivity as
a function of Fermi-level position in the context of our k - p
model of bulk Cd3As,. In doing so, we neglect extrinsic defect
scattering mechanisms, which could play a role experimen-
tally, especially when magnetism is introduced by magnetic
dopants. We expect these contributions to be relatively fea-
tureless as a function of Fermi level position, and in any case
they are beyond the scope of the present paper.

To calculate the intrinsic anomalous Hall conductivity, we
have adopted the Fermi-surface integral approach of Refs.
[29,30]. In this formulation,

— 1
Oup = 72_7_[2 an:eaﬂyKny s (6)
where
1
Ky = — ¢ d*kQ,k 7
=m$ , @)

measures the surface-normal Berry flux passing through the
Fermi surface, as in Eq. (3), but now weighted by the wave-
vector component k,. As the z component of the intrinsic
anomalous Hall conductivity (i.e., G){)\CHC) is the only one al-
lowed by symmetry, we compute K,,, for each band » and for
each point on the Fermi surface and integrate, as described
previously below Eq. (5) for the earlier Chern-number calcu-
lation.

The resulting anomalous Hall conductivity is plotted as
a function of Fermi-level position for several values of the
G parameter in Fig. 7, again for our reference Zeeman
field of =100 T. The analysis above applies to the split
Dirac cone located on the positive k, axis, but there is
an equal contribution coming from the inversion image on
the negative k, axis (inversion does not reverse the sign
of the anomalous Hall conductivity), giving an additional
factor of 2 that has been included in the results presented
in Fig. 7.

When G = 0, we find a result that is nonzero but constant
as a function of Fermi level position. Further investigations
shows that the spin-up and spin-down contributions are both
perfectly linear in Ep, as expected for tilted Weyl cones,
but the slopes are equal and opposite so that the sum is
constant. However, these contributions do not simply cancel;
the constant residual can be understood as coming from the
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FIG. 7. Anomalous Hall conductivity 04" plotted versus Fermi
level position for several values of the G parameter. Ener-
gies of the Weyl nodes are indicated by the vertical dashed

lines.

off-centering along k, of the spin-up and spin-down Weyl
cones.

Turning now to the results for nonzero G, we find that
an additional contribution to the anomalous Hall conductiv-
ity grows in with increasing G. This contribution follows an
interesting pattern in which there is an inverted dome in the
energy region between the upper and lower pairs of Weyl
nodes, a relatively smaller contribution near those nodes, and
then a further growth that is roughly linear in |Er| in the
energy range outside the nodes. We have varied the effec-
tive Zeeman field value from 100 T to 400 T and obtained a
qualitatively similar behavior. This distinctive behavior of the
anomalous Hall conductivity could serve as a fingerprint of a
material with a Zeeman-split Dirac cone if it can be observed
experimentally, as by transport measurements of a gated thin
film.

III. SUMMARY AND CONCLUSIONS

Motivated to understand the effect of magnetic order aris-
ing from magnetic doping or proximity in the Dirac semimetal
CdsAs;, we have presented a detailed investigation of the
splitting of the Dirac node into Weyl nodes in the presence
of a TR-breaking Zeeman field oriented along the symmetry
axis. We emphasize that the Dirac node does not simply split
into a pair of Weyl nodes with chirality 1 as is commonly
expected. Instead, we find two nodes of chirality £2 connect-
ing the nominal valence and conduction bands, in addition to
nodes of chirality 1 connecting lower and higher pairs of
bands. Starting from first-principles density-functional calcu-
lations and fitting a k - p model that is well suited to explore
the low-energy physics, we analyze the evolution of the Fermi
surfaces, their Chern numbers, and their contributions to the
anomalous Hall conductivity, as a function of Fermi level
position using the k - p model. The behavior of the anoma-
lous Hall conductivity shows a distinctive pattern that may
be a suitable target for experimental confirmation. The pres-
ence of multiple, topologically nontrivial electron and hole
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pockets for Fermi energies near charge neutrality suggests
possible avenues for the realization of novel forms of super-
conducting pairing. Finally, we anticipate that the methods
presented here can find use more generally in unraveling
the intriguing physics of TR symmetry breaking in Dirac
semimetals.
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