
PHYSICAL REVIEW B 66, 104108 ~2002!
Theory of structural response to macroscopic electric fields in ferroelectric systems
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~Received 18 May 2002; revised manuscript received 29 July 2002; published 30 September 2002!

We have developed and implemented a formalism for computing the structural response of a periodic
insulating system to a homogeneous static electric field within density-functional perturbation theory~DFPT!.
We consider the thermodynamic potentialsE(R,h,E) andF(R,h,P), whose minimization with respect to the
internal structural parametersR and unit cell strainh yields the equilibrium structure at fixed electric fieldE
and polarizationP, respectively. First-order expansion ofE(R,h,E) in E leads to a useful approximation in
which R(P) and h(P) can be obtained by simply minimizing the zero-field internal energy with respect to
structural coordinates subject to the constraint of a fixed spontaneous polarizationP. To facilitate this mini-
mization, we formulate a modified DFPT scheme such that the computed derivatives of the polarization are
consistent with the discretized form of the Berry-phase expression. We then describe the application of this
approach to several problems associated with bulk and short-period superlattice structures of ferroelectric
materials such as BaTiO3 and PbTiO3. These include the effects of compositionally broken inversion symme-
try, the equilibrium structure for high values of polarization, field-induced structural phase transitions, and the
lattice contributions to the linear and the nonlinear dielectric constants.

DOI: 10.1103/PhysRevB.66.104108 PACS number~s!: 77.22.Ch, 77.65.Bn, 77.84.Dy, 71.15.2m
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I. INTRODUCTION

As the usefulness of density-functional theory~DFT! for
the study of dielectric materials is now well established, o
might imagine that calculations of crystalline insulators
the presence of a homogeneous macroscopic electric
should be routine. On the contrary, the presence of an ele
field introduces several severe difficulties.1,2 The electric po-
tential acquires a term that is linear in the spatial coordina
thus violating the periodicity condition underlying Bloch
theorem and acting as a singular perturbation on the e
tronic eigenstates. Moreover, in principle there is no longe
well-defined ground state for the electrons in a solid in
macroscopic electric field because the energy of the sys
can always be lowered by transferring electrons from
valence band in one spatial region to the conduction ban
a distant region.

One way around these difficulties is to make use
density-functional perturbation theory~DFPT!,3–5 which pro-
vides a framework for calculating the perturbative respo
to infinitesimal electric fields~as well as to atomic displace
ments and strains!. DFPT has been widely adopted for man
studies of the dielectric and piezoelectric properties and
namic effective charges of dielectric materials. However,
ing a perturbative approach, the method is not capable
treating a finite electric field directly.

A more direct attack on the finite-field problem was ma
by Nunes and Vanderbilt,1 who showed that a real-spac
Wannier-function representation could be used to repre
the electronic system in the presence of a finite electric fie1

In this approach, one minimizes a total-energy functiona
a set of field-dependent Wannier functions for a periodic s
tem at fixed electric field. Alternatively, the minimization ca
also be performed at fixed polarization via a Legendre tra
formation of the energy functional with the electric fie
treated as a Lagrange multiplier. The approach was im
mented in the DFT context by Fernandezet al.,6 but proved
too cumbersome to find widespread utility.
0163-1829/2002/66~10!/104108~17!/$20.00 66 1041
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In the present paper we propose a scheme for the tr
ment of a dielectric system in a static homogeneous elec
field. Our scheme is based on a low-order truncation of
DFPT perturbative expansion in electric field, and the use
this truncated expansion to extrapolate to finite electric fie
A key feature of our approach is that, while we keep on
low orders in the expansion in electric field, we effective
keep all orders of expansion in the structural degrees of f
dom. We demonstrate that even a first-order truncation of
electric-field perturbation provides a very useful and pra
cal scheme. In this context the electric field simply coup
to the zero-field polarization, so that the latter plays a cen
role in our formulation. In fact, it is rather natural to formu
late our approach in terms of a constrained minimizat
procedure in which the DFT energy functional is minimiz
over all structural degrees of freedom subject to a constr
on the value of the polarization. This allows a two-step a
proach in which one first maps out the energy surface a
function of polarization in the DFT framework, and then us
this energy surface, augmented by the coupling to the elec
field, to obtain the ground-state structure in the presenc
the field. We will show that essentially no additional appro
mations are needed beyond the first-order truncation of
free-energy expansion in electric field. We will also sho
that the methodology can be extended to second order~or, in
fact, to any desired order! in the electric field.

Our approach is partially inspired by recent work of F
and Cohen on polarization rotation in BaTiO3.7 These au-
thors made a partial map of the energy surface as a func
of the direction of the zero-field polarization, and then use
to study applied fields in a way similar to that describ
above. However, the energy for a given polarization direct
was obtained by minimizing the energy of structures with
fixed direction of the Ti displacement relative to the Ba ato
using this as an approximate representation of the polar
tion direction. By using the polarization itself as the co
straint, and by mapping the energy in the full thre
©2002 The American Physical Society08-1
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dimensional polarization space, we arrive at a more accu
and systematic approach, generalizable to any insulator.

Before proceeding, we should acknowledge an additio
theoretical subtlety associated with the correct choice
exchange-correlation functional in the electric-field proble
Gonze, Ghosez, and Godby8 ~GGG! argued that the exac
Kohn-Sham exchange-correlation energy functional sho
have a dependence on the macroscopic polarization and
mulated a ‘‘density-polarization functional theory’’ in whic
there is generally an exchange-correlation contribution to
Kohn-Sham electric field.8 While this was an important for
mal development that subsequently received m
attention,9–11 it has not yet led to an improved practic
exchange-correlation functional. We thus restrict oursel
here to the usual LDA exchange-correlation function
where, because of the locality of the central approximati
the subtleties identified by GGG do not arise.

This paper is organized as follows. In the next section,
present our formalism for computing the structural respo
of an insulating system to an electric field. Some details
the implementation are presented in Sec. III, including
tails of our minimization procedure, a discussion of mod
cations that we made to the DFPT procedure to achieve c
patibility with the discretized Berry-phase polarizatio
formula, and a description of the technical details of theab
initio pseudopotential calculations. Then, in Sec. IV,
present several sample applications of our method. In S
IV A, we show that it provides an alternative approach to
study of short-period ferroelectric superlattice structures w
broken inversion symmetry.12 In Sec. IV B we present a
study of the dependence of the internal structural parame
of BaTiO3 on polarization. In Sec. IV C we show that ou
method provides a straightforward way of computing the
electric susceptibilities and piezoelectric coefficients as fu
tions of the electric field, thus allowing an estimation of t
nonlinear dielectric and piezoelectric response in a ferroe
tric system. Finally, in Sec. IV D, we consider a case
which a full three-dimensional treatment of the polarizati
and the structural distortions is needed. Specifically,
model the polarization rotation and structural phase tra
tions induced by the application of a macroscopic elec
field to a model ferroelectric system and relate our result
recent experiments in PZN-PT.13 Finally in Sec. V, we sum-
marize our work and discuss the prospects for future ap
cations of our approach.

II. FORMALISM

Our goal is to investigate the effect of a homogeneo
static electric field on the structure and polarization of po
insulators, including systems with a nonzero spontaneous
larization. In addition to an efficient approach for compu
tion, we also aim towards a formulation that readily allow
an intuitive understanding of the effects of the field. As w
become clear below, this will lead us to a formulation
which the polarization plays an especially prominent role

A. Case of a single minimum

Let E be the macroscopic electric field,R the atomic co-
ordinates, andh the lattice strain, and assume that the to
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energy per unit cellE(R,h,E) has a single local minimum o
interest in the (R,h) space for givenE. ~This restriction is
normally appropriate for a paraelectric material, but not fo
ferroelectric one. The existence of multiple local minima
the latter case calls for a more careful discussion, which
deferred to the following subsection.! We let

E~E!5min
R,h

E~R,h,E! ~1!

and denote the location of the minimum byReq(E) and
heq(E). The polarizationP(R,h,E), the thermodynamic con
jugate of E, can then be obtained from the expressi
P(R,h,E)52@dE(R,h,E)/dE#uR,h and P(E) obtained by
evaluating P@Req(E),heq(E),E# or, equivalently, 2dE(E)/
dE.

We can recast this minimization into a form in which th
polarization is more central. ViewingE(R,h,E) as a thermo-
dynamic potential that minimizes to equilibrium values ofR
andh at fixedE leads naturally via a Legendre transform
tion to a thermodynamic potentialF(R,h,P) that minimizes
to equilibrium values ofR andh at fixedP:

F~R,h,P!5min
l

@E~R,h,l!1l•P#

5E@R,h,l~R,h,P!#1l~R,h,P!•P ~2!

with l(R,h,P) being the value at the minimum. This i
equivalent toP(R,h,l)5P, that is,l(R,h,P) is the value
of the macroscopic field necessary to produce polarizatioP
at givenR andh.

We then define the function

F~P!5min
R,h

F~R,h,P!5F@Req~P!,heq~P!,P# ~3!

with Req(P) and heq(P) being the values at the minimum
These structural parametersReq(P) and heq(P) are in fact
equal toReq(E) andheq(E), the structural parameters define
by minimizing E(R,h,E) at the corresponding fixedE
5l@Req(P),heq(P),P#. The polarization at this extremum is
as expected,

P@R~E!,h~E!,E#5P$Req~P!,heq~P!,l@Req~P!,heq~P!,P#%

5P. ~4!

Finally, we reexpress the original minimization as

E~E!5min
P

@F~P!2E•P#. ~5!

In this expression, the electric fieldE appears only in the
term 2E•P, and thus the effects of the field can be com
pletely understood by investigating theE-independent free
energy landscapeF(P).

B. Case of multiple stationary points

In many cases of interest, the functionE(R,h,E) has sev-
eral local minima, and the essential physics of the problem
to map out the competition between these minima. For
8-2
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THEORY OF STRUCTURAL RESPONSE TO . . . PHYSICAL REVIEW B66, 104108 ~2002!
ample, in a tetragonal ferroelectric like PbTiO3, there are six
degenerate minima of this function atE50, and the applica-
tion of a nonzeroE breaks the symmetry and establishes o
dominant domain orientation of the polarization. However
may also be of interest to follow the behavior of the oth
local minima, corresponding to metastable states, as we
other stationary points of this energy surface. For exam
saddle points and local maxima ofE(R,h,E) can correspond
to stable states for fixedP.

In such cases, it is straightforward to generalize the p
vious discussion by associating a label~n! with each station-
ary point of interest. Thus the location of the stationary po
is denoted by R(n)(E) and h (n)(E), and E(n)(E)
5E@R(n)(E),h (n)(E),E# is the energy at the stationary poin
The arguments of the previous subsection carry over muc
before. The discussion following Eq.~3! is modified by not-
ing that the minimization ofF(R,h,P) with respect toR and
h at fixedP in Eq. ~3! will always be associated with one o
the stationary points ofE(R,h,E) with respect toR andh at
the corresponding fixedE; that is, Req(P)5R(n)(E) and
heq(P)5h (n)(E) for some n. Finally, defining the global
minimum E(E)5minnE

(n)(E), it is easy to see that Eq.~5!
holds as before.

C. Truncation of the expansion

The central quantities appearing in the preceding sub
tions are the energyE(R,h,E) and the polarization
P(R,h,E) in a given electric fieldE. Unfortunately, there is
as yet no rigorous formulation of DFT for the case of fin
nonzeroE. However, electric-field derivatives of arbitrar
order may be computed by the methods of density-functio
perturbation theory. We thus expand inE aroundE50:

E~R,h,E!5E~R,h,E50!1(
a

Ea

]E~R,h,E!

]Ea
U
E50

1
1

2 (
ab

EaEb

]2E~R,h,E!

]Ea]Eb
U
E50

1•••. ~6!

Carried to all orders inE, this expansion is exact. How
ever, for sufficiently small fields we can make the appro
mation of truncating this sum to defineEi(R,h,E) as the sum
of the first i 11 terms in Eq. ~6!, and Pi(R,h,E) as
2@dEi(R,h,E)/dE#uR,h . Note that this truncation is only in
powers ofE, and that the dependence onR and h is pre-
served to all orders.

For many systems, it is already of interest to consider
simplest casei 51, where

E1~R,h,E!5E~R,h,0!2E•P~R,h,0!, ~7!

P1~R,h,E!5P~R,h,0!. ~8!

At this order, the resulting expression

F~P!5 min
R,h,l

$E~R,h,0!1l•@P2P~R,h,0!#% ~9!
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can also be interpreted as one in whichl appears simply as
a Lagrange multiplier implementing the constrai
P(R,h,0)5P in the set of equations that minimizeE(R,h,0)
over R andh, i.e.,

]E~R,h,0!

]Ria
2(

b

]Pb~R,h,0!

]Ria
lb50,

]E~R,h,0!

]hm
2(

b

]Pb~R,h,0!

]hm
lb50,

P~R,h,0!5P. ~10!

All results reported in the following sections are obtain
using thei 51 expressions. Generalization of the formalis
to orderi 52 is provided in Appendix A.

III. METHODOLOGY

A. Minimization procedure

We now describe in detail how we solve Eqs.~10! to
minimize E(R,h,0) with the constraintP(R,h,0)5P. We
begin with a trial guess of the initial coordinatesR0 and
strainsh0 for the desired structure. The energyE(R,h,0)
can be expanded up to second order indR5R2R0 anddh
5h2h0 as

E~R,h,0!5E~R0 ,h0,0!1(
ia

~2Fia!dRia

1(
mn

~2sm!dhn1
1

2 (
ab,i j

Kab
i j dRiadRj b

1
1

2 (
mn

cmndhmdhn1 (
ia,m

g ia
m dRiadhm ,

~11!

where Fia are the Hellmann-Feynman forces,sm are the
stresses in Voigt notation,Kab

i j are the force-constant matri
elements,cmn are the elastic constants, andg iam are the cou-
pling parameters between the internal coordinates
strains. The corresponding variation in the polarizati
P(R,h,0) is

Pa~R,h,0!5Pa~R0 ,h0,0!1(
j a

Zab
i dRib1(

m
eamdhm ,

~12!

where Zab
i 5]Pa /]Rib and eam5]Pa /]hm are, respec-

tively, the dynamic effective charge and piezoelectric te
sors.

Equations~10! lead to the linear system of equations

S K g Z*

g c e

Z* e 0
D S dR

dh

l
D 5S F

s

2P
D ~13!

for dR, dh, andl, whereP on the right-hand side denote
the difference between the initial and target values ofP. At
8-3
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each step of the minimization, we computedR anddh, and
obtain the new coordinates and strains viaR0

new5R01dR
and h0

new5h01dh. ThenRnew and hnew are chosen as th
new trial coordinates and strains. This is repeated until c
vergence is achieved.

For a practical implementation of this procedure we u
density-functional perturbation theory, which allows us
compute the coefficientsKab

i j andZab
i efficiently. The forces

F and the stressess are calculated by the Hellmann
Feynman theorem with Pulay corrections14 for the stresses
For g, c, ande, the DFPT calculation is not yet implemente
in the current version of theABINIT package~see Sec. III C!.
In Sec. IV C and IV D, we describe an alternative to t
exceedingly tedious finite-difference calculation of the
quantities. Finally, the most efficient way to computeP, with
a discretized Berry-phase expression, is exactly consis
with the DFPT derivatives only in the limit of an infinitel
densek-point mesh. This issue is discussed and resolve
detail in the next subsection.

Before concluding this subsection, we note that
higher-order formalism can be implemented in an analog
way. However, additional energy derivatives would
needed. The details of the treatment fori 52 are presented in
Appendix A.

B. DFPT computation of derivatives
of the discretized Berry-phase polarization

In the implementation of the minimization procedure@Eq.
~13!#, a practical problem arises in connection with the c
culation of the dynamical effective chargesZ* and polariza-
tion P. By definition, they should be related by

Zab
i 5V

]Pa

]Rib
, ~14!

wherea andb are Cartesian directions,i is the index for the
atom, andV represents the unit cell volume.

However, when the discretized Berry-phase expressio
used to computeP and the DFPT expression is used to co
puteZ* on the samek-point mesh, Eq.~14! is not satisfied
exactly. The discrepancy vanishes in the limit of a den
k-point mesh, but in a practical calculation, which must u
a finite mesh, it will result in an inconsistency in the equ
tions for the minimization.

In the Berry-phase theory15 the polarization is

Pa
BP5

i f e

~2p!3EBZ
(
m

occ K umkU d

dka
UumkL dk, ~15!

wheref 52 for spin degeneracy.PBP is computed in practice
using a discretized formula which, for the case of isola
bands, takes the form

Pa52
f e

~2p!3EA
dk'(

m

occ

Im ln )
kPS(k')

^umkuum,k1b&,

~16!
10410
n-

e

e

nt

in

e
s

-

is
-

e
e
-

d

where the integration over the two-dimensional~2D! k'

plane perpendicular to directiona is replaced in practice by
a summation over a 2D mesh. The product runs over a st
S(k') of k points running parallel to directiona at a given
k' . b is the separation between neighboring points along
string andf 52 is the spin degeneracy factor. The composi
band formulation is presented in Appendix B.

In DFPT,16 there are three equivalent expressions for
Z* tensor. The first is the change in the polarization due
the first-order change in the wave functions resulting from
atomic displacement:

Zab
i 5

i f eV

~2p!3EBZ
(
m

occ K ]umk

]Ria
U]umk

]kb
L dk, ~17!

where]umk /]Ria is the first-order change of the wave fun
tion due to the perturbation by displacing an atom belong
to the i th sublattice along thea axis. Alternatively,Z* can
be computed as the derivative of the force along directiona
on an atom in thei th sublattice with respect to an electr
field along directionb,

Zab
i 52F V

~2p!3EBZ
(
m

occ

f K umkU ]vext

]Ria
U]umk

]Eb
L dk

1
1

2EV

]vxc~r !

]Ria

]n~r !

]Eb
dr G , ~18!

where]umk /]Eb is the first-order change of the wave fun
tions due to the electric field, and]vext/]Ria and
]vxc(r )/]Ria are, respectively, the first-order derivatives
the external potential and the exchange-correlation poten
with respect to aq50 displacement.17 The third expression
~omitted here! includes both types of first-order wave fun
tion changes, and is stationary with respect to small error
the first-order wave functions.

In DFPT, first-order changesuc (1)& in the wave functions
with respect to a perturbation can be computed as s
consistent solutions of the first-order Sternheimer equatio3

Pc~H2em!Pcucm
(1)&52PcH

(1)ucm
(0)& ~19!

subject to a ‘‘parallel transport’’ gauge constraint5

^cn
(0)ucm

(1)&50, ~20!

whereH (1) is the first-order change inH and Pc is the pro-
jection operator onto the subspace of the conduction ba
andn andm run only over the valence bands.

In the case of the electric-field perturbation with field
Cartesian directiona, the Sternheimer equation takes th
form3,18

Pc~H2emk!PcU]umk

]Ea
L 52PcH

(1)uumk&, ~21!

where

H (1)52 i
]

]ka
1

dvH

dEa
1

dvxc~r !

dEa
. ~22!
8-4
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As input to this equation, we need the quantity]umk /]ka
appearing on the right-hand side. This is obtained by solv
a second Sternheimer equation

Pc~H2emk!PcU]umk

]ka
L 52PcS ]Hk

]ka
D uumk&, ~23!

where Hk5 1
2 (2 i“1k)21vKS and thus]Hk /]ka52 i¹a

1ka . The presence of the operatori ]/]ka in Eq. ~22! is a
unique feature that arises from the couplingE•P between the
macroscopic electric field and the polarization.

Now we come to the main point of this subsection, whi
is that the derivatives ofP calculated from DFPT are no
exactly the derivatives of the discretized Berry-phase exp
sion for P in practical calculations. In particular, for agiven
k-point sampling, the Z* computed by solving for
]uumk&/]ka from Eq. ~23!, and then computingZ* via Eq.
~17! or via Eqs.~21! and~18!, is not exactly equal to theZ*
computed from finite differences of the Berry-phase pol
ization in Eq. ~16!. For example, on a 43434 k mesh,
discrepancies on the order of 122 % are found using the
original formula. This can affect the application of the co
strained minimization scheme proposed in Sec. III A beca
it introduces an inconsistency into the linear system in
~13!.

Our cure for this problem is to modify the algorithm b
which ]uumk&/]ka is calculated within the DFPT framework
Instead of solving the Sternheimer equation~23!, we calcu-
late ]uumk&/]ka from finite differences of the ground sta
Bloch wave functionsuumk& between the neighboringk
points along thea direction. This approach corresponds
the ‘‘perturbation expansion after discretization’’ formalis
discussed by Nunes and Gonze in Ref. 2.

We illustrate our approach here for the case of a sin
band in one dimension. Then the Berry-phase polarizatio

P52
f e

2p (
k

Im ln^ukuuk1b& ~24!

and its first-order variation reflecting a first-order change
the wave functionuduk& is

dP52
f e

2p (
k

ImF ^dukuuk1b&

^ukuuk1b&
1

^ukuduk1b&

^ukuuk1b&
G

52
f e

2p (
k

ImF ^dukuuk1b&

^ukuuk1b&
2

^dukuuk2b&

^ukuuk2b&
G

5
f eb

p (
k

Rê dukuvk&, ~25!

where

uvk&5
i

2b F uuk1b&

^ukuuk1b&
2

uuk2b&

^ukuuk2b&
G ~26!

is understood to be a finite-difference approximation
i ]uuk&/]k. Note that Eqs.~25! and~26! are manifestly gauge
independent in the sense of being independent of the ch
of phases for theuuk&.
10410
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In the three-dimensional multiband case, we just need
replacevk of Eq. ~26! by its generalizationvmk,a represent-
ing ]umk /]ka as discussed in Appendix B;vmk,a is gauge
independent in the more general sense of being invar
with respect to a unitary rotation among occupied bands
neighboringk points. Thisvmk,a can then be substituted fo
]umk /]ka in Eq. ~17! to computeZ* . Or equivalently, it can
be inserted into Eq.~21! to compute]umk /]Ea , which in
turn can be substituted into Eq.~18! to computeZ* . In either
case, we are guaranteed to obtain the same values ofZ* as
would be derived from a series of finite-difference calcu
tions of polarization vs atomic displacement using the sa
k-point set. This is because Eqs.~25!,~26! are derived di-
rectly from the Berry-phase polarization expression of E
~15! using the samek mesh. Moreover, because the Berr
phase polarization~including ionic contributions! is indepen-
dent of origin, it also follows that the acoustic sum rule19

( iZab
i 5dab on the components of the dynamic effectiv

charges will be satisfied exactly, which is not the case
conventional linear-response calculations ofZ* .

C. Computational details

We carried out all theab initio calculations using theAB-

INIT package,20 in which we have implemented the abov
algorithm.ABINIT uses a plane-wave basis and provides m
tiple norm-conserving~NC! and extended NC pseudopote
tials. The discretized formula for the wave function deriv
tives with respect to the wave vectors, Eq.~B14!, is
introduced in the subroutineDUDK.F.

In Sec. IV A, in order to construct the pseudopotenti
for the virtual atoms12 that enter the heterovalent syste
Ba(Ti-d,Ti,Ti1d)O3, we utilize theFHI atomic code21 that
generates Troullier-Martin separable norm-conserv
pseudopotentials.22 However, theFHI pseudopotential gen
eration scheme only allows one projector within each an
lar momentum channel, thus preventing the inclusion of
3s and 3p states, in addition to 3d and 4s states, in the
valence for the Ti pseudopotential.~The same problem oc
curs for the 5s and 5p states for the Ba atom.! We generate
the pseudopotential in ionized configurations 3s23p63d24s0

for Ti and 5s25p66s0 for Ba. We used the exchange
correlation energy functional in the Ceperley-Alder23 form
with Perdew and Wang24 parametrization.

The studies described in Secs. IV B to IV D have be
performed with the highly transferable extended nor
conserving pseudopotentials proposed by Teter.25 A
Perdew-Zunger26 parametrized Ceperley-Alder exchang
correlation functional was used. These pseudopotentials
clude the Pb 5d, 6s, and 6p, the Ba 5s, 5p, and 6s, the Ti
3s, 3p, 4d, and 4s, and the O 2s and 2p electrons in the
valence states.

We have used an energy cutoff of 35 Ha throughout. T
integrals over the Brillouin zone have been replaced b
sum over a 43434 k-point mesh. Both thek-point sam-
pling and the energy cutoff have been tested for good c
vergence of the phonon eigenvalue and eigenvector pro
ties. We use the samek-point mesh for the Berry-phas
calculations. Convergence of the relaxations requires
8-5
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Hellmann-Feynman forces to be less than 0.02 eV/Å .@In the
constrained minimization procedure described by Eq.~13!,
the forces that are tested for convergence are the ones
projection onto the constant-P subspace.#

IV. SAMPLE APPLICATIONS

In this section, we illustrate the theory within the firs
order (i 51) formalism~see Sec. II! by applying it to a series
of problems involving ferroelectric, dielectric, and piezoele
tric properties. In particular, we emphasize that the main p
pose of these calculations is to exhibit and understand
nonlinearity in the structural response of the ferroelec
systems to an electric field. Such studies have not previo
been widely pursued. We have used BaTiO3 , PbTiO3 and a
short-period superlattice structure as our example system

A. Inversion symmetry-breaking system

In a conventional ABO3 perovskite such as BaTiO3, the
cubic symmetry of the high-temperature paraelectric phas
spontaneously broken at the transition to the ferroelec
phase, leading to a switchable polarization associated
the occurrence of degenerate energy minima that are
nected by the broken symmetry operations.

Recently, using DFT total-energy methods, we~Sai,
Meyer, and Vanderbilt12! studied a new class of cubic pero
skite compounds in which the composition is modulated i
cyclic sequence of three layers on theA site @i.e.,
(AA8A9)BO3 structures# or on theB site @i.e., A(BB8B9)O3
structures#. The inversion symmetry that was present in t
high-symmetry cubic structure is permanently broken
these materials by the imposed compositional order, giv
rise to important qualitative differences in the energetic
havior of these compounds. Most interestingly, it was sho
that by using heterovalent compositional substitutions,
strength of the breaking of the inversion symmetry could
tuned through an enormous range, suggesting that such
tems could be very promising candidates for new mater
with large piezoelectric and other dielectric respon
properties.12

Such compositionally modulated structures were stud
within a model system Ba(Ti2d,Ti,Ti1d)O3 where the two
atomic species that alternate with Ti on theB site are virtual
atoms that we constructed by varying the nuclear charg
Ti by 6d. Therefore, asd is tuned continuously from 0 to 1
we can simulate a set of systems evolving from a conv
tional BaTiO3 ferroelectric system to a heterovale
Ba(Sc1/3Ti1/3V1/3)O3 one in which all three alternated speci
are from neighboring columns in the periodic table.

As a consequence of the compositionally broken inv
sion symmetry, the thermodynamic potential associated w
the FE instability does not have the usual symmetric dou
well form. Instead, it takes the form of an asymmetric dou
well, or even of an asymmetric single well, depending on
strength of the compositional perturbation that breaks
symmetry. In Ref. 12, a procedure was described that all
one to search for both minima when they coexist. We plo
Fig. 1, for several values ofd, the energy as a function o
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displacement amplitude along the straight line in the 1
dimensional parameter space connecting the primary
secondary minima.~The direction along this line is taken t
define the ‘‘FE direction’’ withjFE50 being the midpoint
between minima.! Unfortunately, however, it is not possibl
to plot such a curve ford.0.4, since only a single minimum
exists in this range ofd.

Here, we demonstrate how the current method allows
a much more natural treatment of these systems, especia
larged. At a fixed value of polarization, we calculateF(P)
as in Eq.~9!. That is, we minimize the total energy over th
internal coordinates subject to the constraint that the spo
neous polarization has a fixed value, following the proced
described in Sec. III. As in our previous work,12 this is done
in a fixed tetragonal cell.

The energy as a function of the polarization for seve
values ofd is illustrated in Fig. 2. We obtain a similar energ
evolution as in Fig. 1. However, there are two importa
qualitative differences. First, the procedure is not limited
the range ofd in which both minima exist. At largerd ~e.g.,
d50.6), where the secondary minimum has disappeared
to a strong symmetry-breaking perturbation, the proced
allows the mapping of the energy to be carried out just
easily as at smallerd. Second, the horizontal axis of th
figure now has a physical meaning of polarization. For e
ample, a glance at Fig. 2 shows an interesting featu
namely, that the saddle point is also polarized, unlike in
normal ABO3 compound.

We investigated this interesting feature further by plotti
in Fig. 3 the polarization at the saddle point, as well as at
energy minima, as a function ofd. All the stationary points
are seen to be shifted in the direction of the shallower m
mum asd is turned on. As a consequence, the polarization
the primary minimum changes sign neard.0.35. Coinci-
dentally, this is close to the criticaldc.0.4 at which the
saddle point and secondary minimum meet and annihilat

In summary, we have illustrated the convenience a
power of our method in the context of recent work on a n

FIG. 1. Energy vs displacement along the line connecting
two energy minima in the Ba(Ti-d,Ti,Ti1d)O3 system, plotted for
several values ofd.
8-6
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THEORY OF STRUCTURAL RESPONSE TO . . . PHYSICAL REVIEW B66, 104108 ~2002!
class of ferroelectric materials with compositionally brok
inversion symmetry. The new approach is especially us
for studying the case where the compositional perturbatio
so strong that only a single local minimum survives. Mo
over, expressing the behavior as a function of polarizat

FIG. 2. Energy vs polarizationP in Ba(Ti-d,Ti,Ti1d)O3 at dif-
ferentd. Note the saddle point ofE(P) shifts in the direction of the
secondary~shallower! minimum asd increases.

FIG. 3. Calculated polarization at the left minimum~solid
circle!, right minimum~open circle!, and saddle point~diamond! in
Ba(Ti-d,Ti,Ti1d)O3. Left ~right! minimum is the principal one for
d.0 (d,0), as shown in insets.
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provides a much more informative picture of the system. F
example, certain interesting and nontrivial behaviors of
polarizations at the saddle points and minima can be el
dated.

B. Structural response in BaTiO3

In this section, we apply our approach to study the dep
dence of the internal structural parameters of BaTiO3 on the
polarizationP. Our calculation is restricted to allow onl
atomic displacements along theẑ direction in a fixed simple
cubic lattice, with full relaxation of the internal structura
parameters at fixed polarizationP5Pzẑ to yield equilibrium
coordinatesReq(Pz). In this way, we can investigate the con
tribution of the internal structural parameters alone, dec
pled from the strain degrees of freedom, to the structu
response to an electric field, providing a first step towa
understanding the nonlinearities of the total structural
sponse expected with increasingE.

We choose to work at the experimental cubic lattice co
stant 7.547 a.u.27 The spontaneous polarizationPs is ob-
tained by full relaxation of the internal structural paramete
and is found to be 0.21C/m2. The relaxed internal coordi
nates for each Ba, Ti, O1, and O3 atom are plotted a
function of Pz in Fig. 4. ForPz.Ps , the state can be real
ized as an equilibrium state in an appropriate fixed elec
field, while states withPz,Ps are local maxima ofF(Pz)
2EPz for some value ofE. For example, the value ofE
corresponding toPz50.48C/m2 ~approximately twicePs) is
16 MV/cm.

To focus on the dependence of the character of the dis
tion on the amplitudePz , we define a ‘‘unit displacemen
vector’’ (jz

Ba,jz
Ti ,jz

O1,jz
O3) by normalizing the sum of the

squared displacements to 1.~The origin of the distorted
structure is chosen such that the unweighted average o
displacements vanishes, i.e.,( ijz

i 50.! At Pz5Ps , the unit
displacement vector is found to be (0.26, 0.73,20.22,
20.55), closely resembling the unstable ferroelectric mo
of cubic BaTiO3 (0.18, 0.74,20.18,20.59) computed from
a linear-response calculation. In Fig. 5, we show thePz de-
pendence of the components of the unit displacement ve
If the polarized state were obtained by freezing in a sin
polar mode, these components would be constant. The a
behavior is considerably more complicated.

Three distinct regimes for the atomic displacement patt
can be clearly observed. ForPz below '0.48 C/m2, the
relative displacements are similar in character to those of
soft mode. In this regime, the magnitudes of the Ba and
components increase withPz , while the magnitudes of the
Ti and O3 components decrease. ForPz between roughly
0.48 C/m2 and 1.4 C/m2, the consequence of these opposi
trends is that the magnitudes of the Ba and O1 displacem
actually exceed those of Ti and O3, respectively, chang
the character of the structural distortion. AtPz'1.4 C/m2,
the trend withPz reverses for Ba and Ti, so that as th
polarization increases further, the Ba and O1 atoms m
together in a direction opposite to that of Ti and O3.

The Born effective chargesZ* are expected to be sens
tive to the internal structural parameters. Figure 6 shows
8-7
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FIG. 4. Fully relaxedz coordinates for each
atom in BaTiO3 ~see unit cell at right! as a func-
tion of polarizationPz in the simple-cubic lattice.
Curves are cubic-spline fits to calculated poin
top- and bottom-most points correspond to tran
lational images of Ba and O3 atoms, respective
in neighboring unit cells.Ps marks the spontane
ous polarization. The Born effective chargeZ*
for each atom is marked atPz51.64 C/m2.
Shaded area indicates metallic regime.
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evolution of the computedZ* for each atom. Near the cubi
structure, the dependence ofZTi* and ZO3* on Pz is nearly
quadratic, in agreement with previous calculations
BaTiO3.28 While ZBa* and ZO1* are rather insensitive toPz ,
the Born effective charge of Ti decreases by over 30% fr
Pz50 to 1.4 C/m2, with a corresponding increase in that
O3. More specifically,ZTi* drops to its smallest value14.7
while the magnitude ofZO3* is close to its smallest value
23.9. This structural sensitivity can be understood as be
related to the anomalous values in the undistorted cubic
ovskite structure, which arise from the hybridization of
and O orbitals in the Ti-O3 chains oriented alongẑ. As
shown in Fig. 4, whenPz increases, the Ti are displace
towards one O3 neighbor and away from the other, disru
ing the chain and reducing the anomalous displacem
induced current along the chain.29 Consequently, the magni
tudes of the Born effective charges are reduced towards
nominal valences14 for Ti and22 for O.

As the polarization and associated structural distorti
become larger, the band structure evolves correspondin
We find significant changes in the band structure forPz
51.8C/m2 relative to that of the undistorted cubic perovsk
structure. Some bands, such as the topmost O 2p band,
the characteristic flatness that is usually seen in perovsk
such as BaTiO3.30 Most importantly, the band gap decreas
with increasingPz , extrapolating to an insulator-metal tran
sition just abovePz51.8 C/m2. The polarization is a mean
ingful quantity only in insulators, and therefore calculati
for higher values ofPz cannot be considered.
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We carried out an analogous calculation for PbTiO3 in the
cubic structure using the lattice constant deduced from
perimenta057.5 a.u., yielding a spontaneous polarization
0.73 C/m2. The unit displacement vector as a function ofPz
is shown in the right panel of Fig. 5, where the pattern
sembles that of BaTiO3 at intermediate values ofPz . Thus,
the pattern that is field-induced in BaTiO3 is characteristic of
that of PbTiO3 at zero electric field. The high-Pz regime sets
in at around 1.5 C/m2, with the Pb and O1 atoms movin
together as a pair and Ti and O3 moving together as a sec
pair.

Some general observations can be made about the ef
of an electric field on the internal structural parameters.
small fields, the cations and anions move independently,
lowing the electrostatic force corresponding to the sign of
formal valence. However, once the field-induced distortio
are large enough so that short range interatomic repul
prevents further compression of Ba/Pb-O1 and Ti-O3 bon
the further distortions acquire a character in which B
O1-O2 and Ti-O3 units move rigidly with net charges ve
close to22 and 12, respectively. In summary, we hav
shown that the ‘‘simple’’ perovskite compounds BaTiO3 and
PbTiO3 exhibit interesting nonlinearities in structure with in
creasing polarization, as will occur in large electric fields

C. Nonlinear dielectric and piezoelectric response

Tunability of the dielectric and piezoelectric coefficien
by an applied electric field, a property of great technologi
importance, is expected to be especially large in ferroe
-
n

c
a-
FIG. 5. The component of the unit displace
ment vectorjz corresponding to each atom i
BaTiO3 ~left! and PbTiO3 ~right! as a function of
polarizationPz . In the left panel, vertical lines
demarcate the regimes of BaTiO3 soft-mode-like,
PbTiO3 soft-mode-like, atom-pair, and metalli
behavior; at right, the single vertical line sep
rates soft-mode-like and atom-pair regimes.
8-8



tr

an
ec
on
e

i-

he
.

re
p
d
p

ec.
ta-

ear

ce
ver,

ec-

ture
i-
rs

ing
fit.

cal

gu-

en-
by

y
ing

uc-
f-
cu-

s.

om

in
i-

THEORY OF STRUCTURAL RESPONSE TO . . . PHYSICAL REVIEW B66, 104108 ~2002!
trics due to the dependence of these coefficients on elec
field-induced structural changes such as those reported
BaTiO3 in the previous section. This behavior can be qu
tified by the values of the nonlinear dielectric and piezoel
tric coefficients. In this section, we formulate the calculati
of these nonlinear coefficients in our polarization-bas
framework, and give results for tetragonal PbTiO3.

The first step in this analysis is the computation ofF(P)
and h(P) from the minimization ofF(R,h,P) at fixed P.
This is followed by the minimization ofF(P)2P•E at fixed
E, directly yieldingP(E) andh(E)5h@P(E)#. From the first
derivative ofP(E), we obtain the field-dependent static d
electric susceptibility tensorxab(E), with the nonlinear co-
efficients defined through a small-E expansion

xab~E!5
1

e0

]Pa~E!

]Eb
5xab

(1)1xabg
(2) Eg1O~E 2!. ~27!

The relative dielectric tensor is given byeab5dab1xab .
Correspondingly, from the first derivative ofh(E), we obtain
the field-dependent piezoelectric tensordmb(E), with the
nonlinear coefficients defined through a small-E expansion

dmb~E!5
]hm~E!

]Eb
5dmb

(1)1dmbg
(2) Eg1O~E 2!. ~28!

In fact, in our present implementation we perform t
minimization ofF(R,h,P) at fixedP in two separate steps
First, we obtain a reduced free-energy functionF(h,P) by
minimizing with respect toR at fixedh andP. Further mini-
mization with respect toh to obtainF(P) andh(P) allows
the computation of the zero-stress responses as in the p
ous paragraph. In addition, this approach allows the com
tation of the clamped-strain dielectric response, measure
frequencies above the resonant frequency of the sam
through minimization ofF(h,P)2P•E at fixed E and h
5h(E), directly yielding P@h(E),E# and x@h(E),E#. This

FIG. 6. Computed Born effective charges for each at
in BaTiO3 as a function of the polarizationPz . For the cubic struc-
ture (Pz50), we obtain ZBa* 52.72, ZTi* 56.99, ZO'

* 525.57,

ZOi
* 522.07.
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two-step procedure is also required, as mentioned in S
III A, by the limitations imposed on the present implemen
tion by the use ofABINIT 3.1.

We have applied this procedure to compute the nonlin
dielectric and piezoelectric response of tetragonal PbTiO3 to
fields alongẑ using thei 51 expressions@Eq. ~9!#. At this
level of approximation, only lattice contributions toxab(E)
anddmb(E) are included, and their electric-field dependen
arises only through induced structural changes. Howe
this is expected to be a good approximation for PbTiO3,
where the lattice contribution to the dielectric and piezoel
tric responses dominates even atT50.

For present practical purposes,F(h,P) is obtained in a
parametrized form by fitting a Landau-Devonshire31 expan-
sion expanded around the minimum-energy cubic struc
(a057.33 a.u.). Values ofF are calculated for an appropr
ate set ofh andP. The results are used to fit the paramete
in

F~h1 ,h3 ,Pz!5E01
1

2
C11~2h1

21h3
2!1C12~2h1h31h1

2!

1A200Pz
21A400Pz

41A600Pz
612B1yyh1Pz

2

1B1zzh3Pz
2 , ~29!

where h15hxx5hyy , h35hzz, Pz is the polarization per
unit volume and the truncations to sixth order inPz and to
lowest order in the elastic and polarization-strain coupl
are found to be sufficient within a standard least-squares
The resulting coefficients are shown in Table I; statisti
analysis shows that the strain coupling parametersB1yy and
B1zz are the most sensitive to changes in the input confi
ration energies.

We now use this expansion to compute the field dep
dence of the strain and polarization under zero stress
minimizing F(h1 ,h3 ,Pz)2EPz with respect toh1 , h3, and
Pz to get h1(E), h3(E), and Pz(E). By first consideringE
50, we can confirm the validity of the parametrization b
comparing the tetragonal structure obtained by minimiz
the expression forF(h1 ,h3 ,Pz) given by Eq. ~29! with
properties of the fully relaxed tetragonal ground-state str
ture in zero electric field. In Table II we list the energy di
ferenceDE between the tetragonal ground state and the
bic structure, the spontaneous polarizationPz(E50), and the
lattice parameters, finding good agreement in all respect

Next, we consider nonzeroE. Minimizing first with re-
spect toh gives a free energy

TABLE I. The values of the least-squares fitted parameters
Eq. ~29! at E50 in PbTiO3. The units are the appropriate comb
nations of Ha and (C/m2)2.

Parameters Values Parameters Values

E0 2165.953 A400 0.005
C11 4.374 A600 0.004
C12 1.326 B1zz 20.199
A200 20.003 B1yy 20.049
8-9
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F~Pz!5A200Pz
21Ã400Pz

41A600Pz
6 , ~30!

where

Ã4005A4001

2c12B1zzB1yy2c11B1yy
2 2

1

2
~c111c12!B1zz

2

~c1112c12!~c112c12!
,

~31!

and Ã400 is found to be 4.531024Ha C24 m28.
SinceA200,0, F(Pz) has a double well structure, so th

F(Pz)2PzE has two local minima for small enough value
of E. The evolution of the two local minima withE can be
summarized in the calculated hysteresis loop shown in
upper panel of Fig. 7. We find an intrinsic coercive fieldEc of
1.5 MV/cm. From Eq.~27!, we can proceed to calculate th
static susceptibilityx33(E) and the result is plotted in th
lower panel of Fig. 7. Fitting this to Eq.~27!, we find that the
zero-field stress-free susceptibilityx33

(1) is x33
s 567, the super-

script s indicating stress-free conditions.
For the clamped-strain response at zero field, we fixh at

h(E50). A different double well structure is obtained fo
F (h)(Pz), resulting in a different hysteresis loop shown
the same figure. We find an intrinsic coercive fieldEc of 3
MV/cm. From fitting to Eq.~27!, we obtainx33

h 537, the
superscripth indicating the clamped-strain condition. I

TABLE II. Comparison of the structural parameters compu
by minimizing Eq.~29! with those computed from direct LDA cal
culation and those obtained from experiment~Refs. 32,33!.

DE ~mHa! Pz
E50 ~C/m2) a ~Bohr! c ~Bohr!

model 0.86 0.67 7.324 7.487
LDA 0.90 0.65 7.310 7.484
exp 0.75~295K! 7.373 7.852

FIG. 7. Calculated polarization-vs-electric-field hysteresis lo
~upper panel! and static susceptibilityx(E) ~lower panel! of PbTiO3

under stress-free condition~solid circle! and clamped-strain condi
tion ~open square!. Dashed line corresponds to the nonaccess
state~saddle point in the thermodynamic potential!.
10410
e

Table III, these values are compared with the reported
perimental dielectric constants at both the constant stress
clamped-strain condition34 which were measured below an
above the sample resonant frequencies respectively.
value for x33

h can also be compared with a previous firs
principles calculation.35

In both the stress-free and fixed-strain cases, the hys
esis profile of the static susceptibility shows thatx33 in-
creases with field amplitude for the local minimum atE
,Ec and decreases with increasing field for the global mi
mum, which is the only branch in the region aboveEc . For
each branch, we find a nonlinear susceptibilityx33

(2)s of mag-
nitude 315 nm/V in the stress-free case. However, when
strain is clamped, the coercive field becomes larger tha
the stress-free case, and the nonlinear susceptibility is m
than two times smaller. In the present framework, this is
surprising since the change in the dielectric response is
result of a field-induced change in structure, and this cha
is reduced by clamping the strain.

Next, we consider the piezoelectric response@Eq. ~28!#. In
Fig. 8, we plot the equilibrium values of the strainsh1 and
h3 as a function of the electric field along thez direction.
The slopes of these curves give rise to the piezoelectric
efficientsd13 andd33 which are plotted in the lower panels o
the same plot. We findd13520.6 pC/N andd33540 pC/N,
considerably less than the room temperature values meas
experimentally33 (225 and 117 pC/N, respectively! and
computed from first principles.36 We attribute this primarily
to the choice of pseudopotentials, which give a low value
the ground state tetragonal ratioc/a and in particular, a value
of a almost unchanged from the cubica0. However, our
calculation does serve to demonstrate the applicability of
method to the calculation of these quantities. In particu
there is to our knowledge no previous calculation of the n
linear piezoelectric response.

D. Field-induced structural phase transitions

In a single crystal, the relative stability of distorted
structure phases with polarizations in different directions
expected to change as an electric field is applied. In part
lar, a phase transition might be induced by applying a su
ciently large field in a different direction from the polariza
tion of the ground state. This change in phase, the resu
an electric-field induced rotation of the polarization, may
accompanied by a large change in strain, manifested a
large piezoelectric response.

p

e

TABLE III. Comparison between theory and experiment~Ref.
34! ~at room temperature! for the first- and second-order dielectr
constants of PbTiO3 ~RT!. The superscriptss and h indicate
whether the measurement is under constant-stress or constant-
condition.

x33
s x33

h x33
(2)s ~nm/V! x33

(2)h~nm/V!

model 67 37 315 82
experiment 79 33
8-10
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THEORY OF STRUCTURAL RESPONSE TO . . . PHYSICAL REVIEW B66, 104108 ~2002!
This ‘‘polarization rotation’’ mechanism was proposed
Ref. 7 to explain the experimentally observed colossal pie
electric response to electric fields along@001# of single-
crystal rhombohedral perovskite alloys such
@Pb(Zn1/3Nb2/3)O3# (12x) –@PbTiO3#x ~PZN-PT! with compo-
sitions near the rhombohedral–tetragonal morphotro
phase boundary (R-T MPB!, and has been the subject
continuing experimental37 and theoretical38 investigation.
Particular attention has focused on the nature of the p
followed by the polarization vector with increasing fie

FIG. 8. The calculated equilibrium strainsh1 and h3 and the
piezoelectric tensord13 andd33 as a function of the electric field in
PbTiO3.
de

e
d.

10410
o-

s

ic

th

strength. An effective Hamiltonian study of PbZrxTi12xO3
near theR-T MPB38 showed that with increasing electri
field along @111#, the polarization vector of tetragonal PZ
rotates continuously from the tetragonal@001# direction to
the rhombohedral@111# direction through a monoclinic ‘‘
MA’’ phase39 with P along@uu1#. In contrast, for the case o
an @001# electric field applied to rhombohedral PZT, the p
larization vector does not simply follow the return path, b
instead follows a discontinuous path of a kind first discus
by Noheda.37 It first rotates continuously into theMA phase
for small field strengths, and then jumps discontinuously t
monoclinic ‘‘MC’’ phase39 with P along@u01# before reach-
ing the tetragonal structure. The calculations show tha
large piezoelectric response is expected for this latter typ
path.

In this section, we apply the full three-dimensional fo
malism described in Sec. II to study, in a Pb-based perovs
system, the rotation of polarization by an applied elect
field in the two cases most relevant to enhanced piezoele
response near theR-T MPB: ~i! application of an electric
field along@111# to a tetragonal system and~ii ! application of
an electric field along@001# to a rhombohedral system. Fo
~i!, we consider tetragonal PbTiO3. For ~ii !, we introduce a
simple modification of the structural energetics of PbTiO3 to
stabilize a rhombohedral ground-state structure. This follo
the spirit of a view of PZN-PT and PMN-PT as large-stra
PbTiO3-based systems that have been chemically ‘‘en
neered’’ to make them marginally stable in the rhombohed
phase.40 We do something very similar, but using a theore
cal manipulation that avoids the unnecessary complexitie
the real alloy systems.

1. Free-energy functional

Extending the procedure described in Sec. IV C to the
three-dimensional case, we first evaluate the reduced f
energy functionF(h,P) by minimizing F(R,h,P) with re-
spect toR for a set of selected tetragonal, rhombohedral, a
orthorhombic structures. Strains are defined relative to
cubic structure with the experimental lattice constant (a0
57.5 a.u.). In the range ofh and P of interest, we used a
procedure similar to Sec. IV C to fitF(h,P) in a Landau-
Devonshire form
F~h,P!5E01C1~h11h21h3!1
1

2
C11~h1

21h2
21h3

2!1C12~h2h31h3h11h1h2!1
1

2
C44~h4

21h5
21h6

2!

1A200~Px
21Py

21Px
2!1A400~Px

41Py
41Px

4!1A220~Py
2Pz

21Pz
2Px

21Px
2Py

2!1A600~Px
61Py

61Pz
6!

1A420@Px
2~Py

41Pz
4!1Py

2~Pz
41Px

4!1Pz
2~Px

41Py
4!#1A222Px

2Py
2Pz

21B1xx~h1Px
21h2Py

21h3Pz
2!

1B1yy@h1~Py
21Pz

2!1h2~Pz
21Px

2!1h3~Px
21Py

2!#1B4yz~h4PyPz1h5PzPx1h6PxPy!. ~32!
al

We list the least-squares fitted coefficients in the column
noted byM1 in Table IV.

Using Eq.~32!, we now consider the energetics of stat
with different orientations of the polarization in zero fiel
-

s

Specifically, we considerE(u,f,E50), obtained by fixing
the direction ofP along the direction specified by spheric
anglesu andf, relative to the polar axisẑ, and minimizing
F(h,P) with respect to the strain and the magnitude ofP. As
8-11
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shown in Table V, the structural parameters and the spo
neous polarizations agree well with the LDA results, es
cially for the O andR phases.

From this table, it can also be seen that the energy dif
ences between theT, O, andR phases are quite small. Fo
this reason, the parameters obtained by a global least-squ
minimization do not accurately reproduce the LDA values.
particular, the energy difference between theT andR phases
is seen to be much larger than the LDA result. Howev
these features of the energy surface are crucial to the phy
of the structural phase transitions. Therefore, we adjusted
fitting procedure to reproduce these relative energies a
rately while using the least-squares procedure for the
overall fit to the remaining data, as follows. Rather than
troduce additional parameters by including higher-or
terms, we ‘‘tune’’ one parameter while determining the oth
13 parameters by standard least-squares minimization,
choose the value for the single tuned parameter that yi
the most accurate values forboth the O-T and O-R energy
differences.A222 proves to be the best choice for the tuni
parameter, and withA22250.062 and the other parameters
given in the column denoted by M2 of Table IV, both th

TABLE IV. Least-squares fitted values of the parameters in
~32!. M1, all parameters freely varied;M2, with the constraint
A22250.062 Ha C26 m212 ~boldface!. Units are the appropriate
combinations of Ha and (C/m2)2.

M1 M2 M1 M2

E0 2165.947 2165.947 C1 0.168 0.168
A200 20.01 20.009 C11 3.829 3.973
A400 0.008 0.005 C12 1.462 1.484
A220 0.015 20.0007 C44 1.174 1.218
A600 0.003 0.004 B1xx 20.235 20.234
A420 0.010 0.019 B1yy 20.048 20.0525
A222 0.009 0.062 B4yz 20.069 20.068

TABLE V. Comparison between the structural properties of
tetragonal (T), orthorhombic (O), and rhombohedral~R! phases of
PbTiO3. LDA denotes direct LDA structural relaxations;M1 and
M2 are as in Table IV. Units of polarizationP, rhombohedral angle
a, cell volumeV, and phase energiesE are C/m2, degrees, Bohr3,
and mHa, respectively.

LDA M1 M2

VT 399.9 402.3 401.9
c/a 1.024 1.04 1.03
PT 0.65 0.75 0.71
VR 398.4 397.3 398.7
aR 89.7 89.6 89.8
PR 0.33 0.32 0.34
VO 398.8 398.1 399.7
aO 89.5 89.4 89.6
PO 0.41 0.42 0.44
ER-EO 0.060 0.097 0.064
EO2ET 0.159 0.639 0.154
10410
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O-T and O-R energy differences as well as the structu
parameters and spontaneous polarizations of all three ph
are in excellent agreement with the LDA results, as shown
the last column of Table V. Therefore, this set of paramet
was used in the following calculations.

2. Engineering a Rhombohedral Structure forPbTiO3

In previous first-principles investigations of PbTiO3, it
has been observed that the strain coupling is responsible
stabilizing the tetragonal ground state structure.41 In the
simple cubic lattice, the lowest-energy structure has polar
tion along @111#, corresponding to a rhombohedral symm
try, while the energy of the optimal state with polarizatio
along @001# is higher. However, when the lattice is allowe
to relax, the energy gain from strain coupling in the tetrag
nal structure is much larger than the gain in the rhombo
dral structure, leading to the observed reversal of stability
each case, the energy gain from strain coupling increase
the relevant elastic constant decreases. So, if it were pos
to decrease the shear modulusC44, there would be a critical
value below which the rhombohedral state would be m
stable.

Within Eq. ~32!, the modification ofC44 can be imple-
mented by the inclusion of a tunable shear elastic term

F̃~h,P!5F~h,P!1
1

2
DC44~h4

21h5
21h6

2!, ~33!

where DC44 5 0 corresponds to PbTiO3 with its natural
shear elastic modulus. Using Eq.~33!, we compute the zero
field energy for the optimal tetragonal, rhombohedral a
orthorhombic phases as a function ofDC44. This yields the
phase sequence shown in Fig. 9 with theT and R phases
separated by a sliver of an orthorhombic phase. This ph

.

FIG. 9. The energies of the rhombohedral~square! and tetrago-
nal ~circle! phases relative to the orthorhombic phase~chosen as the
zero of energy! as a function of the tunable shear modulusDC44 of
PbTiO3, calculated using Eq.~33!. The ranges ofDC44 in which the
tetragonal, orthorhombic, and rhombohedral phases are most s
are separated by vertical dashed lines and indicated byT, O, andR,
respectively.
8-12
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sequence is very reminiscent of that of t
Pb(Zn1/3Nb2/3)O3–PbTiO3 system13 with the tunable param
eter being the proportion of PbTiO3. The stability of the
orthorhombic phase reflects the importance of the sixth-o
terms in Eq.~32!, as in a fourth-order model only tetragon
and rhombohedral structures are possible minima.

To check that the observed phase sequence is not an
fact of our fit, we have computed the structural parame
and energies of the tetragonal, orthorhombic and rhombo
dral phases as a function ofDC44 through direct LDA calcu-
lations. For consistency with Eq.~33!, we implement the
adjustment of the shear modulus as an additional app
stress

Ds i52DC44h i , ~34!

wheres i ~with i 54,5,6) are the shear stress components
Voigt notation. The results, given in Fig. 10, show the sa
T-O-R phase sequence as Fig. 9. While theT-O and O-R
phase boundaries are slightly shifted, the width of the ort
rhombic window is comparable to that in Fig. 9. Thus, in t
following, using Eq.~33! with a particular value ofDC44,
we expect results which would reflect a direct LDA calcu
tion, though perhaps with a slightly differentDC44.

3. Electric-field-induced phase transitions

We consider two cases: tetragonal PbTiO3 in a field ap-
plied along@111# and a rhombohedral variant of PbTiO3 in a
field applied along@001#. We first consider the former cas
in which the @111#-oriented applied field tends to favor
rhombohedral direction for the polarization. To investiga
the evolution of various phases withE111, whereE111 is the
magnitude of the electric field, we perform the minimizati
in two steps. First, we transform the Euclidean coordina
(Px ,Py ,Pz) into spherical coordinates (P,u,f) and com-
pute

FIG. 10. Same as Fig. 9 but calculated using a direct L
approach. As in Fig. 9, an orthorhombic window appears, tho
the phase boundaries are slightly shifted.
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E~u,f,E111!5min
P,h

@F~h,P!2E111~Px1Py1Pz!/A3#.

~35!

Then, we locate the minima on the sphere of polarizat
directions parametrized byu andf.

The evolution of the phase stability can be readily d
played by the contour plots ofE(u,f,E111) shown in Fig. 11.
At zero electric field, the tetragonal structure appears a
threefold degenerate energy minimum in the hemisph
shown. AsE111 increases, the minima migrate from the t
tragonal positions along the lines corresponding to the mo
clinic MA phase~threefold degenerate! and eventually reach
the rhombohedral point at the center of the hemisphere.

Figure 12 shows how the polarization components of
tragonal PbTiO3 evolve with the amplitude ofE111. At E111
50, the only nonzero component isPz . As E increases,Px
5Py grow while Pz slowly decreases. The structure th
enters theMA monoclinic phase. WhenE reaches 1.4
3103 kV/cm, the three components merge and the sys
enters the rhombohedral phase where the polarization ve
points along the pseudocubic@111# direction. While rotating,
the polarization vector remains in the~110! plane, as shown
in the inset of Fig. 12.

Next, we consider rhombohedral ‘‘PbTiO3’’ with DC44
521.1 Ha ~see Fig. 9! in an electric field along the@001#
direction, which tends to favor a tetragonal direction for t
polarization. The analog of Eq.~35! is

h

FIG. 11. Contour maps ofE(u,f,E) on the upper hemispher
0<u< 1

2 p for an electric field of magnitudeE applied along the
pseudocubic@111# direction to tetragonal PbTiO3. The contour is
equally spaced in ln(E2Emin1d), whereEmin is the global mini-
mum andd is a small offset. The central axis points along the@111#
direction.~a!–~d! correspond to electric fields of 0, 0.86, 1.73, a
3.463103 kV/cm, respectively.
8-13
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E~u,f,E001!5min
P,h

@ F̃~h,P!2E001Pz#. ~36!

The energy contour plot in this case is shown in Fig. 13.
zero electric field, the system is in a rhombohedral ph
with an eightfold degenerate minimum. For small nonze
E001, the energy minima correspond to aMA phase as shown
in Figs. 13~b!,13~c! where there are four degenerate minim
lying in the ~110! plane. At a critical value ofE001, the en-
ergy minima jump to fourfold points in the~100! plane, as
can be seen in Fig. 13~d!. The four minima then move
smoothly towards the@001# axis, finally merging to yield the
tetragonal phase.

Figure 14 shows how the polarization components
rhombohedral ‘‘PbTiO3’’ evolve with the amplitude ofE001.
Under zero applied electric field, the polarization vec
starts along the pseudocubic@111# direction (Px5Py5Pz
50.56 C/m2). As E001 increases, the structure enters anMA
phase in whichPx and Py remain equal, but become les
thanPz . Px andPy keep dropping untilPy shows a sudden
jump to zero at around 4.53103 kV/cm. At the same time,
both Px andPz exhibit an upward jump in their values. Th
new phase corresponds to a different monoclinic phase
noted byMC . The structure remains in theMC phase until
Px also drops to zero at around 193103 kV/cm, yielding a
tetragonal phase. As the field increases further,Pz continues
to increase smoothly.

In this section, we have seen that a small modification
the structural energetics of PbTiO3 can yield a complex po-
larization path quite similar to that proposed by Nohed37

and observed in simulations of PZT.38 Additional calcula-
tions, for example of the lattice parameters as a function
electric field, may assist in achieving a direct experimen
observation of this behavior. In addition, further explorati
within this framework may suggest ways to produce a
control complicated polarization paths in real systems.

FIG. 12. The Cartesian componentPx ~circle!, Py ~triangle!, Pz

~square! of the polarization as a function of the magnitude of t
electric field applied along the@111# pseudocubic direction in
PbTiO3. The inset shows the polarization path.
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V. SUMMARY

In this paper, we have introduced a formalism for co
puting the structural response of an insulating system t
static homogeneous macroscopic electric field. We h
shown that, in the presence of an electric field, the therm
dynamic potentialE(R,h,E) can be minimized by introduc
ing a related thermodynamic potentialF(R,h,P) in which
the polarizationP is treated as a fundamental variable. Co
responding to each polarizationP, the equilibrium values for
the internal coordinatesR andh as well as the minimum of
this energy functional can be computed. Consequently,
arrives at an energy functional that only depends onP and
where the effect of a homogeneous electric field can
treated exactly by adding a linear term2E•P to this func-
tional.

In practice, whenE(R,h,E) is expanded to first order in
E, the minimization is reduced to one over the internal co
dinates constrained by a fixed polarization computed at z

FIG. 13. Contour map of the free energy~upper hemisphere!
when an electric field is applied to rhombohedral ‘‘PbTiO3’’
(DC44521.1 Ha) along the pseudocubic@001# direction. The cen-
tral axis corresponds to one of the tetragonal directions.~a!–~f!
correspond to electric field magnitudes of 0, 1.4, 2.8, 7, 14,
193103 kV/cm, respectively.
8-14
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electric field. We have implemented a minimization sche
in the framework of a modified DFPT, using a consiste
discretization formula that was developed for the respons
an electric field. Consequently, the computed respons
compatible with the Berry-phase polarization, which is
central quantity in the formalism.

It is important to note that the presenti 51 theory is most
useful for systems in which the response to an electric fiel
dominated by the changes in atomic coordinates and str
rather than by electronic polarization. Ferroelectric a
nearly ferroelectric materials are among the best examp
We therefore look forward to future applications of our ne
approach for a variety of purposes, for example, ferroelec
alloys and ferroelectric superlattices. Applying the method
the so called ‘‘high-K materials’’ to study their dielectric
properties in the presence of an applied electric field a
appears to be a promising direction.

Though the higher-order~sayi 52) theory requires highe
(>3) order energy derivatives, this does not preclude
application. As mentioned in Appendix A, it is possible
approximate certain response quantities that are related t
third derivatives by constant values from a single structure
they show only small variations within the range of the p
larization studies. Systems that may satisfy such a condi
will be the subject of further investigation.
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FIG. 14. Same as Fig. 12, for an electric field applied along
@001# pseudocubic direction in rhombohedral ‘‘PbTiO3’’ obtained
with DC44521.1 Ha.
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APPENDIX A:
SECOND-ORDER EXPANSION FORMALISM

This appendix presents the formalism in Sec. II for tru
cation of the sum in Eq.~6! at i 52, that is, at second orde
in the electric fieldE. At this order, the thermodynamic po
tential E(R,h,E) is replaced byE2(R,h,E), which is the
sum of the first three terms in Eq.~6!.

We recall the definition of the dielectric susceptibili
tensor

xab~R,h,E!52
1

e0

]2E~R,h,E!

]Ea]Eb
5

1

e0

]Pa~R,h,E!

]Eb
.

~A1!

Therefore, we can write

E2~R,h,E!5E~R,h,E!2(
a

Pa~R,h,0!Ea

2
e0

2 (
ab

EaEbxab~R,h,0! ~A2!

and

P2,a~R,h,E!5Pa~R,h,0!1e0(
b

Ebxab~R,h,0!.

~A3!

The computation ofF(P) @Eq. ~2!# for a givenP proceeds
by the minimization ofE(R,h,l)1l•P following the pro-
cedure in Sec. IIIA. This involves computing the derivativ

]E2~R,h,l!

]Rig
5

]E~R,h,0!

]Rig
2(

a

]Pa~R,h,0!

]Rig
la

2
e0

2 (
ab

lalb

]xab~R,h,0!

]Rig
, ~A4!

]E2~R,h,l!

]hm
5

]E~R,h,0!

]hm
2(

a

]Pa~R,h,0!

]hm
la

2
e0

2 (
ab

lalb

]xab~R,h,0!

]hm
, ~A5!

]E2~R,h,l!

]la
52Pa~R,h,0!2e0(

b
xab~R,h,0!lb1Pa .

~A6!

These are related to the corresponding derivatives in thi
51 case@Eq. ~10!# by the addition of terms one order highe
in l. From Eq. ~A6!, we see that at this orderP(R,h,l)
includes an electronic contributione0(bxab(R,h,0)lb . The
effective forces and stresses@Eqs.~A4! and~A5!# involve the
derivatives ofx with respect toR andh. While these are in
principle obtainable from the 2n11 theorem, they are no
routinely calculated in current DFPT codes. For cases wh
the lattice contribution toP dominates, it is reasonable, how
ever, to approximate theR andh dependence ofx by evalu-
ating it at the zero-field equilibrium structure. A more acc

e
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rate but still practical approximation would include the fir
order changes with respect todR and dh, with the deriva-
tives computed through a finite difference approach.

APPENDIX B:
MULTIBAND DISCRETIZATION FORMULA

In Sec. III B we presented a finite-difference formula, E
~26!, representing the derivativei ]uuk&/]k in the single-band
1D case. In this Appendix we generalize the derivation
order to obtain a corresponding formula for the multiba
3D case.

The general expression for the electronic polarization
3D is easily reduced to a sum of 1D Berry phases o
strings ofk points.15 We can write

P5
1

VNk
(
k'

(
a

RaPa~k'!, ~B1!

whereV is the cell volume,a labels the three primitive real
space lattice vectorsRa conjugate to the primitive
reciprocal-space vectorsGa , andk' runs over a 2D mesh o
Nk positions in the reciprocal-space directions perpendic
to a. The contribution from the stringS(k') of k points
running parallel toGa at a givenk' is

Pa~k'!52
f e

2p (
kPS(k')

Im ln detM (k,k¿b), ~B2!

where f 52 for spin,

Mmn
(k,k¿b)5^umkuun,k¿b& ~B3!

is the overlap matrix formed of inner products betwe
Bloch orbitals on neighboringk points on the string,b is the
separation between neighboring points on the string, anm
andn run over the occupied valence bands. Equation~B2! is
essentially the multiband generalization of Eq.~24! of Sec.
III B.

For the remainder of this Appendix, we drop the 3D n
tation and start from the 1D version

P52
f e

2p (
k

Im ln detM (k,k1b) ~B4!

of Eq. ~B2! and, correspondingly, for Eq.~B3!. Our task is to
compute the variationdP arising from the first-order varia
tions of the wave functions in Eq.~B4!. Focusing on a single
wave vectork and its neighbork85k1b and letting M

5M (k,k8), our central task is clearly to compute the firs
order variation of the phase

f5Im lndetM . ~B5!

Using

detM5(
p̂

~21! p̂)
n

^unkuup̂(n)k8&, ~B6!
10410
.

n

n
r

r

-

where p̂runs over all possible permutations among the
cupied bands, the change in this phase from a first-or
change in the wave functions atk is

df5Im
d detM

detM0
, ~B7!

where

d detM5(
p̂

~21! p̂(
n

^dunkuup̂(n)k8& )
mÞn

^umkuup̂(m)k8&

5(
p̂

~21! p̂(
n

^dunkuup̂(n)k8& )
mÞn

M0,mp̂(m) .

~B8!

Here M0 is the matrixM evaluated before variation of th
wave functions.

Unfortunately, Eq.~B8! does not lend itself to simple
evaluation. However, we can reduce Eq.~B8! to a trivial
form as follows. Consider a linear transformation

uũnk8&[(
m

Amnuumk8& ~B9!

among the occupied states atk8, whereA is a nonsingular
~but not necessarily unitary! matrix. Letting M̃mn

5^umkuũnk8&, it follows that M̃5MA and thus det(M̃ )
5det(M )det(A). SinceA is a constant matrix,

d ln detM̃5d ln detM . ~B10!

We thus have the freedom to evaluate Eqs.~B7! and ~B8!

with the substitutionsM→M̃ , M→M̃0, and umk8→ũmk8 ,
whereM̃5MA andM̃05M0A, for arbitraryA.

The obvious choice isA5M0
21. We then find that the

only permutation that survives in Eq.~B8! is the identity and
the denominator of Eq.~B7! becomes unity, so that

df5Im(
n

^dunkuũnk8&, ~B11!

where

uũnk8&5(
m

~M0
21!mnuumk8&. ~B12!

Equation~B11! can also be written neatly as

df5Im Tr~dM•M0
21!. ~B13!

Carrying out similar manipulations for the connection b
tweenk andk2b, we can define

uvnk&[
i

2b
~ uũn,k1b&2uũn,k2b&) ~B14!

which becomes the finite-difference representation
i ]uunk&/]k in the multiband case, analogous to Eq.~26!. It is
easy to check the orthogonality of thevnk to the occupied
subspace
8-16
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^unkuvmk&5
i

2b
~dnm2dnm!50, ~B15!

thus removing the need for explicit application of
conduction-band projector onto theuvnk& when computing
the right-hand side of Eq.~21!. Since^umkuũnk8&5dmn , we
can think of uũnk8& defined in Eq.~B12! as a phase-aligne
and amplitude-corrected ‘‘partner’’ touunk& formed from the
n

ys

Y

te
or

10410
occupied subspace atk8, and uvnk& is proportional to the
difference between the ‘‘partners’’ atk1b andk2b.

Finally, the variation of Eq.~B4! becomes

dP5
f eb

p (
k

Re^dunkuvnk& ~B16!

in analogy with Eq.~25!. Our implementation of this schem
into ABINIT is based on Eqs.~B11!–~B16! above.
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