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We study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a parametric loop
characterized by a nonzero second Chern number Cð2Þ from the viewpoint of the hybrid Wannier
representation, in which the Wannier charge centers are visualized as sheets defined over a projected 2D
Brillouin zone. We derive a new formula for the CSA coupling, expressing it as an integral involving Berry
curvatures and potentials defined on the Wannier charge center sheets. We show that a loop characterized
by a nonzero Cð2Þ requires a series of sheet-touching events at which 2π quanta of Berry curvature are
passed from sheet to sheet, in such a way that e2=h units of CSA coupling are pumped by a lattice vector by
the end of the cycle. We illustrate these behaviors via explicit calculations on a model tight-binding
Hamiltonian and discuss their implications.
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The discovery of topological insulators and related
classes of materials in recent years has generated interest
in the Chern-Simons axion (CSA) coupling, which makes
an isotropic contribution αCS to the magnetoelectric
response tensor of the material. This coupling, defined
as αij ¼ ð∂Pi=∂BjÞE ¼ ð∂Mj=∂EiÞB, where P (M) is the
polarization (magnetization) and E (B) is the electric
(magnetic) field, is conventionally expressed in terms of
a dimensionless parameter θ defined via

αCSij ¼ θe2

2πh
δij; ð1Þ

where θ is determined by the band structure of the insulator
via an integral over the Brillouin zone (BZ) of a Chern-
Simons 3-form according to

θ ¼ −
1

4π

Z
d3kϵijkTr

�
Ai∂jAk − i

2

3
AiAjAk

�
: ð2Þ

Here Anm
i ¼ ihunj∂ijumi is the Berry connection (or non-

Abelian gauge field) in Cartesian direction i, where unðkÞ
is the periodic part of the Bloch function of the nth
occupied band, and the trace is over occupied bands.
The ground-state properties of a band insulator are

invariant under any gauge transformation, that is, any
unitary transformation Unn0 ðkÞ that mixes only the occu-
pied bands. It can be shown that an arbitrary gauge
transformation either leaves the 3-form integral in
Eq. (2) unchanged or else it shifts it by exactly 2π times
an integer. Thus, θ is best regarded as a phase angle that is
only well-defined modulo 2π. As a consequence, the
presence of either time reversal (TR) or inversion (either
of which flips the sign of θ) requires θ to be quantized to
an integer multiple of π, with an odd (even) value
corresponding to an odd (even) strong Z2 topological

index of a TR-invariant 3D insulator [1,2]. One way to
understand the ambiguity of θ modulo 2π, which corre-
sponds to an ambiguity of αCS modulo e2=h, is to realize
that the magnetoelectric coupling is related to the surface
anomalous Hall conductivity (AHC) by σ ¼ ðθ=2πþ
CÞe2=h. Thus, the measurable magnetoelectric response
can be changed by a quantum if a layer with nonzero Chern
number is attached to the surface, changing the effective
value of θ by 2π.
An interesting consequence of this 2π ambiguity is that,

if an insulator is allowed to evolve adiabatically around a
closed loop in the space of parameters determining the
crystal Hamiltonian, with the gap remaining open, the fact
that the system returns to the initial physical state means
that θ must either return to its original value or change by
2πCð2Þ, where Cð2Þ is an integer known as a “second Chern
number.” This possibility of “pumping θ by 2π” has been
discussed and demonstrated for some theoretical models
[1,2], but the characteristic behaviors of a system under-
going such an adiabatic loop have largely remained
unexplored.
Recently, we showed that the hybrid Wannier represen-

tation can be a useful and insightful tool for computing
topological indices and inspecting the topological proper-
ties of 3D insulators [3]. In this approach, the occupied-
state wave functions are transformed into a maximally
localized Wannier representation in one chosen direction,
while remaining Bloch-like in the orthogonal directions.
The resulting hybrid Wannier functions (HWFs) inherit
the topological character of the insulator, and plots of
their Wannier charge centers (WCCs) over the 2D BZ
(“Wannier sheets”) were shown to provide a useful means
of visualizing the topological properties of insulators,
allowing us to discriminate between normal, strong topo-
logical, weak topological, crystalline topological, and
related states [3–6].
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With these motivations, we ask what happens if an
adiabatic cycle that pumps θ by 2π is viewed from the point
of view of the HWF representation. How do the WCC
sheets evolve? Is there a characteristic behavior that signals
the presence of a nontrivial cycle (i.e., a nonzero second
Chern number)? Answering in the affirmative, we show
that quanta e2=h of Berry curvature are passed from one
WCC sheet to the next in a series of isolated band-touching
events, in such a way that one quantum of Berry curvature
is pumped by an entire lattice vector by the close of the
cycle. We illustrate this amusing and instructive result via
numerical calculations on a 3D spinor tight-binding model
and discuss its implications.
We begin with a brief review of the construction of the

hybrid Wannier representation. We choose a special direc-
tion, here ẑ, along which the Wannier transformation is
carried out, so that the HWFs are localized in z while
remaining Bloch-like in the other two directions [7,8].
Explicitly,

jWlnðkx; kyÞi ¼
c
2π

Z
dkzeikzðz−lcÞjun;ki; ð3Þ

where l is a layer index and c is the lattice constant along
ẑ. In general, there is a UðNÞ gauge freedom in choosing
the N representatives of the occupied space, j ~un;ki ¼P

mUnmjum;ki, but there is a unique gauge that mini-
mizes the spread functional of the WFs along ẑ [8].
These maximally localized HWFs and their WCCs
z̄nðkx; kyÞ ¼ hWn0jzjWn0i can be constructed using stan-
dard methods [8,9].
For a 2D insulator the WCCs can be plotted as curves z̄n

versus k⊥ in a 1D projected BZ [4,10], while for a 3D
insulator they can be visualized as sheets plotted over the
2D projected BZ. In previous work [3], we have shown that
these WCC sheets allow one to see how electrons are
adiabatically pumped along ẑ as kx and ky are varied, thus
discriminating between normal and Chern insulators when
TR is broken, or between normal and Z2-odd insulators in
the TR-invariant (TRI) case [3].
It is also of interest to consider the behavior of the WCC

sheets as the crystal Hamiltonian is carried adiabatically
around a loop defined by some cyclic parameter α
corresponding, e.g., to some combination of atomic dis-
placements and/or external fields. A celebrated result of
Thouless [11] is that this results in quantized adiabatic
charge transport, i.e., the pumping of exactly one electron
per unit cell by a lattice vector R during the cycle.
Normally R ¼ 0, but, for example, if R ¼ cẑ, this corre-
sponds to the pumping of one electron by one period along
z during the cycle (a first Chern number of C ¼ 1), i.e., a
change in electric polarization ΔPz ¼ −e=Acell with Acell
the projected unit cell area.
Let us see how this evolution occurs from the viewpoint

of the HWF representation. Intuitively, we expect each

WCC sheet to drift along z with increasing α such that it
replaces the one above it, and is replaced by the one below
it, at the end of the cycle. We begin by defining Berry
potentials “living on the sheets” representation as

Ax;ln;l0m ¼ hWlnji∂xjWl0mi; ð4Þ

and similarly for Ay. These are functions of (kx, ky) and also
matrices in the space of sheet labels ln (the nth sheet in cell
l along z). The corresponding Berry potentials in the Bloch
representation are then just

Ax;nmðkÞ ¼
X
l

eikzlcAx;0n;lmðkx; kyÞ; ð5Þ

Az;nmðkÞ ¼ z̄nðkx; kyÞδnm: ð6Þ

Plugging into the Berry-phase formula for the electronic
contribution Pj ¼ −eð2πÞ−3Pn

R
d3kAjnðkÞ, we find

Pz ¼
−e

ð2πÞ2c
X
n

Z
d2kz̄nðkx; kyÞ; ð7Þ

and similarly for Px or Py with Aj;0n;0n replacing z̄n. For the
case of a parametric loop that pumps electrons along z, the
change ΔPz ¼ −e=Acell would occur via the gradual
migration of the z̄ðkx; kyÞ along the þẑ direction, with a
relabeling of sheets required at the end of the loop.
Now we again consider an adiabatic cycle in a 3D

insulator, but this time one that results in the pumping of
the CSA coupling, increasing θ by 2π times the second
Chern number Cð2Þ defined earlier. This corresponds
to a pumping of Berry curvature, instead of electric
charge, along z during the adiabatic cycle. For this purpose,
we define a Berry curvature on the WCC sheets as
Ωxy;ln;l0mðkx; kyÞ ¼ ih∂xWlnj∂yWl0mi − ih∂yWlnj∂xWl0mi.
The relation to the Berry curvature in the Bloch represen-
tation is similar to that for A in Eq. (5). The intrinsic AHC
σyx of the crystal is just given by integrating the trace ofΩxy
in the Bloch representation over the 3D BZ, and this is
easily shown to be equal to ðe2=hcÞPnCn, where Cn is the
Chern number of the nth sheet in the home unit cell, given
by Cn ¼ ð2πÞ−1 R d2kΩxy;0n;0n. We shall exclude quantum
anomalous Hall insulators from our discussion here, so we
can assume that

P
nCn ¼ 0, but importantly the individual

Cn can be nonzero.
We now address the central issue of this Letter, namely,

how to represent the CSA coupling θ in the HWF
representation. Starting from Eq. (2), this can be written as

θ ¼ θzΩ þ θΔxy; ð8Þ

where
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θzΩ ¼ −
1

2π

Z
d3kTr½AzΩxy�; ð9Þ

θΔxy ¼ −
1

2π

Z
d3kTr½Ay∂zAx − iAz½Ax; Ay��: ð10Þ

Performing the kz integrations, these are expressed in the
HWF representation as

θzΩ ¼ −
1

c

Z
d2k

X
n

z̄nΩxy;0n;0n; ð11Þ

θΔxy ¼
i
c

Z
d2k

X
lmn

ðz̄lm − z̄0nÞAx;0n;lmAy;lm;0n; ð12Þ

where z̄lm ¼ lcþ z̄m. In deriving Eq. (12), we have used
that

c
2π

Z
dkzTr½Ay∂zAx� ¼

X
l

X
nm

ðilcÞAx;0n;lmAy;lm;0n: ð13Þ

Equations. (8), (11), and (12) constitute a major result of
the present work [12].
Of primary concern to us here is the “Berry curvature

dipole” term θzΩ in Eq. (11), which describes the extent to
which concentrations of positive and negative Berry cur-
vature on the WCC sheets, given by Ωxy;0n;0nðkx; kyÞ, are
displaced from one another along the ẑ direction as given
by z̄nðkx; kyÞ. Note that θzΩ is shifted by −2πCn if the
choice of WCC sheets comprising the home unit cell is
changed so as to shift some z̄n by c. The θzΩ term is
therefore the one that has the 2π ambiguity, and we shall see
that it is responsible for the pumping of CSA coupling. The
second term θΔxy, given by Eq. (12), is an intersheet
contribution in which the z separation between sheets at
(kx, ky) is coupled to the off-diagonal (intersheet) matrix
elements of the Berry potentials. There is no 2π ambiguity
associated with this term, and as we shall see, it typically
remains small even when θ is not. We regard it as a
correction term that is needed for quantitative accuracy but
is not relevant to topological considerations.
We now illustrate the concepts introduced above in the

context of a simple tight-binding model. Following Essin
et al. [1], we start with the Fu-Kane-Mele (FKM) model
[13], which is a four-band model of s orbitals on a diamond
lattice with spin-orbit interaction,

HFKM ¼
X
hiji

tðeijÞc†i cj þ iλso
X
hhijii

c†i s · ðd1
ij × d2

ijÞcj: ð14Þ

The first term is a sum over first-neighbor hoppings, where
eij is the bond vector, while the second term involves
second-neighbor hops in which vectors d1;2

ij describe the
two first-neighbor bonds that make up the second-neighbor
hop. We take the cubic lattice constant to be unity. In the

original FKM model tðeijÞ ¼ t0 independent of hopping
direction, but following Ref. [1], we take tðeijÞ ¼ t0ð3þ δÞ
for the bond along (111) and t0 for the other three bonds.
We set the first-neighbor and spin-dependent second-
neighbor hoppings to t0 ¼ 1 and λso ¼ 1, respectively,
and assume two bands are occupied.
The strong topological and trivial phases are separated

from each other by a band touching at the Γ point when
δ ¼ 0. Again following Essin et al. [1], we add a staggered
Zeeman field h, and define an adiabatic loop parametrized
by δðαÞ ¼ m cosðαÞ and hðαÞ ¼ m sinðαÞ, where α runs
from 0 to 2π, such that the system remains insulating on the
loop and θ is pumped by 2π. The HWF representation is
constructed with ẑ along the (111) direction.
TheWCC sheets derived from the two occupied bands in

the FKM model are shown in Fig. 1, where one pair of
sheets and one copy of their periodic images along ẑ are
shown for some points around the adiabatic loop [14]. The
evolution of the Wannier sheet positions is plotted in
Figs. 2(a) and 2(b) at the four TRI points, namely, at the
BZ center Γ and at the three equivalent M points, e.g.,
(π, π).
The system has TR symmetry at α ¼ 0 and π, where the

system is Z2 even and Z2 odd, respectively, and where the
WCC sheets pair up at the four TRI points due to Kramers
degeneracy [3]. In the normal phase at α ¼ 0, this results in
a pair of sheets connected by Dirac points at all four TRI
momenta, and each pair is well separated from its neighbors
along ẑ. As α increases, the Dirac crossings are gapped and
the sheets begin to separate. At the three M points, the
separation between the pair remains quite small, and the
same sheets touch again at α ¼ π, as is obvious from
Fig. 2(a). At the Γ point, however, the sheets separate
strongly and eventually reconnect with their neighbors
from the next unit cell along ẑ when α ¼ π. The swapping

FIG. 1 (color online). The two WCC sheets of the half filled
FKM model, and one set of periodic images, at four stages
α ¼ ð0; 3π=4; π; 5π=4Þ along the parametric cycle (clockwise
from upper left). Blue and red colors show positive and negative
values of Berry curvature Ωz on the sheets, respectively. The
Chern numbers associated with the individual WCC sheets are
shown for those cases where sheets do not touch.
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of partners at an odd number of the TRI points (here, only
at Γ) is characteristic of the strong topological (Z2-odd)
phase at α ¼ π. Note, however, that the WCC sheets, taken
together, have no net displacement along the ẑ direction, so
no charge is pumped.
To see what happens to the CSA coupling θ during this

cycle, we inspect the Berry curvature Ωxy on the sheets,
represented by the color-scale shading in Figs. 1, 2(a), and
2(b). We see that the behavior near the M points is
uninteresting; positive and negative Berry curvature con-
tributions separate slightly at first, but they then reverse and
recross, and never give a large contribution to θzΩ, as given
by Eq. (11). Near Γ, however, the story is strikingly
different. A negative (red) increment of Berry curvature
is transported along þẑ while a positive (blue) contribution
is carried along −ẑ as α evolves from 0 to π. For small and
positive αwe expect that the total Berry curvature near Γ in
the top and bottom sheets (at z̄2 and z̄1) should be −π and π,
respectively, characteristic of a weakly gapped Dirac point.
Thus, the contribution to the Berry curvature dipole term
θzΩ from the vicinity of Γ, which is approximately
π(z̄2ð0; 0Þ − z̄1ð0; 0Þ)=c, grows gradually as α increases
and the sheets get farther apart at Γ. As α → π, the
separation between the sheets at Γ approaches a full lattice
constant c and the contribution to θzΩ approaches π.
This expectation is confirmed in Fig. 2(c), where we plot

θ and its contributions θzΩ and θΔxy versus α. The non-
topological θΔxy term is almost negligible everywhere
around the adiabatic loop, and is not discussed further.
As α passes through π there is a Dirac touching at Γ
between sheet 2 in the home cell and sheet 1 in the cell
above, with a hand-off of −2π units of Berry curvature (or a
Chern number of −1) from the former to the latter, with the
concentration of Berry curvature near Γ in band 2 switching
from −π to π. A direct evaluation of Eq. (11) would show
θzΩ and θ dropping discontinuously by 2π as α crosses
through π, but we make use of the gauge freedom to apply a
2π shift of θ to impose physical continuity when drawing
the curves in Fig. 2(c).

Here we have illustrated the behavior of just one model
system, and we have found that the pumping of θ by 2π is
accomplished by a series of touching events between
WCC sheets, such that one Chern number of Berry
curvature is handed off to the neighboring sheet with
each touching. But it is now clear in retrospect that any
cycle that pumps θ by 2π must involve such a sequence of
touching events, because if these events did not occur, the
CSA coupling could not be passed along by a lattice vector
during the cycle. Incidentally, this observation also explains
why a nontrivial θ pumping cycle is impossible in a
system with a single occupied band, since in this case
the WCC sheets are always separated by cẑ and can
never touch.
One can also consider the corresponding evolution of the

Berry curvatures and Chern transfers for finite slabs, where
the bulk of the slab undergoes the same cyclic evolution. If
the surface Hamiltonian could be constantly readjusted so
as to remain insulating, the net result at the end of the cycle
would be to change the surface AHC by �e2=h at the
bottom and top surfaces of the slab, respectively. In the
more common case that the surface returns to its initial state
at the end of the cycle, the AHC must return to itself too, so
the slab is topologically required to have a metallic surface
phase over some interval of α. During this α interval, the
surface AHC changes continuously with changing filling in
such a way as to contribute ∓e2=h by the time the surface
band is completely filled or depleted, removing the extra
Chern number pumped from the bulk. The existence of
such surface states can be an experimental signature
characterizing any adiabatic loop with a nonzero second
Chern number.
In summary, we have demonstrated that the WCC sheets

as defined in the HWF representation, which had previ-
ously been shown to be useful for identifying and visual-
izing the topological properties of nontrivial insulating
phases, also provides an insightful characterization of a
nontrivial parametric loop characterized by a second Chern
number. By defining Berry connections and curvatures
associated with the WCC sheets, we have derived a new
formula for the CSA axion coupling θ as a decomposition
into a topological Berry curvature dipole term and a
nontopological correction term. In this kind of adiabatic
cycle it is not the charge, but the sheet Berry curvature, that
is pumped during the cycle. In our formulation the 2π
ambiguity of θ is readily evident when some sheets have
nonzero Chern numbers, in which case a different assign-
ment of sheets to the home unit cell can shift θ by 2π, and
the link to the surface anomalous Hall conductivity
becomes more direct. We also speculate that Eqs. (11)
and (12) may provide a more efficient practical means of
computing θ than those used previously, since there is no
need to establish a smooth gauge in the 3D Brillouin zone.
In any case, we believe that our extended development of
the HWF representation should prove broadly useful in

FIG. 2 (color online). WCCs at (a)M and (b) Γ of the 2D BZ for
the FKM model as a function of the adiabatic loop parameter α.
Blue and red colors indicate positive and negative values of Berry
curvature, respectively. (c) CSA coupling θðαÞ and its contribu-
tions θzΩ and θΔxy for the same adiabatic loop.
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characterizing the adiabatic evolution of topological mate-
rials and their magnetoelectric properties.

This work was supported by NSF Grant No. DMR-14-
08838, and was inspired in part by preliminary calculations
of Sinisa Coh. We thank Ivo Souza for useful discussions.

*mtaheri@physics.rutgers.edu
[1] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett.

102, 146805 (2009).
[2] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[3] M. Taherinejad, K. F. Garrity, and D. Vanderbilt, Phys. Rev.

B 89, 115102 (2014).
[4] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83,

235401 (2011).
[5] A. Alexandradinata and B. A. Bernevig, Phys. Rev. B 89,

155114 (2014).

[6] A. Alexandradinata and B. A. Bernevig, arXiv:1409.3236.
[7] C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64,

115202 (2001).
[8] N.Marzari andD.Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[9] X. Wu, O. Diéguez, K. M. Rabe, and D. Vanderbilt, Phys.

Rev. Lett. 97, 107602 (2006).
[10] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys.

Rev. B 84, 075119 (2011).
[11] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[12] Note that the integrands in Eqs. (11) and (12) are gauge

invariant in the Bloch directions, i.e., unchanged under a
phase twist exp½iφnðkx; kyÞ�.

[13] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007).

[14] We use the “periodic” convention on the Bloch function
coefficients in the sense of Ref. [15] to ensure that the Berry
curvature respects the symmetry of the system.

[15] E. Dobardzic, M. Dimitrijevic, and M. Milovanovic,
arXiv:1411.4920.

PRL 114, 096401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

096401-5

http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.89.115102
http://dx.doi.org/10.1103/PhysRevB.89.115102
http://dx.doi.org/10.1103/PhysRevB.83.235401
http://dx.doi.org/10.1103/PhysRevB.83.235401
http://dx.doi.org/10.1103/PhysRevB.89.155114
http://dx.doi.org/10.1103/PhysRevB.89.155114
http://arXiv.org/abs/1409.3236
http://dx.doi.org/10.1103/PhysRevB.64.115202
http://dx.doi.org/10.1103/PhysRevB.64.115202
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevLett.97.107602
http://dx.doi.org/10.1103/PhysRevLett.97.107602
http://dx.doi.org/10.1103/PhysRevB.84.075119
http://dx.doi.org/10.1103/PhysRevB.84.075119
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://arXiv.org/abs/1411.4920

