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Finite-Temperature Properties of Pb���Zr12xTix���O3 Alloys from First Principles

L. Bellaiche,1 Alberto García,2 and David Vanderbilt3
1Physics Department, University of Arkansas, Fayetteville, Arkansas 72701

2Departamento de Fisica Aplicada II, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain
3Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

(Received 4 January 2000)

A first-principles-derived approach is developed to study finite-temperature properties of
Pb�Zr12xTix�O3 (PZT) solid solutions near the morphotropic phase boundary (MPB). Structural and
piezoelectric predictions are in excellent agreement with experimental data and direct first-principles
results. A low-temperature monoclinic phase is confirmed to exist, and is demonstrated to act as a
bridge between the well-known tetragonal and rhombohedral phases delimiting the MPB. A successful
explanation for the large piezoelectricity found in PZT ceramics is also provided.

PACS numbers: 77.84.Dy, 77.65.Bn, 81.30.Bx
Ferroelectric perovskite A�B0B00�O3 alloys are of grow-
ing importance for a variety of device applications [1,2],
and are also of great current fundamental interest since
little is known about the effects responsible for their
anomalous properties. A good example of an A�B0B00�O3
solid solution that is of both fundamental and technological
importance is the Pb�Zr12xTix �O3 system. Usually de-
noted as PZT, this mixed-cation alloy is currently in wide-
spread use in piezoelectric transducers and actuators [1].
Its phase diagram exhibits a morphotropic phase boundary
(MPB) separating a region with a tetragonal ground state
(x . 0.52) from a region with rhombohedral symmetry
(x , 0.45) [3].

High piezoelectric response is experimentally found in
ceramics of PZT around the MPB. The origin of this
large piezoelectric response is unclear. On the one hand,
semiempirical simulations predict that the large experi-
mental value of the d33 piezoelectric coefficient results
mainly from the large value of d33 that a single-crystal PZT
would exhibit [4]. On the other hand, recent first-principles
calculations [5,6] have found that the d33 coefficient of a
tetragonal single crystal of Pb�Zr0.5Ti0.5�O3 is estimated
to be 3 times smaller than the experimental value obtained
for ceramics at low temperature.

Furthermore, recent synchrotron x-ray powder diffrac-
tion studies have revealed the existence of an unexpected
low-temperature monoclinic phase of PZT at x � 0.48
[7], which implies that the phase diagram of PZT is more
complex than previously thought. This monoclinic phase
may act as a second-order transitional bridge between the
tetragonal phase, for which the electrical polarization P
lies along the pseudocubic [001] direction, and the rhom-
bohedral phase, for which P is along the pseudocubic [111]
direction. If this is indeed the case, the polarization of the
monoclinic phase continuously rotates as the composition
x decreases in the MPB region [7]. Such a continuous ro-
tation has yet to be observed.

Obviously, accurate simulations are needed to under-
stand the properties of perovskite alloys in general, and
of PZT, in particular. Since the beginning of the present
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decade, first-principles methods have emerged as a power-
ful tool for investigating properties of ferroelectric systems
theoretically (see [5,6,8,9], and references therein). How-
ever, these methods are essentially restricted to the study
of the zero-temperature properties of small cells, while ac-
curate and interesting predictions of alloy properties would
require calculations on much larger cells at finite tempera-
ture. Ideally one desires a computational scheme with the
capability of predicting the properties of “real” perovskite
alloy systems at finite temperature, with the accuracy of
the first-principles methods.

The purpose of this Letter is to demonstrate that it is
possible to develop such a scheme, and to apply it to
study the finite-temperature behavior of PZT in the vicin-
ity of the MPB. Remarkably, we find that the existence of
an intermediate monoclinic phase emerges naturally from
this approach. Moreover, the theory provides a novel and
successful explanation for the large piezoelectric response
of PZT near the MPB, thereby explaining and resolving
the previous theoretical difficulties in obtaining agreement
with the known experimental values of the piezoelectric
coefficients.

Our scheme is based on the construction of an effective
Hamiltonian from first-principles calculations. A ferro-
electric effective Hamiltonian [10] must include the fer-
roelectric local soft mode and the strain variables, since
ferroelectric transitions are accompanied by a softening of
a polar phonon mode and by the appearance of a strain.
An alloy effective Hamiltonian must also include the com-
positional degrees of freedom. We propose to incorporate
all such degrees of freedom by writing the total energy E
as a sum of two energies,

E��ui�, �vi�, hH , �sj�� � Eave��ui�, �vi�, hH�

1 Eloc��ui�, �vi�, �sj�� , (1)

where ui is the local soft mode in unit cell i, �vi� are the
dimensionless local displacements which are related to the
inhomogeneous strain variables inside each cell [10], hH
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is the homogeneous strain tensor, and the �sj� characterize
the atomic configuration of the alloy. That is, sj � 11
or 21 corresponds to the presence of a B0 or B00 atom,
respectively, at lattice site j of the A�B0

12xB00
x �O3 alloy.

The energy Eave depends only on the soft mode and strain
variables. The �sj� parameters are thus incorporated into
the second energy term Eloc.

For Eave, we generalize the analytical expression suc-
cessfully used in Ref. [10] for simple ABO3 systems to
the case of an alloy. This generalization simply consists in
5428
using the virtual crystal approximation (VCA) [11], i.e.,
in replacing A�B0

12x , B00
x �O3 by a uniform but composition-

dependent “virtual” ABO3 system. Eave thus consists of
five parts: a local-mode self-energy, a long-range dipole-
dipole interaction, a short-range interaction between soft
modes, an elastic energy, and an interaction between the
local modes and local strain [10].

For Eloc, we propose an expression that includes (i)
the on-site effect of alloying on the self-energy up to the
fourth order in the local-mode vector ui , and (ii) intersite
contributions which are linear in ui and in vi:
Eloc��ui�, �vi�, �sj�� �
X

i

�Da�si�u4
i 1 Dg�si� �u2

ixu2
iy 1 u2

iyu2
iz 1 u2

izu
2
ix��

1
X
ij

�Qj,i�sj�eji ? ui 1 Rj,i�sj�fji ? vi� , (2)
where the sums over i and j run over unit cells and mixed
sublattice sites, respectively. Da�si� and Dg�si� charac-
terize the on-site contribution of alloying, while Qj,i�sj�
and Rj,i�sj� are related to alloying-induced intersite inter-
actions. Here eji is a unit vector joining the site j to the
center of the soft-mode vector ui , and fji is a unit vec-
tor joining the site j to the origin of the displacement vi .
In principle, terms involving higher powers of ui and vi

might be included to improve the quality of the expansion,
but, as will be shown below, we find this level of expan-
sion to give a very good account of experimental findings.
We also find that Qj,i�sj� and Rj,i�sj� decrease rapidly as
the distance between i and j increases. As a result, we in-
cluded contributions up to the third neighbors for Qj,i�sj�,
and over the first-neighbor shell for Rj,i�sj�.

All the parameters of Eqs. (1) and (2) are derived from
first principles. The 18 parameters of Eave (see Table II
of Ref. [10]) are determined by fitting the results of first-
principles VCA calculations. On the other hand, Da�si�,
Dg�si�, Qj,i�sj�, and Rj,i�sj� are derived by performing
first-principles calculations in which a true atom [e.g., Ti
or Zr in Pb�Zr, Ti�O3] is surrounded by VCA atoms. The
first-principles method used in the present study is the
plane-wave ultrasoft-pseudopotential method [12] within
the local-density approximation [13]. The VCA approach
adopted averages of the B0 and B00 pseudopotentials, and
is the one of Ref. [14].

Once our effective Hamiltonian is fully specified, the
total energy of Eq. (1) is used in Monte Carlo simula-
tions to compute finite-temperature properties of ferroelec-
tric alloys. We typically use a 12 3 12 3 12 supercell
(8640 atoms), since this choice yields well-converged re-
sults. The �sj� variables are chosen randomly in order to
mimic maximal compositional disorder—consistent with
experimental reality [15]—and are kept fixed during the
Monte Carlo simulations. We find that averaging our re-
sults over a couple of different realizations of the disorder
leads to well-converged statistical properties. The outputs
of the Monte Carlo procedure are the local-mode vectors u
(directly related to the electrical polarization), and the
homogeneous strain tensor hH . We use the correlation-
function approach of Ref. [16] to derive the piezoelectric
response from these Monte Carlo simulations. Up to 106

Monte Carlo sweeps are first performed to equilibrate the
system, and then 2 3 104 sweeps are used to get the vari-
ous statistical averages. The temperature is decreased in
small steps.

Figure 1 shows the largest, middle, and smallest Carte-
sian coordinates (u1, u2, and u3) of the supercell average of
the local-mode vectors in Pb�Zr0.5Ti0.5�O3 as a function of
the temperature, as predicted by our approach described by
Eqs. (1) and (2). Each coordinate is close to zero at high
temperature, characterizing a paraelectric cubic phase. As
the system is cooled down, u1 drastically increases while
u2 and u3 remain nearly null. This indicates a transition to
a ferroelectric tetragonal phase, consistent with measure-
ments [3]. We predict that the spontaneous polarization
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FIG. 1. Largest, middle, and smallest average Cartesian coor-
dinates u1, u2, and u3 of the local-mode vector as a function
of temperature in disordered single crystals of Pb�Zr0.5Ti0.5�O3.
Solid lines denote inclusion, while dashed line denotes neglect,
of Eloc in Eq. (1). For clarity, u2 and u3 are not shown for the
latter (VCA) case; they are nearly zero at all temperatures.
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reaches 0.79 C�m2 at very low temperature, which com-
pares well with the first-principles results of 0.70 and
0.74 C�m2 [5]. The tetragonal axial ratio c�a ranges
from 1 close to the transition region to 1.02 for lower
temperature. This is in good agreement both with the
experimental value of 1.02–1.025 [3,7] obtained for disor-
dered samples, and with the first-principles result of 1.03
obtained for an ordered alloy [6]. Figure 1 also shows
the predictions of the VCA alloy theory, corresponding to
the neglect of Eloc in Eq. (1). Interestingly, one sees that
Eloc has no effect on the phase transition sequence, which
is consistent with recent findings that the VCA approach
can reproduce some structural properties of PZT [14,17].
Whether or not Eloc is included in the total energy, we find
a Curie temperature TC that is higher than the experimen-
tal value of 640 K [18]. This difficulty of reproducing TC

is a general feature of the effective-Hamiltonian approach
[10,19,20], and may be due to higher perturbative terms
neglected in the analytical expression for the total energy.
In order to compare our results with experimental data,
we will henceforth rescale our temperature as in Ref. [16]
so that the theoretical TC is forced to match the experi-
mental one.
Figure 2 shows the piezoelectric coefficients predicted
for a tetragonal single crystal of Pb�Zr0.5Ti0.5�O3 as a func-
tion of the rescaled temperature, when neglecting or in-
corporating Eloc in Eq. (1). The independent coefficients
for the 4mm point group are d33, d31, and d15. One can
notice that inclusion of Eloc has only a small effect on
d31 and d33: d31 is rather small for any temperature ex-
cept near the transition, and d33 is around 50 55 pC�N at
room temperature in both simulations. Using the experi-
mental values of the elastic compliances [5] to compute
e33 from our calculated d31 and d33, we find that our alloy
effective Hamiltonian leads to an e33 of 4.3 C�m2, while
neglecting Eloc in Eq. (1) yields a similar e33 of 3.8 C�m2

at low temperature. Both predictions agree well with the
first-principles results ranging between 3.4 and 4.8 C�m2

[5,6,14], confirming that the VCA can reproduce the e33
coefficient of PZT [14].

Figure 2 also demonstrates that incorporating Eloc in the
total energy leads to a large enhancement of the d15 coef-
ficient, which is consistent with recent measurements re-
vealing that the piezoelectric elongation of the tetragonal
unit cell of PZT does not occur along the polar direction
[21]. This enhancement is highly relevant for the piezo-
electric response d33 in ceramic samples, denoted d33,c,
which involves an average of the form
d33,c �
Z p�2

0
��d31 1 d15� sin2u 1 d33 cos2u� sinu cosu du (3)
over the single-crystal coefficients. The true alloy ap-
proach of Eqs. (1) and (2) leads to a d33,c of 163 pC�N
at room temperature, in excellent agreement with the ex-
perimental value of 170 pC�N [4,22]. On the other hand,
neglecting Eloc leads to a smaller d33,c of 90 pC�N. This
difference clearly demonstrates the necessity of incorpo-
rating the local alloying effect into the total energy for
understanding the large piezoelectric response of PZT ce-
ramics near the MPB.

We now use our alloy effective Hamiltonian to investi-
gate the low-temperature phases of Pb�Zr12xTix�O3 near
the MPB. We choose a constant temperature of 50 K in
the Monte Carlo simulations, and vary the overall compo-
sition of the solid solution. This compositional variation
affects two quantities: (i) the populations of sj equal to
11 or 21, and (ii) the alloy-related parameters. For the
latter, only the parameters entering the local-mode self-
energy of Eave [10], and the Da�si� and Dg�si� in
Eq. (2), are allowed to be composition dependent. This
composition dependence is assumed to be linear, and
is determined by performing first-principles simulations
on two different compositional cells. Such a linear
composition-dependence approach is realistic only when
exploring a narrow range of compositions, as done in the
present study.

Figure 3 shows that the local mode, and hence the po-
larization, is parallel to the pseudocubic [001] direction
for Ti compositions larger than 50%, which is consistent
with a tetragonal phase. For compositions lower than 47%,
the polarization becomes parallel to the pseudocubic [111]
direction, indicating the “high-temperature” rhombohedral
phase [3,23]. The most interesting feature of Fig. 3 is the
behavior of the local mode for the compositional range be-
tween 47.5% and 49.5%: as x decreases, u1 decreases,
while u2 and u3 increase and remain nearly equal to each
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FIG. 2. Piezoelectric coefficients as a function of temperature
in disordered (4mm) Pb�Zr0.5Ti0.5�O3. Solid lines denote inclu-
sion, while dashed lines denote neglect, of Eloc in Eq. (1). Tem-
perature has been rescaled to fit the experimental value of the
Curie temperature. Statistical errors are estimated to be �10%
of the values displayed.
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FIG. 3. Similar to Fig. 1, but computed as a function of com-
position x. The temperature of the simulation is 50 K, corre-
sponding to a rescaled experimental value of 30 K (see text).

other. This behavior is characteristic of an intermediate
phase that is neither tetragonal nor rhombohedral. The
strain tensor given by our simulations indicates that this
intermediate phase is the monoclinic phase experimen-
tally found by Noheda et al. We further predict that
the monoclinic phase for x 	 48% can be character-
ized by an angle of 90.7± and by lattice vectors am �
a0�21.005, 21.005, 20.009�, bm � a0�1.002, 21.002,
0.000�, and cm � a0�0.004, 0.004, 1.018�, where a0 is
a cubic lattice constant. All these predictions are in
excellent quantitative agreement with the experimental
results of Ref. [7]. Figure 3 clearly demonstrates that the
monoclinic phase acts as a bridge between the rhombohe-
dral and tetragonal phases, as indicated by the continuous
rotation of the polarization as a function of composition.
Our computational scheme is also able to reproduce the
compositional range narrowing of the monoclinic phase
observed when increasing the temperature [21]. It should
be noted that a VCA-only calculation (i.e., neglecting
Eloc) does not reveal a monoclinic phase. This finding
demonstrates once again the need for incorporating the
local effect of alloying into the total energy to study subtle
effects.

In summary, we have developed a first-principles de-
rived computational scheme to study finite-temperature
properties of Pb�Zr12xTix�O3 solid solutions near the MPB
as a function of composition and temperature. We find
that there is a low-temperature monoclinic phase acting
as a bridge between the rhombohedral phase, existing
for x , 0.47, and the tetragonal phase, occurring for x
larger than 0.50. The predicted structural data are in very
good agreement with measurements, as well as with direct
first-principles calculations. The use of this approach also
provides an explanation for the large experimental value
of d33 in tetragonal ceramics of PZT near the MPB [22].
This large piezoelectricity is simply due to the very large
value of the d15 coefficient predicted to occur in the single
crystal.
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