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Maximally localized Wannier functions for entangled energy bands
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We present a method for obtaining well-localized Wannier-like functions~WF’s! for energy bands that are
attached to or mixed with other bands. The present scheme removes the limitation of the usual maximally
localized WF’s method@N. Marzari and D. Vanderbilt, Phys. Rev. B56, 12 847 ~1997!# that the bands of
interest should form an isolated group, separated by gaps from higher and lower bands everywhere in the
Brillouin zone. An energy window encompassingN bands of interest is specified by the user, and the algorithm
then proceeds to disentangle these from the remaining bands inside the window by filtering out an optimally
connectedN-dimensional subspace. This is achieved by minimizing a functional that measures the subspace
dispersion across the Brillouin zone. The maximally localized WF’s for the optimal subspace are then obtained
via the algorithm of Marzari and Vanderbilt. The method, which functions as a postprocessing step using the
output of conventional electronic-structure codes, is applied to thes andd bands of copper, and to the valence
and low-lying conduction bands of silicon. For the low-lying nearly-free-electron bands of copper we
find WF’s which are centered at the tetrahedral-interstitial sites, suggesting an alternative tight-binding
parametrization.

DOI: 10.1103/PhysRevB.65.035109 PACS number~s!: 71.15.Ap
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I. INTRODUCTION

When studying electrons in solids, it is often the case t
only a small subset of the available one-electron states
tributes significantly to the properties under considerati
Moreover, the states of interest typically lie within a limite
energy range. For instance, for modeling electron-trans
or magnetic properties, only the partially filled bands close
the Fermi energyEF are needed. This is the rationale behi
the tight-binding and Hubbard models, in which only a fe
energy bands are kept.1,2 Those models rely on the existenc
of a minimal set of spatially localized orbitals spanning t
manifold of relevant states.

In recent years there has been growing interest in exp
itly constructing such orbitals from first-principles densit
functional calculations. One potential application consists
obtaining the parameters in correlated Hamiltonians by c
straining the occupation of the orbitals to find the energy c
of deviating from the mean-field solution~‘‘constrained
density-functional theory’’3,4!. Another arises in the contex
of the ‘‘dynamical mean-field theory’’ which, when com
bined with density-functional methods, requires the spec
cation of localized orbitals describing the narrow bands
interest.5

Wannier functions6 ~WF’s! are a very natural type of lo
calized orbital for extended systems. They play a central
in formal discussions of the tight-binding1 and Hubbard2

models. Traditionally they have often been invoked
although rarely calculated explicitly—as a convenient ba
for describing local phenomena, such as impuritie7

excitons,7 and magnetic properties.8 More recently, WF’s
have found important applications in connection with line
scaling algorithms for electronic-structure calculation9

Moreover, they play an important role in the theory of ele
tronic polarization and localization in insulators, with th
former quantity being related to the centers of charge of
0163-1829/2001/65~3!/035109~13!/$20.00 65 0351
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WF’s ~Refs. 10 and 11! and the latter to their quadrati
spreads.12,13These developments have also led to general
tions of the concept of Wannier functions to correlated el
tron systems.13–15

The main obstacles to the construction of WF’s in prac
cal calculations have been their nonuniqueness~or ‘‘gauge
dependence’’! and the difficulties in dealing with degenera
cies among the Bloch states. These have been overcom
the development by Marzari and Vanderbilt of a general a
practical method for extracting ‘‘maximally localized’’ WF’s
from an isolated group of bands.16 ~By ‘‘isolated’’ we mean a
group of bands that may become degenerate with one
other at certain symmetry points or lines in the Brillou
zone, but separated from all other bands by finite g
throughout the entire Brillouin zone. The set of valen
bands of an insulator constitutes an important example.! The
method has been successfully used to describe the diele
properties of several insulating systems, such as crystalli16

and amorphous17 semiconductors, ferroelectric perovskites18

liquid water,19 compressed solid hydrogen,20 and manganese
oxide.21 It has been implemented for plane-wave,16 linear
augmented plane-wave,21 and tight-binding20 basis sets.

However, in many cases the group of bands of interes
not isolated in the above sense, especially when dealing
metals or with the empty bands of insulators. For examp
the conductions band of an alkali metal is attached at poin
or lines of high symmetry to higher bands; thed bands of a
noble or transition metal are hybridized with ans band,
which in turn is attached to higher bands; the conduct
bands of a copper-oxide superconductor emerge from
dense group of bands below; and the four low-lying an
bonding bands of a tetrahedral semiconductor are conne
to higher-conduction bands.

A successful technique that has been applied for c
structing localized orbitals that describe such entang
bands is the ‘‘downfolding’’ technique22,23 that has been de
©2001 The American Physical Society09-1
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veloped for electronic-structure methods based on muffin
orbitals. There have also been previous attempts at const
ing WF’s for nonisolated groups of bands, namely, for no
and transition metals24–27 and for tetrahedral semi
conductors.28,29 These attempts fall into two categories:~i!
the WF’s are obtained directly from a variational princip
as suggested by Kohn,30 or ~ii ! they are obtained as Fourie
transforms of Bloch functions, with the help of a mod
Hamiltonian that reproduces the band structure in the des
energy range, as suggested by Bross.31

We will describe an alternative Wannier-based appro
that is closer in spirit to the Fourier-transform method
Bross and co-workers, but does not require the construc
of an auxiliary model Hamiltonian. The method can be
garded as an extension to the case of attached bands o
maximally localized WF method of Marzari an
Vanderbilt.16 It has the desirable features that it can be imp
mented with any basis set~e.g., plane waves!, and requires
minimal user-intervention~the only ‘‘adjustable parameter
being a specification of the energy range of interest!. Like
the approach of Ref. 16, ours is a ‘‘postprocessing’’ meth
taking as its input the Bloch eigenstates and eigenvalues
culated by a standard electronic-structure code.

Strictly speaking, the resulting orbitals are not WF’s~or
even ‘‘generalized WF’s’’16! in the usual sense. They ar
nevertheless Wannier-like in the fundamental sense that
are obtained via an integral over the Brillouin zone of Bloc
like functions. As such they form an orthonormal, localiz
basis of the same Bloch subspace from which they w
constructed.

The power of the present approach is illustrated by o
particularly striking result that emerged from the work.
Sec. IV B 3 we find that a rather natural representation of
low-lying bands of an fcc metal like copper can be made
terms of a set of five Cud-like WF’s and two additional
WF’s centered at the tetrahedral-interstitial locations. T
provides a basis for a novel and concise tight-binding rep
sentation for copper.

The paper is organized as follows. In Sec. II we revi
the method of Marzari and Vanderbilt for obtaining we
localized WF’s for an isolated group of bands. In Sec. III w
describe our procedure for dealing with entangled ene
bands, and in Sec. IV we illustrate it with a set of applic
tions. Finally, in Sec. V we present a summary and conc
sions.

II. MAXIMALLY LOCALIZED WANNIER FUNCTIONS
FOR AN ISOLATED GROUP OF BANDS

A set of WF’swnR(r )5wn(r2R) labeled by Bravais lat-
tice vectorsR can be constructed from the Bloch eigensta
cnk of bandn using the unitary transformation

wnR~r !5
v

8p3EBZ
e2 ik•Rcnkdk, ~1!

wherev is the volume of the unit cell of the crystal and th
integral is over the Brillouin zone. Except for the constra
cn,k1G5cnk for all reciprocal-lattice vectorsG, the overall
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phases of the Bloch functionscnk5eik•runk are at our dis-
posal. However, a different choice of phases~or ‘‘gauge’’!,

unk→eiwn(k)unk , ~2!

does not translate into a simple change of the overall pha
of the WF’s; their shape and spatial extent will in general
affected. If the band is isolated, Eq.~2! is the only allowed
type of gauge transformation for changing the set of W
wn(r2R) associated with that band. In the case of an i
lated group ofN bands, the allowed transformations are
the more general form

unk→ (
m51

N

Umn
(k)umk , ~3!

whereU (k) is a unitary matrix that mixes the bands at wa
vectork. The resulting orbitals are called ‘‘generalized Wa
nier functions.’’16

Once a measure of localization has been chosen an
isolated group of bands specified, the search for the co
sponding set of ‘‘maximally localized’’ WF’s becomes
problem of functional minimization in the space of the m
trices U (k). The strategy of Ref. 16 consists of minimizin
the sum of the quadratic spreads of the Wannier probab
distributionsuwn(r )u2,

V5 (
n51

N

~^r 2&n2^r &n
2!, ~4!

where the sum is over the chosen group of bands and^r &n
5*r uwn(r )u2dr , etc. Interestingly, the resulting ‘‘maximally
localized’’ ~or ‘‘maxloc’’ ! WF’s turn out to be real, apar
from an arbitrary overall phase factor.

In numerical calculations the Bloch statescnk are com-
puted on a regular mesh ofk points in the Brillouin zone; the
integral in Eq.~1! is then replaced by a sum over the poin
in the mesh. In Ref. 16 an expression was derived for
gradient of the spread functionalV with respect to an infini-
tesimal rotationdU (k) of the set of Bloch orbitals. The only
information needed for calculating the gradient are the ov
laps

Mmn
(k,b)5^umkuun,k1b&, ~5!

where b are vectors connecting a mesh point to its ne
neighbors. Once the gradient is computed, the minimiza
can proceed via a steepest-descent or conjugate-gradien
gorithm.

In Ref. 16 the spreadV was decomposed into two term

V5V I1Ṽ, ~6!

both of them non-negative. The first measures thek-space
dispersion of the band-projection operator, while the sec
reflects the extent to which the Wannier functions fail to
eigenfunctions of the band-projected position operators.V I
will play a central role in the present work. For an isolat
group of bands it is invariant under any gauge transforma
~3!, so that minimizingV amounts to minimizingṼ. When
using a regular mesh ofk points,V I is given by
9-2
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V I5
1

Nkp
(
k,b

wb (
m51

N F12 (
n51

N

uMmn
(k,b)u2G , ~7!

whereNkp is the total number ofk points,N is the number of
bands in the group, andwb is a weight that arises from th
discretization procedure by which derivatives with respec
k are approximated by finite differences.16 The correspond-
ing expression forṼ can be found in Ref. 16.

III. MAXIMALLY LOCALIZED WANNIER FUNCTIONS
FOR ATTACHED BANDS

A. Description of the method

For definiteness let us suppose we want to ‘‘disentang
the five d bands of copper from thes band which crosses
them ~see Fig. 1! and construct a set of well-localized WF
associated with the resultingd bands. Heuristically thed
bands are the five narrow bands and thes band is the wide
band. The difficulty arises because there are regionsk
space where all six bands are close together, so that
result of hybridization ‘‘the distinction betweend-band and
s-band levels is not meaningful’’~Ref. 1, p. 288!.

Let us now outline our strategy, which can be divided
two steps. First we cut out an energy window that enco
passes theN bands of interest (N55 in our example!. Fig-
ures 1~a! and 1~b! correspond to different choices for th
energy window. At eachk point the numberNk of bands that
fall inside the window is equal to or larger than the targ
number of bands N. This procedure defines a
Nk-dimensional Hilbert spaceF(k) spanned by the state
unk within the window. If at somek Nk5N, there is nothing

FIG. 1. Solid line: Calculated band structure of copper. Dot
line: Interpolated bands obtained from the fived-like Wannier func-
tions. ~a! and~b! differ in the choice of the energy window used
compute the Wannier functions$@29.59,20.29# eV in ~a! and
@29.59,7.21# eV in ~b!%. The zero of the energy scale is at th
Fermi energy.
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to do there; ifNk.N our aim is to find theN-dimensional
subspace S(k)#F(k) that, among all possible
N-dimensional subspaces ofF(k), leads to the smallestV I
@Eq. ~7!#. @Recall that for an isolated group of bandsV I is
gauge invariant, since it is an intrinsic property of the ma
fold of states. ThusV I can be regarded as a functional
S(k).# In the second step we work within the optim
N-dimensional subspacesS(k) selected in the first step, an
minimize Ṽ using the algorithm of Marzari and Vanderbilt16

summarized in the previous section. The end result is a se
N maximally localized WF’s and the correspondingN energy
bands. We emphasize that it is the first step~minimization of
V I) that is new with respect to Ref. 16.

B. Physical interpretation of V I

Why is minimizingV I a sensible strategy for picking ou
the d bands? This can be understood by noting that heur
cally V I measures the ‘‘change of character’’ of the sta
across the Brillouin zone.16 Indeed, Eqs.~5! and ~7! show
that V I is small wheneveru^unkuum,k1b&u2, the square of the
magnitude of the overlap between states at nearbyk points, is
large. Thus by minimizingV I we are choosing self-
consistently at everyk the subspaceS(k) that has minimum
‘‘spillage’’ or mismatch ~see below! as k is varied. In the
present example this optimal ‘‘global smoothness of conn
tion’’ will be achieved by keeping the five well-localize
d-like states and excluding the more delocalizeds-like state.
We will gain more intuition about the meaning of minimiz
ing V I while discussing specific examples in Sec. IV.

What is meant by ‘‘spillage’’16,32 becomes clear once w
rewrite Eq.~7! as

V I5
1

Nkp
(
k,b

wbTk,b ~8!

with

Tk,b5N2(
m,n

uMmn
(k,b)u25tr@ P̂kQ̂k1b#, ~9!

where P̂k5(nuunk&^unku is the projector ontoS(k), Q̂k51
2 P̂k , and the band indicesm,n run over 1, . . . ,N. Tk,b is
called the ‘‘spillage’’ between the spacesS(k) andS(k1b)
because it measures the degree of mismatch between t
vanishing when they are identical.

Further discussion of the geometrical and physical int
pretation ofV I can be found in Refs. 13 and 16. In particula
it has been shown that the value ofV I associated with the
valence bands of an insulator is the experimentally mea
able mean-square quantum fluctuation of the ground-s
macroscopic polarization.13 This can be interpreted as th
quadratic spread of an appropriately defined collect
center-of-mass distribution for the electrons, and can be
cast as an electronic localization length squared. Hence
procedure of minimizingV I selects theN-dimensional sub-
spacesS(k) where the electrons are most localized in t
above sense~assuming for the purpose of this argument th
all the electron states in those subspaces are occupied!.

d

9-3
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Finally we note in passing that our two-step procedure
minimizing firstV I and thenṼ is in principle different from
directly minimizing their sumV. In view of the discussion
presented above, we believe that the procedure adopted
is conceptually the more natural of the two, although
would expect them to yield similar results in practice. Als
as we will now show, the separate minimization ofV I turns
out to be a particularly simple and robust procedure.

C. Iterative minimization of V I

Since the functional~7! that we wish to minimize couple
states at differentk points, the problem has to be solve
self-consistently throughout the Brillouin zone. Our strate
is to proceed iteratively until the optimal ‘‘global smoothne
of connection’’ is achieved. On thei th iteration we go
through all thek points in the grid, and for each of them w
find N orthonormal statesunk

( i ) , defining a subspace
S ( i )(k)#F(k) such that the ‘‘spillage’’ over the neighborin
subspacesS ( i 21)(k1b) from the previous iteration is a
small as possible~Fig. 2!.

Using Lagrange multipliers to enforce orthonormality, t
stationarity condition at thei th iteration reads

dV I
( i )

dumk
( i )*

1 (
n51

N

Lnm,k
( i ) d

dumk
( i )*

@^umk
( i ) uunk

( i )&2dm,n#50, ~10!

whereLk
( i ) is anN3N matrix. Let

V I
( i )5

1

Nkp
(
k51

Nkp

v I
( i )~k!, ~11!

FIG. 2. Schematic representation of the subspaces of Bloch
states on a grid ofk points. Our procedure consists of iterative
minimizing the ‘‘spillage,’’ or degree of mismatch~see text!, be-
tween the subspaces at neighboringk points.
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where, according to Eq.~8!,

v I
( i )~k!5(

b
wbTk,b

( i )

5(
b

wb (
m51

N F12 (
n51

N

u^umk
( i ) uun,k1b

( i 21) &u2G . ~12!

The first term in Eq.~10! now becomes

dV I
( i )

dumk
( i )*

5
1

Nkp
H dv I

( i )~k!

dumk
( i )*

1(
b

dv I
( i )~k1b!

dumk
( i )* J . ~13!

From Eq.~12! we find

dv I
( i )~k!

dumk
( i )*

52(
b

wbP̂k1b
( i 21)uumk

( i ) &, ~14!

where P̂k1b
( i 21) is the projector ontoS ( i 21)(k1b). Likewise,

one easily obtains

dv I
( i )~k1b!

dumk
( i )*

52wbP̂k1b
( i 21)uumk

( i ) &. ~15!

Combining the previous equations, the stationarity condit
~10! becomes

F(
b

wbP̂k1b
( i 21)G uumk

( i ) &5 (
n51

N

L̃nm,k
( i ) uunk

( i )&, ~16!

whereL̃nm,k
( i ) 5(Nkp/2)Lnm,k

( i ) . By choosing a unitary transfor

mation that diagonalizesL̃k
( i ) , this can be recast as an eige

value equation:

F(
b

wbP̂k1b
( i 21)G uumk

( i ) &5lmk
( i ) uumk

( i ) &. ~17!

The eigenvalues of the above equation obey 0<lmk
( i )

<(bwb ; in particular,lmk
( i ) ,(bwb whenever the eigenstat

umk
( i ) does not lie completely within all of the nearby su

spacesS ( i 21)(k1b). Combining Eqs.~12! and~17!, we find

v I
( i )~k!5N(

b
wb2 (

m51

N

lmk
( i ) . ~18!

It is clear from Eqs.~11! and ~18! that when constructing
S ( i )(k) one should pick theN eigenvectors of Eq.~17! with
largest eigenvalues, so as to ensure that the stationary p
corresponds to the absolute minimum ofV I

( i ) .
Self-consistency is achieved whenS ( i )(k)5S ( i 21)(k) at

all the grid points. We have encountered cases where
iterative procedure outlined above was not stable. In th
cases, the problem was solved by using as the input for
present step a linear mixing of the input and output s
spaces from the previous step. More precisely, the eigenv
Eq. ~17! was replaced by

H(
b

wb@P̂k1b
( i ) # inJ uumk

( i ) &5lmk
( i ) uumk

( i ) &, ~19!

e
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where

@P̂k1b
( i ) # in5a P̂k1b

( i 21)1~12a!@P̂k1b
( i 21)# in ~20!

with 0,a<1.33 A typical value isa50.5.
In practice we solve Eq.~19! in the basis of the origina

Nk Bloch eigenstatesunk inside the energy window. Eac
iteration then amounts to diagonalizing the followingNk
3Nk Hermitian matrix at everyk:

Zmn
( i ) ~k!5^umku(

b
wb@P̂k1b

( i ) # inuunk&. ~21!

Since these are small matrices, each step of the iterative
cedure is computationally inexpensive. The most tim
consuming part of the algorithm is the computation of t
overlap matricesM (k,b) of Eq. ~5!. The number of these ma
trices is equal to the number ofk pointsNkp times the num-
ber of b vectors~between 6 and 12!; the cost of calculating
eachM (k,b) is proportional to the number of basis elemen
~e.g., plane waves! times the square of the number of ban
considered. Overall, this is a comparable cost to calculatin
few ~6 to 12! times the orthonormality constraints during th
original self-consistent procedure, and amounts to onl
small fraction of the time used to converge to the electro
ground state~even more so if the number of bands cons
ered is smaller than the total number of bands in the s
consistent calculation!. We stress that allM (k,b) are com-
puted once and for all at the beginning of the Wann
postprocessing, using the original Bloch eigenstates in
the energy window; all subsequent operations in the itera
minimization of V I involve only dense linear algebra o
smallNk3Nk matrices.@An analogous situation occurs whe
updating the matricesU (k) in Eq. ~3! during the minimization
of Ṽ to obtain the ‘‘maxloc’’ WF’s.16# For example, in the
case of thed bands of copper reported in Sec. IV B 1 belo
each iteration takes only 0.9 s on an Alpha 21264 600 M
workstation, and the initial computation of the overlap m
trices takes about 250 s. For comparison, the self-consis
electronic-strucuture calculation of the ten lowest bands
ing an iterative diagonalization scheme takes around 100

D. Initial guess for the subspaces

In order to start the iterative minimization ofV I , the user
should provide an initial guess for the subspacesS(k). We
have found that the minimization procedure is quite robu
in the sense that it is able to arrive at the global minim
starting from a very rough initial guess. In practice we us
ally select the initial subspaces following a strategy ve
similar to the one outlined in Ref. 16 for starting the min
mization ofṼ.

A set of N localized trial orbitalsgn(r ) is chosen corre-
sponding to some rough initial guess at the WF’s, and th
are then projected onto theNk Bloch eigenstates inside th
energy window,

ufnk&5 (
m51

Nk

Amnucmk&, ~22!
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whereAmn5^cmkugn& is anNk3N matrix. The resultingN
orbitals are then orthonormalized via Lo¨wdin’s symmetric
orthogonalization procedure,34 i.e.,

ucnk
(0)&5 (

m51

N

~S21/2!mnufmk&5 (
m51

Nk

~AS21/2!mnucmk&,

~23!

whereSmn5^fmkufnk&5(A†A)mn . Finally these Bloch-like
functions are converted to cell-periodic functionsunk

(0)

5e2 ik•rcnk
(0) . The matrixAS21/2 can easily be computed b

performing the singular-value decompositionA5ZDV,35

whereZ and V are Nk3Nk and N3N unitary matrices, re-
spectively, andD is Nk3N and diagonal. This leads to
AS21/25Z1V, where1 is theNk3N identity matrix.

E. Minimization of Ṽ

At the end of the first step of our procedure~minimization
of V I) we are left at eachk point with an N-dimensional
subspaceS(k), and for definiteness we diagonalize th
Hamiltonian inside this subspace to obtainN Bloch-like
eigenfunctionsc̃nk5eik•rũnk and eigenvaluesẽnk . The sec-
ond step is to find theN3N unitary matricesU (k) @Eq. ~3!#

that, applied to thec̃nk , produce the rotated set of Bloch-lik
states that is transformed via Eq.~1! into the maximally lo-
calized WF’swnR . This is done using the method of Marza
and Vanderbilt16 for minimizing Ṽ, briefly discussed in Sec
II. An initial guess for the unitary matricesU (k) is obtained
by projecting a set ofN localized orbitals onto the state
c̃nk . Typically the same set of orbitals is used as in t
initialization step for the minimization ofV I . ~In our expe-
rience, when a particularly bad choice of trial orbitals
made, the minimization ofV I is less likely to become
trapped in local minima than the minimization ofṼ.!

F. Interpolated band structure

Starting from the ‘‘maxloc’’ WF’s, the corresponding en
ergy bands can be computed at arbitrary points in the B
louin zone using a Slater-Koster interpolation scheme.27,31,36

Of course, the interpolation could proceed directly from t
nonrotated statesũnk , however, use of the optimally rotate
ones ensures that the interpolated band structure is as sm
as possible.37

The interpolation procedure involves first calculating t
Hamiltonian matrix for the rotated states,

H (rot)~k!5~U (k)!†H̃~k!U (k), ~24!

where H̃mn(k)5 ẽmkdm,n . Next we Fourier transform
H (rot)(k) into a set ofNkp Bravais lattice vectorsR within a
Wigner-Seitz supercell centered aroundR50:

Hmn
(rot)~R!5S (

k
e2 ik•RHmn

(rot)~k! D Y Nkp5^wm0uĤuwnR&,

~25!
9-5
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where Ĥ is the effective one-particle Hamiltonian. Final
we Fourier transform back to an arbitraryk point,

Hmn
(rot)~k8!5(

R
eik8•RHmn~R!, ~26!

and diagonalize the resulting matrix to find the interpola
energy eigenvalues.

G. Inner energy window

In some situations one wants to construct orbitals t
describe the original bandsexactlyonly in a limited energy
range. This can occur when studying transport properties
which only the states within some small energy range of
Fermi level~say,61 eV) are relevant. The challenge is
construct orbitals that achieve that goal while remaining
localized as possible. What the resulting interpolated ba
look like outside the energy range of interest is largely i
material, since it will not affect the low-energy physic
~Typically they will tend to remain close in energy to th
target range of interest.23!

A simple extension of the formalism described in the p
vious sections can produce such orbitals. The idea is to
troduce a second~‘‘inner’’ ! energy window—contained
within our original ~‘‘outer’’ ! window—inside which the
original bands are to be described exactly. LetM k be the
number of bands that fall within the inner window atk, so
that M k<N<Nk . Then we have to minimizeV I under the
constraint that theM k original Bloch states inside the inne
window must be included in the subspaceS(k). We are
therefore only free to choose the remainingN2M k states
when constructingS(k). Those will have to be extracte
from the subspace spanned by theNk2M k original Bloch
eigenstates that are inside the outer window but outside
inner window. That can be achieved by a straightforwa
modification of the iterative procedure described in S
III C: The matrix Z( i )(k) in Eq. ~21! becomes an (Nk
2M k)3(Nk2M k) matrix, and we pick theN2M k leading
eigenvectors.

The only remaining issue is how to modify the initializ
tion procedure of Sec. III D in order to accommodate t
inner window. Since the firstM k basis vectors of the tria
subspacesS(k) are predetermined, we want the modifie
procedure to provide the remainingN2M k vectors. LetG(k)
be anN-dimensional space obtained by projecting theN trial
orbitals onto theNk states inside the outer window, as d
scribed in Sec. III D. LetPG(k) be theNk3Nk matrix that is
the projection operator ontoG(k) as expressed in the spac
F(k). Similarly, definePinner(k) as theNk3Nk projection
matrix onto the inner window states, andQinner(k)51
2Pinner(k). Then choose the remainingN2M k basis vectors
to be the eigenvectors corresponding to theN2M k largest
eigenvalues of

Qinner~k!PG~k!Qinner~k!uv&5luv&. ~27!

Such vectors have the desired properties:~i! They are or-
thogonal to the states inside the inner window, and~ii ! be-
causel5^vuPG(k)uv&, it is clear that by choosing the eigen
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vectors with the largest eigenvalues we guarantee that t
overlap with the spaceG(k) is as large as possible, whil
satisfying the constraint~i!.

Other kinds of constraints on the minimization ofV I may
also be useful. For instance, one might want to ‘‘pin dow
the desired bands at high-symmetryk points to ensure tha
the interpolated bands coincide with them at those points

IV. RESULTS

A. Computational details

The calculations were performed within the local-dens
approximation to density-functional theory, using a plan
wave basis set and Troullier-Martins norm-conservi
pseudopotentials38 in the Kleinman-Bylander representatio
The energy cutoff was set to 75 Ry for copper and 35 Ry
silicon, and the lattice constants were 6.822 bohr and 10.
bohr, respectively. The computed self-consistent Blo
eigenfunctions and eigenvalues that fell inside the prescri
energy window were stored to disk. They were used as
input for the minimization ofV I , which was carried out as a
separate, postprocessing operation. This produced an op
subspace characterized by a new set ofN Bloch eigenfunc-
tions and eigenvalues perk point, which were taken as th
input for constructing the ‘‘maxloc’’ WF’s and the interpo
lated bands. In all the cases we have found the ‘‘maxlo
WF’s to be real~apart from an overall phase factor!, as was
already the case when dealing with isolated groups
bands.16 The self-consistent calculations were performed
a 10310310 Monkhorst-Pack mesh ofk points for copper,
and a 63636 one for silicon. During the minimization o
V I and Ṽ a 10310310 uniform grid was used for both
copper and silicon. This grid was shifted in order to inclu
the G point (k50), so as to ensure that the ‘‘maxloc’’ WF’
have the desired symmetry properties among themsel
~For instance, if a grid is used for silicon that does not
cludeG, the four antibonding WF’s in a unit cell do not a
have the same spread.! The mixing parametera in Eq. ~20!
was set to 0.5.

B. Copper

Wannier functions for noble and transition metals ha
previously been computed using various approaches.24–27

Below, taking copper as an example, we show how
present scheme can be used to ‘‘disentangle’’ the narrod
bands from the nearly-free-electron bands, allowing us
treat each group of WF’s separately. Alternatively, one c
also treat the narrow and the nearly-free-electron bands
single group.

1. Narrow d bands

First, an energy window was chosen such that at eack
point in the grid it contained six or seven energy eigenvalu
As indicated in Fig. 1, the precise range of the window
largely at our disposal; unless explicitly stated otherwise,
numbers given below pertain to Fig. 1~b!. In order to extract
the fived bands, we setN55 and initialized the minimiza-
9-6
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tion of bothV I andṼ from five trial Gaussians of rms width
1 bohr, each modulated by a differentl 52 angular eigen-
function. After ;50 iterative stepsV I was fully converged,
having decreased from an initial value of 9.957 bohr2 to
8.483 bohr2. During the subsequent minimization ofṼ the
total Wannier spreadV decreased only slightly, from
8.563 bohr2 to 8.556 bohr2. In agreement with previous ex
perience on isolated groups of bands,16 we found for thed

bands that at the minimumV I@Ṽ.
The bands obtained by interpolation using the five ‘‘ma

loc’’ WF’s are shown as dotted lines in Fig. 1, together w
the original band structure. As expected, whenever the
persives-like band is far from the narrowd bands, so that
they retain their separate identities, the interpolated bands
very close to the narrow bands. However, whenever the
bands are close together, and thus strongly hybridized,
interpolated bands remain narrow, which suggests that
are mainly d-like in character.~Heuristically they can be
viewed as the bands obtained by artificially ‘‘switching of
the Hamiltonian matrix elements betweens andd WF’s, i.e.,
by removing the hybridization.! Thed character is confirmed
by inspection of the contour-surface plots of the ‘‘maxlo
WF’s, two of which are shown in Fig. 3. The quadrat
spreads of the five WF’s are not exactly equal, because o
eg2t2g splitting of thed states; those shown in Fig. 3 (eg

FIG. 3. Contour-surface plots of the twoeg Wannier functions
associated with the ‘‘disentangled’’d bands of copper shown in Fig
1~b!. The amplitudes are10.5/Av ~light gray! and20.5/Av ~dark
gray!, wherev is the volume of the primitive cell.
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orbitals! have a spread of 1.700 bohr2 each, whereas the
remaining three (t2g orbitals! each have a spread o
1.718 bohr2. These numbers are only slightly larger than t
ones reported in Table III of Ref. 27, obtained using a d
ferent method and a sparser sampling of the Brillouin zo

In our procedure there is one adjustable parame
namely, the range of the energy window. This range sho
be wide enough that it encompasses the bands of interes
not be so wide that it also includes other bands of sim
character~e.g., higherd bands!. In the limit of a very wide
window the spacesF(k) would contain a complete set o
states, so that by mixing in states far away from the ene
range of interest but of similar character, the spread of
WF’s could be made arbitrarily small~and the corresponding
bands would become flat!. Table I shows how the optima
Wannier spreads are affected by varying the window ra
within reasonable bounds. As anticipated, the spread
creases with increasing energy range.39 The change in the
interpolated energy bands is less pronounced, although
do become somewhat narrower@compare Figs. 1~a! and
1~b!#. In particular, the upward shift of the lowest interp
lated band atL is caused by mixing with the seventh ban
which has the same symmetry label (L1).40

2. Nearly-free-electron band

The unconstrained minimization ofV I usually produces
narrow bands, since the character of the Bloch states in s
bands tends to have only a small variation across the B
louin zone, corresponding to well-localized electrons~this
may not be the case in the presence of avoided crossin!.
The method is therefore ideally suited for directly extracti
the narrowd bands from thes-d complex. If instead one is
interested in isolating the wider, nearly-free-electrons band,
direct minimization ofV I for one-dimensional subspaces
not the appropriate strategy. Instead one can proceed as
lows. First choose an energy window that includes thes-d
band complex@we used the one indicated in Fig. 1~b!#. Then
minimize V I with N56; this produces a six-dimensiona
subspaceS6(k) throughout the Brillouin zone that consis
of the s-d band complex. Next extract the fived bands by
minimizing V I within S6(k) choosingN55; this yields a
spaceS5(k),S6(k). The difference between the two is
one-dimensional spaceS1(k) containing the desired band
Figure 4~a! shows the bands associated withS6(k), and Fig.
4~b! shows the bands corresponding toS5(k) andS1(k).

TABLE I. Variation of the optimal Wannier spreadV and its
gauge-invariant partV I ~in bohr2) with the choice of energy win-
dow range~in eV!, for thed bands of copper.

Window range Total spread
Min Max V I V

29.59 20.29 15.373 16.489
29.59 2.21 10.404 10.621
29.59 7.21 8.483 8.556
29.59 12.21 7.634 7.667
9-7
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In Table II are presented the optimal Wannier spreads
the different subspaces. We find that the spread of thes-like
WF is considerably smaller than the;45 bohr2 reported in
Table III of Ref. 27. Moreover, contrary to what one mig
have expected, that WF is centered not on an atom, but
tetrahedral-interstitial site, as shown in Fig. 5~a!. Since there
are two such sites per atom, a breaking of symmetry m
have occurred when selecting the subspaceS6(k). Indeed
there are two degenerate minima ofV I with N56, one for
each of the interstitial sites. If the minimization is initialize
by projecting fived-like orbitals plus ones-like orbital, all
atom-centered, the breaking of symmetry occurs sponta
ously during the iterative procedure~the minimization ofV I
reaches a plateau, presumably a saddle point, and event
the algorithm finds its way towards one of the two minim!.
If instead thes trial orbital is centered around one of th

FIG. 4. ~a! Dotted lines: thes-d bands of copper obtained b
extracting the optimal six-dimensional subspaceS6(k) inside the
window. ~b! Dotted lines:d bands associated with optimal five
dimensional subspaceS5(k),S6(k). Dashed line:s band S1(k)
isolated by taking the complement ofS5(k).
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tetrahedral-interstitial sites, the minimization starts inside
basin of attraction of the corresponding minimum.

Finally, as a simple illustration of the ‘‘inner window’
idea of Sec. III G, we show in Fig. 6 the single band (N
51) that results when an inner window is selected in
energy range below thed bands. As expected, the interpo
lated band is identical to the original one inside that windo
Moreover, it remains quite narrow outside, where it acqui

FIG. 5. Contour-surface plots of interstitial-centered ‘‘maxlo
WF’s. ~a! t-like WF associated with the subspaceS6(k) of Fig. 4
and Table II;~b! WF associated with the band in Fig. 6, and~c!
t-like WF associated with the subspaceS7(k) in Fig. 7~a! and Table
III. The amplitudes are10.5/Av ~light gray! and 20.17/Av,
20.3/Av, and 20.25/Av ~dark gray! in ~a!, ~b!, and ~c!, respec-
tively.
TABLE II. Spreads of the ‘‘maxloc’’ WF’s for the separated-band ands-band subspaces (S5 andS1), and
for the combineds-d subspaceS6. The numbers in parentheses are theV I values, andt stands for the
tetrahedral-interstitial-centered orbital. The corresponding bands are displayed in Fig. 4.

Two separate subspaces One combined subspace

deg
1.710 deg

1.731
deg

1.710 deg
1.731

dt2g
1.808 dt2g

2.328
dt2g

1.808 dt2g
2.328

dt2g
1.808 dt2g

2.254
Vmin@S5# 8.844 ~8.745!

t 12.929 t 10.263
Vmin@S1# 12.929 ~10.826! Vmin@S6# 20.634 ~16.506!
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a pronouncedd character.~This means that the cost inV I of
changing from ans to d character is more than compensat
by the smaller dispersion—and hence smallerV I —of the
more localizedd-like states.! Accordingly, the ‘‘maxloc’’
WF, shown in Fig. 5~b!, is again centered at a tetrahedra
interstitial site, like the WF of Fig. 5~a!, but now it has a
substantial admixture ofd-like satellites and a smalle
spread,V57.323 bohr2 (V I57.306 bohr2).

The results of this section indicate that the occurrence
symmetry breaking in the minimization ofV I with a ‘‘max-
loc’’ WF centered at a tetrahedral-interstitial site appears
be a rather robust result. Interestingly, these findings are
lated to earlier work41–43 where bonding in metallic cluster
and in fcc bulk metals was described in terms ofs-like or-
bitals localized on tetrahedral interstitials.

3. Symmetric two-WF description of dispersive bands

Remarkably, we find that the symmetry can be restor
and a more faithful overall description of the bands can
achieved, by bringing in just one more dispersive band
working with aset of seven WF’s. More precisely, we choos
an energy window such as the one indicated in Fig. 7~a!,
containing seven or more bands, and minimizeV I with N
57. ~To ensure that the low-energy part of the band comp
is well described, we freeze it inside an inner window.! After
applying the localization procedure, we obtain, besides
five d orbitals,two equivalent WF’s, each centered at one
the two tetrahedral-interstitial sites. One of the latter is
shown in Fig. 5~c!. The optimal Wannier spreads are given
Table III; it can be seen that the spread of each of the
interstitial WF’s is considerably smaller than that of t
single interstitial WF in Table II and Fig. 5~a!.

Figure 7~b! shows thed-like bands associated with th
optimal five-dimensional subspaceS58(k),S7(k), as well as
the dispersive bands associated withS2(k), the complement
of S58(k) insideS7(k). There is an upward shift in energy o
the statesX3 , W3, andL1 in the narrow bands, due to mixin
with the states of the same symmetry in the dispersive ba
which suffer a downward shift of the same magnitude.

The fact that our procedure naturally generates a pai
WF’s centered at the tetrahedral-interstitial sites can be ra
nalized in terms of a tight-binding description of the near
free-electron states. The tetrahedral-interstitial sites form
simple cubic lattice, so that in view of Fig. 5~c! one might
imagine that the electronic states of these WF’s would
roughly analogous to those of a nearest-neighbor tig

FIG. 6. Dashed line: Band obtained using both an inner and
outer energy window.
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binding model ofs orbitals on the sites of a simple cub
lattice. Indeed we have checked that the main qualita
features of the interpolated bands associated with the
interstitial-centered WF’s@light dotted lines in Fig. 7~b!# are
captured by such a tight-binding model, but folded back in
the fcc Brillouin zone to give two bands instead of one.

The quality of the interpolated bands in Fig. 7~a! suggests
that the two tetrahedral-interstitial-centered orbitals~which
we denote ast orbitals! complement the five atom-basedd
orbitals nicely to form a basis (t2d5) for a tight-binding pa-
rametrization of the copper bands. This requires only o
more basis function than the traditional ‘‘minimal basis’’44

sd5 ~five d plus ones atomic orbitals!, while still remaining
more economical than thesp3d5 basis.45 The three bases ar
compared in Table IV. At each high-symmetryk point we
list, in order of increasing energy, the symmetry labels of
states that occur in a detailed band-structure calculation~e.g.,
Ref. 40!, and then whether or not they are captured by e
of the tight-binding bases. Inspection of the table clarifi
that thet2d5 basis has some very attractive features. Wher
the sd5 basis misses theX48 state44 ~an unoccupiedp-like
state not far aboveEF) and, even more importantly, theL28
state~an occupiedp-like state just belowEF), t2d5 gets the
symmetries right up to at least the first state aboveEF at each
high-symmetryk point. Evensp3d5 does not do this, failing
at theG point, since the stateG28 has f character. A conse-
quence of this analysis is that thet orbitals cannot be con
structed solely froms and p orbitals. This can also be see
from Fig. 5~c!: The positive-amplitude central portion of th
WF can be interpreted in terms of a superposition of foursp
hybrids coming from each of the four surrounding copp

n

FIG. 7. ~a! Dotted lines: Interpolated bands associated with
optimal subspaceS7(k) containing five d-like WF’s and two
tetrahedral-interstitial-centered WF’s.~b! Dark dotted lines:d bands
associated with optimal five-dimensional subspaceS 58(k),S7(k).
Light dotted lines: dispersive bandsS2(k) isolated by taking the
complement ofS 58(k).
9-9
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TABLE III. Spreads of the ‘‘maxloc’’ WF’s for the separated-band and low-lying dispersive band
subspaces (S 58 andS2), and for the combined subspaceS7. The numbers in parentheses are theV I values,
and t stands for the tetrahedral-interstitial-centered orbital. The corresponding bands are displayed in

Two separate subspaces One combined subspace

deg
1.687 deg

1.687
deg

1.686 deg
1.687

dt2g
1.472 dt2g

1.737
dt2g

1.472 dt2g
1.737

dt2g
1.472 dt2g

1.737
Vmin@S 58# 7.788 ~7.751!

t 8.568 t 7.812
t 8.568 t 7.812

Vmin@S2# 17.136 ~16.822! Vmin@S7# 24.209 ~22.034!
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atoms and pointing towards the interstitial; however this p
ture cannot account for the six negative lobes.

To conclude, we note that thesp3d5 description can also
be obtained from our procedure, by minimizingV I with N

TABLE IV. A list, in order of increasing energy, of the symme
try labels of selected states in the band structure of copper~taken
from Ref. 40!, and whether or not they are captured by each of
tight-binding bases discussed in the text. An asterisk (* ) indicates
that the state is occupied.

Degeneracy sd5 t2d5 sp3d5

G1 1* yes yes yes
G258 3* yes yes yes
G12 2* yes yes yes
G28 1 yes
G15 3 yes

X1 1* yes yes yes
X3 1* yes yes yes
X2 1* yes yes yes
X5 2* yes yes yes
X48 1 yes yes
X1 1 yes yes
X58 2 yes
X3 1 yes

L1 1* yes yes yes
L3 2* yes yes yes
L3 2* yes yes yes
L28 1* yes yes
L1 1 yes yes yes
L28 1
L38 2 yes

W28 1* yes yes yes
W3 2* yes yes yes
W1 1* yes yes yes
W18 1* yes yes yes
W3 2 yes yes
W28 1 yes
W1 1 yes yes
03510
-59 within a window containing 11 or more bands~e.g., with
the upper bound at 32.2 eV!. The ‘‘maxloc’’ WF’s are then
five atom-centeredd-like orbitals plus four equivalen
sp3-like hybrids centered near the atom.

C. Silicon

Several authors have previously discussed and comp
WF’s for silicon and other tetrahedral semiconductors. So
works have focused on the WF’s associated with the vale
bands,16,28,46–49while others have also dealt with the lowe
four conduction bands.29,30

1. Bond orbitals

A set of eight bond-centered WF’s, four bonding and fo
antibonding, can be obtained by using separate energy

FIG. 8. Solid lines: Original band structure of silicon. Dotte
lines: Wannier-interpolated bands. In~a! the valence and low-lying
conduction bands are treated separately, which produces four b
ing and four antibonding Wannier functions; in~b! they are treated
as a single group, which yields eightsp3-type Wannier functions.

e
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dows for each of the two groups, as indicated in Fig. 8~a!.
Since the valence bands form an isolated group, inside
corresponding windowNk5N54 throughout the Brillouin
zone. Hence there is no freedom for minimizingV I , and one
can proceed directly with the minimization ofṼ to compute
the ‘‘maxloc’’ WF’s, as done in Ref. 16. The resulting ban
are essentially indistinguishable from the original ones, si
for such a densek mesh the interpolation error is very sma
The trial orbitals used to start the minimization were bon
centered Gaussians with a root-mean-square~rms! width of
1.89 bohr. The value of the optimal spread wasV
530.13 bohr2, of which 28.39 bohr2 came fromV I .

The use of an energy window becomes necessary for
four low-lying empty bands, which are attached to high
bands. As trial orbitals we used an antibonding combinat
of Gaussians with a rms width of 1 bohr. Each Gaussian
sitting halfway between one of the two atoms and the ce
of their common bond. During the minimizationV I de-
creased from 106.76 bohr2 to 87.47 bohr2, having reached
the minimum in less than 30 steps.~An alternative is to
choose the initial subspace at eachk as the lowest four en
ergy eigenstates inside the energy window. This yields
initial V I598.10 bohr2, and again the absolute minimum
reached after;30 steps.! The total spread of the four ‘‘max
loc’’ WF’s was V597.49 bohr2; as expected,28 this is con-
siderably larger than for the bonding WF’s. Note also thatṼ
accounts for more than 10% of the total spread, whereas
the bonding ‘‘maxloc’’ WF’s that number was less than 6%
This is related to the fact that the antibonding WF’s are m
spread out, causing matrix elements of the type^wmRur uwn0&
with RÞ0 to have larger values. Equation~15! of Ref. 16
shows that this results in a largerṼ. The very small contri-
bution of Ṽ to the total spread of the highly localizedd-like
WF’s in copper~less than1%), aswell as the comparatively
larger contribution in the interstitial-centered WF’s are th
easily understood.

In Fig. 9~a! we present the contour-surface plot of o
‘‘maxloc’’ antibonding WF in silicon. The other three ar
identical~related to the first by the tetrahedral symmetry o
erations!. Figure 9~b! shows one of the four identical bond
ing WF’s.

2. sp3 hybrids

As discussed in Ref. 30, one may instead treat the f
valence and four low-lying conduction bands as a sin
group, which leads to ‘‘maxloc’’ WF’s ofsp3 character@Fig.
9~c!#. Using our method this may be done as indicated in F
8~b!. An outer energy window is chosen which spans
eight bands of interest, and the valence bands are ‘‘froz
inside an inner window; this ensures that they are not
fected by the minimization ofV I , whose only aim is to
extract the four low-lying antibonding bands from th
conduction-band complex. We have started the minimiza
of V I in two different ways:~i! by projecting eight ‘‘atom-
centered’’sp3-type combinations of Gaussians, and~ii ! by
projecting four bond-centered Gaussians plus four antibo
ing combinations of Gaussians, as done in the previous
tion. In both cases the minimization took about 20 ste
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taking from 76.04 bohr2 in the former case and 84.08 boh2

in the latter to 63.50 bohr2. As for the minimization ofṼ,
the absolute minimum (V585.41 bohr2) was reached only
with ~i!; with ~ii ! the algorithm became trapped in a loc
minimum (V5101.97 bohr2) having the same symmetry a
the trial orbitals, with four bonding~antibonding! WF’s with
a spread of 6.37 bohr2 (19.12 bohr2) each.

We end this section with the following observation. Su
pose we take the four-dimensional valence~bonding! space
S 4

(b)(k) together with the optimal four-dimensional ant
bonding subspaceS 4

(a)(k) @Fig. 8~a!# to form an eight-
dimensional spaceS88(k)5S 4

(b)(k)øS 4
(a)(k). This space has

V I563.64 bohr2, which is slightly higher than the value
63.50 bohr2 associated with the optimal subspaceS8(k) for
the eight-band problem with an inner window@Fig. 8~b!#.
Thus, if we takeS88(k) as an initial guess for the minimiza
tion of V I in the eight-band problem with an inner window
we will be starting slightly above the absolute minimum. T
extra reduction inV I comes about because the function
that is minimized to obtainS8(k) contains terms involving
overlap between low-lying conduction states atk and va-
lence states at neighboringk1b. The wave functions relax in
response to these extra terms, and consequently the two
tibonding subspaces are not exactly the same. However,
are almost identical, and therefore the same is true for
interpolated bands@compare Figs. 8~a! and 8~b!#.

FIG. 9. Contour-surface plots of Wannier functions in silico
~a! Antibonding, ~b! bonding, and~c! sp3 type. In ~a! and ~c! the
amplitudes are10.5/Av ~light gray! and 20.5/Av ~dark gray!; in
~b! they are11.4/Av ~light gray! and20.4/Av ~dark gray!.
9-11
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V. CONCLUSIONS

We have discussed and implemented a practical me
for extracting maximally localized Wannier functions fro
entangled energy bands, starting from the Bloch eigenfu
tions obtained in a standard electronic-structure calculat
Our method is based on a prescription for ‘‘disentanglin
the bands of interest from the rest of the band complex ins
an energy window specified by the user. The idea is to
tract a subspace of Bloch-like states whose character va
as little and as smoothly as possible across the Brillo
zone. This is achieved by minimizing a functional whic
measures the ‘‘spillage,’’ or change of character, of the s
space across the Brillouin zone. The present scheme ca
viewed as an extension of the maximally localized Wann
function method of Marzari and Vanderbilt,16 which was de-
signed to deal with isolated groups of bands only. More p
cisely, it introduces an extra step—the construction of
optimal subspace—which is followed by the determinat
of the ‘‘maxloc’’ WF’s by applying the localization algorithm
of Marzari and Vanderbilt to that subspace. The proced
for determining this optimal subspace is both stable a
computationally very fast.

Some possible applications of such WF’s have been m
tioned in the Introduction. Of particular interest is the abil
m

B

rs

,

03510
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c-
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e

x-
ies
n

-
be
r

-
e
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to obtain WF’s for the low-lying empty or partially filled
bands. For instance, it has been suggested that these cou
useful for accurate calculations of the optical properties
semiconducting nanocrystals.50 Another potential use of the
present method could arise in the description of surf
states@e.g., Ref. 51#, in particular when the surface band
become resonant with the bulk bands. The striking result
we have obtained for the low-lying broad bands of copp
with the WF’s being centered at the tetrahedral-intersti
sites, suggests that the method may provide insight into
chemistry of transition-metal compounds. Also, since
‘‘maxloc’’ WF’s provide a compact interpolation scheme fo
the band structure, they could be used as part of an effic
algorithm for determining the Fermi surface. Finally, it mig
be interesting to apply the present ideas to the construc
of lattice WF’s describing the part of the phonon spectru
relevant for studying structural phase transitions.52,53
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34P.O. Löwdin, J. Chem. Phys.18, 365 ~1950!.
35W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterlin

Numerical Recipes in Fortran~Cambridge University, Cam-
bridge, England, 1988!.

36J.C. Slater and G.F. Koster, Phys. Rev.94, 1498~1954!.
37For a single band the interpolated band structure is gauge inv

ant, so that the smoothness is independent of the degree o
calization of the WF.
9-12



pl

B

s

f

s.

MAXIMALLY LOCALIZED WANNIER FUNCTIONS FO R . . . PHYSICAL REVIEW B 65 035109
38N. Troullier and J.L. Martins, Phys. Rev. B43, 1993~1991!.
39For the smaller energy windows in Table I the fived-like WF’s

start to lose symmetry, with their spread no longer precisely s
into two groups.

40G.A. Burdick, Phys. Rev.129, 138 ~1963!.
41M.H. McAdon and W.A. Goddard, III, Phys. Rev. Lett.55, 2563

~1985!; J. Phys. Chem.91, 2607~1987!.
42M. Li and W.A. Goddard III, Phys. Rev. B40, 12 155~1989!.
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