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We consider the magnetic circular dichroism spectrum of a crystal with broken time-reversal symmetry in
the electric-dipole approximation. Using the Kubo-Greenwood formula for the absorptive part of the antisym-
metric optical conductivity, its frequency integral is recast as a ground-state property. We show that in insula-
tors this quantity is proportional to the circulation of the occupied Wannier orbitals around their centers �more
precisely, to the gauge-invariant part thereof�. This differs from the net circulation, or ground-state orbital
magnetization, which has two additional contributions: �i� the remaining Wannier self-rotation, and �ii� the
“itinerant” circulation arising from the center-of-mass motion of the Wannier orbitals, both on the surface and
in the interior of the sample. Contributions �i� and �ii� are not separately meaningful, since their individual
values depend on the particular choice of Wannier functions. Their sum is, however, gauge invariant, and can
be inferred from a combination of two experiments: a measurement of the magneto-optical spectrum over a
sufficiently wide range to evaluate the sum rule, and a gyromagnetic determination of the total orbital
magnetization.
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I. INTRODUCTION

Optical sum rules provide a link between excitation spec-
tra and ground-state properties. The best-known example is
the f-sum rule of atomic physics.1 It relates the frequency-
integrated absorption of linearly polarized light to the num-
ber of valence electrons. In this work we consider the analo-
gous result for circularly polarized light. For nonmagnetic
systems the circular f-sum rule is simply the average of the
f-sum rules for the two linearly polarized components of the
beam, again yielding the total number of electrons. If, how-
ever, the system is magnetized, either spontaneously or by an
applied field, this is no longer the case; there is a small
correction that flips sign when either the magnetization of the
sample or the helicity of the incident light is reversed. We are
interested in what information this correction to the circular
f-sum rule provides about the magnetization.

The differential absorption of right and left circularly po-
larized light by magnetic materials is known as magnetic
circular dichroism �MCD�. The object of interest in this work
can thus be viewed as a “dichroic” f-sum rule for the inte-
grated MCD spectrum. Such a sum rule was first derived by
Hasegawa and Howard for the special case of a hydrogen
atom in a magnetic field.2 They showed that it is proportional
to the quantum-mechanical expectation value of the orbital
angular momentum operator, i.e., to the orbital moment. It
has been assumed that this conclusion generalizes trivially to
many-electron systems such as solids.3,4 This is not so,5 as
shown by Oppeneer, who obtained the correct sum rule for
that case.6 He observed that it yields a quantity that is subtly
different from the orbital magnetization Morb, and should
instead be viewed as one of two terms adding up to Morb.

In a separate development, a rigorous theory of orbital
magnetization in crystals was recently formulated.7–10 Inter-
estingly, it also identifies two separate contributions to Morb.
One key result of the present work is to recast the dichroic
f-sum rule in the language of this modern theory, elucidating

its physical content. Conversely, the sum rule solves an open
problem in the theory of Refs. 7–10 as raised explicitly in
Ref. 9: whether the two gauge-invariant contributions to
Morb identified therein are separately measurable in prin-
ciple. The present work answers this question in the affirma-
tive.

Although we will mostly focus on crystalline solids, we
find it useful to start in Sec. II by discussing the sum rule in
the more general context of bounded samples under open
boundary conditions. The detailed treatment of periodic crys-
tals is deferred until Sec. III. In both cases, special emphasis
will be placed on insulating systems, for which an intuitive
real-space picture in terms of occupied Wannier orbitals can
be given. We conclude in Sec. IV with a summary and out-
look. In Appendices A–C we derive and elaborate on some
results quoted in the main text. In particular, Appendix A
discusses the relation between the dichroic f-sum rule and
three other known sum rules.

II. BOUNDED SAMPLES

A. Preliminaries

In this work we are interested in systems displaying bro-
ken time-reversal symmetry in the spatial wave functions. A
typical example would be a ferromagnet such as iron in
which the exchange interaction breaks time-reversal symme-
try in the spin channel and this symmetry breaking is then
transmitted to the orbital degrees of freedom by the spin-
orbit interaction. Other examples include systems in applied
magnetic fields, and also certain spinless model Hamilto-
nians such as the Haldane model.11

We work in the independent-particle approximation. The
interaction with light will be treated in the electric-dipole
approximation, valid at not-too-high frequencies. This should
be adequate provided that the sum rule saturates before
higher-order contributions, such as electric quadrupole, and
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magnetic dipole terms become significant. The oscillator
strength for the transition between one-electron states n and
m is

fn→m
��̂� =

2me

��mn
��m��̂ · v̂�n��2. �1�

This expression, valid for a general polarization �̂ of light,
can be derived in the same way1 as the familiar oscillator
strength formula for linear polarization �̂= x̂. For light propa-
gating along ẑ with circular polarization

�̂� =
x̂ � iŷ

�2
�2�

�“�” corresponds to positive helicity, or left-circular polar-
ization�,

fn→m
��� = 1

2 �fnm,xx� + fnm,yy� 	 � fnm,xy� , �3�

where we have introduced the matrix

fnm,�� =
2me

��mn
�n�v̂��m��m�v̂��n� . �4�

Here � and � label Cartesian directions, ��mn=Em−En, and
me is the electron mass. Note that the matrix f = f�+ if� is
Hermitian in the Cartesian indices. Thus its real and imagi-
nary parts are symmetric and antisymmetric, respectively.

According to Eq. �3�, the sum of the oscillator strengths
for the two circular polarizations �̂+ and �̂− equals the sum of
the oscillator strengths for the two linear polarizations x̂ and
ŷ, and is related to f�. The circular dichroism, i.e., the dif-
ference between the two circular oscillator strengths, is given
by f� as follows:

fnm,xy� = 1
2 �fn→m

�−� − fn→m
�+� 	 . �5�

Consider now a macroscopic system �e.g., a sample of
volume V cut from a bulk crystal� and decompose its optical
conductivity 	����� in three different ways: �i� real and
imaginary parts, 	� and 	�; �ii� symmetric and antisymmetric
parts, 	S and 	A; �iii� Hermitian and anti-Hermitian parts, 	H
and 	AH. Then

	H = 	S� + i	A� �6�

and

	AH = 	A� + i	S� , �7�

where the Cartesian indices and the frequency have been
omitted. The properties of 	 can be summarized by noting
that the Hermitian part is dissipative while the anti-
Hermitian part is reactive, and the symmetric part is “ordi-
nary” while the antisymmetric part is “dichroic.” At T=0 the
dissipative �or absorptive� part is

	H��� =

e2

2meV



n

occ



m

empty

fnm��� − �mn� , �8�

where −e is the electron charge. The analog of Eq. �3� in
terms of conductivities is

	abs
��� = 1

2 �	S,xx� + 	S,yy� 	 � 	A,xy� . �9�

Thus the difference in absorption between light with negative
and positive helicities is given by twice the imaginary part of
the antisymmetric optical conductivity,12

	A,xy� = 1
2 �	abs

�−� − 	abs
�+�	 . �10�

Like other magneto-optical effects, MCD vanishes for time-
reversal-invariant systems. This can be seen from the On-
sager relation 	���H ,M�=	���−H ,−M�, which implies
	A,�� �H=M=0�=0.

B. Dichroic f-sum rule

With the notation

�f� � �
0

�

f���d� , �11�

the dichroic f-sum rule relates the integrated MCD spectrum
�	A,��� � to a certain ground-state property of the system. To
see how, we begin by expressing 	A,��� ��� as the imaginary
part of the Kubo-Greenwood formula �8�. Combining with
Eq. �4� and taking the integral,

�	A,��� � =

e2

�V



n

occ



m

empty

Im
 �n�v̂��m��m�v̂��n�
�mn

� . �12�

Using the identity

�n�v̂��m�
�mn

= − i�n�r̂��m� �13�

and defining the projector onto the empty states Q̂
=
m

empty�m��m�,

�	A,��� � = −

e2

2�V



n

occ

�n�r̂�Q̂v̂��n� − �� ↔ �� . �14�

Introducing the pseudovector 	A,
� = �1 /2����
	A,��� and P̂
=
n

occ�n��n�, this can be written more concisely as

��A� � = −

e2

2�V
Tr�P̂r̂ � Q̂v̂	 . �15�

Equation �15� is the dichroic f-sum rule, also obtained in

Ref. 6. Using the closure relation Q̂=1̂− P̂, it becomes ap-
parent that the right-hand side depends exclusively on the
occupied states, and is closely related to the total �macro-

scopic� ground-state orbital magnetization Morb=
 Tr�P̂r̂
� v̂	, where 
=−�e /2cV� in esu. Writing

Morb = MSR
�I� + �M , �16�

with

MSR
�I� = 
 Tr�P̂r̂ � Q̂v̂	 �17�

and

�M = 
 Tr�P̂r̂ � P̂v̂	 �18�

�the notation will be explained shortly�, Eq. �15� becomes
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��A� � =

ec

�
MSR

�I� . �19�

Hence the sum rule yields an orbital quantity MSR
�I� with units

of magnetization, but differing from the actual orbital mag-
netization by the remainder �M.

Two of the three quantities in Eq. �16� are independently
measurable. The left-hand side can be determined from gy-
romagnetic experiments,13–15 while MSR

�I� on the right-hand
side is obtainable from magneto-optical experiments via the
sum rule. Thus, their difference �M can also be determined
in principle. However, measuring MSR

�I� and �M indepen-
dently will be of only limited interest unless some physical
meaning can be attached to each of them separately. With
this goal in mind we shall now make contact with the recent
theory of macroscopic orbital magnetization.

C. Relation to the orbital magnetization

The results obtained so far are fairly general. To proceed
further we specialize to insulating samples. For the present
purposes “insulating” means that the ground-state wave
function can be written as a Slater determinant of well-
localized orthonormal molecular orbitals �wi�, which we will
generically refer to as Wannier functions �WFs� even when
the sample does not have a crystalline interior.16 This defini-
tion encompasses a broad range of systems, both macro-
scopic and microscopic, but it excludes metals and Chern
insulators,17 which are not Wannier representable in the
above sense.

By invariance of the trace, the orbital magnetization can
be expressed in the Wannier representation as

Morb = 


i

occ

�wi�r̂ � v̂�wi� . �20�

In Ref. 7 this was decomposed as18

Morb = MSR + MIC, �21�

where

MSR = 


i

occ

�wi��r̂ − r̄i� � v̂�wi� �22�

arises from the circulation of the occupied WFs around their
centers r̄i= �wi�r̂�wi�=rii �“self-rotation”�, while

MIC = 

i

occ

r̄i � �wi�v̂�wi� �23�

is the circulation arising from the motion of the centers of
mass of the WFs.

It is well known that the WFs of a given system are not
uniquely defined; unitary mixing among the WFs is allowed,
giving rise to a “gauge freedom” �not to be confused with the
freedom to choose the electromagnetic gauge�. In practice
one deals with this issue by choosing, among the infinitely
many possible gauges, a particular one that has certain desir-
able properties. A common strategy is to work in the gauge

that minimizes the quadratic spread of the WFs, producing
so-called maximally localized WFs.16 Naturally, any physical
observable �e.g., Morb� is necessarily invariant under a
change of gauge. This is unfortunately not the case for the
individual terms MSR and MIC in Eqs. �22� and �23�, which
turn out to be gauge dependent. This is to be expected since
these quantities do not take the form of traces, unlike those
in the decomposition introduced earlier via Eqs. �16�–�18�.

The two decompositions �16�–�18� and �21�–�23� are not

unrelated, however. To see this, we insert the identity 1̂= Q̂

+ P̂ at the location of the cross product in Eq. �22� to obtain

MSR = MSR
�I� + MSR

�II�, �24�

where MSR
�I� is the quantity defined in Eq. �17� �since �wi�Q̂

=0�, and

MSR
�II� = 

Tr�P̂r̂ � P̂v̂	 − 


i

occ

r̄i � v̄i� = 
 

i,j�i

occ

rij � v ji.

�25�

In this way we have segregated the gauge dependence of
MSR to the term MSR

�II�, isolating a gauge-invariant part MSR
�I�

which turns out to be precisely the quantity defined in Eq.
�17� and appearing in the sum rule �19�. When the gauge-
dependent self-rotation MSR

�II� is combined with the gauge-
dependent itinerant circulation MIC, it forms the gauge-
invariant quantity �M of Eq. �18�. The relation between the
decompositions �16�–�18� and �21�–�23� can be summarized
by writing

Morb = MSR
�I� + MSR

�II� + MIC

�M

.

�26�

There is a remarkable parallelism between the decompo-
sition �24� of the Wannier self-rotation �22� and the
decomposition16

� = �I + �̃ �27�

of the Wannier spread

� = 

i

occ

�wi��r̂ − r̄i�2�wi� �28�

into a gauge-invariant part

�I = 

�

Tr�P̂r̂�Q̂r̂�	 �29�

and a gauge-dependent part

�̃ = 

i,j�i

occ

�rij�2. �30�

The similarities between Eqs. �17� and �29�, and between
Eqs. �25� and �30� are striking. Interestingly, the gauge-
invariant spread �I is related to the ordinary absorption spec-
trum by a second sum rule, as discussed in Ref. 19 and
Appendix A. In addition, the interpretation of �I as a mea-
sure of the quadratic quantum fluctuations, or “quantum
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spread,” of the many-electron center of mass19 is mirrored by
MSR

�I� having the meaning of a center-of-mass circulation, as
discussed in Appendix B.

First-principles calculations show that for maximally lo-

calized WFs, �̃ is typically much smaller than �I.
16 Indeed,

the minimization of the spread acts precisely to reduce �̃ as

much as possible. In general �̃ cannot be made to vanish
exactly in two or higher dimensions, since the noncommuta-

tivity of P̂x̂P̂, P̂ŷP̂, and P̂ẑP̂ implies that the off-diagonal rij
cannot all be zero. In practice, however, they can become
quite small. According to Eq. �25�, MSR

�II� would also vanish if
all off-diagonal rij were precisely zero. Hence we expect the
self-rotation of maximally localized WFs to be dominated by
the gauge-invariant part as well.20

The fact that �M is composed of self-rotation and
itinerant-circulation parts which are not separately gauge in-
variant means that angular momentum can be converted back
and forth between MSR and MIC via gauge transformations.
This will be discussed in more detail in Sec. III D; here we
simply note that the two parts are similar in that both origi-
nate from the spatial overlap between neighboring WFs. This
is evident from the definition of MSR

�II�, and for MIC it follows
from writing v̄i in terms of the “current donated from one
Wannier orbital to its neighbors” as in Ref. 7. �M can there-
fore be interpreted as an interorbital contribution to Morb,
even though it includes part of the self-rotation, while MSR

�I� is

the purely intraorbital portion. �Similarly, �I and �̃ are the
intraorbital and interorbital parts of the Wannier spread, re-
spectively.�

III. CRYSTALLINE SOLIDS

In this section we apply the general formalism of Sec. II
to crystalline solids, recasting the relevant quantities in the
form of Brillouin zone integrals. We start in Sec. III A by
rederiving the dichroic f-sum rule for Bloch electrons. In the
remaining subsections we explore the connections between
this bulk reformulation and the theory of orbital magnetiza-
tion in crystals.7–10

A somewhat unsatisfying aspect of that theory as devel-
oped in Ref. 9 is the lack of consistency in the way the
orbital magnetization was decomposed, in the following
sense. One partition �Morb=MLC+MIC in their notation18�
was made for bounded samples, after which the thermody-
namic limit was taken for each term separately. The resulting
k-space expressions were then combined to form the total
Morb. Finally, working in k space, a different partition

�Morb=M̃LC+M̃IC� was identified whose individual terms
were gauge invariant, unlike those of the original decompo-
sition. In the process, however, the intuitive real-space inter-
pretation of the original decomposition was lost, and the
separate meanings of the two terms in the gauge-invariant
decomposition were left unclear.

Here, instead, we shall work from the very beginning with
the two gauge-invariant terms MSR

�I� and �M, which afford a
simple real-space interpretation in terms of WFs. They are
first identified for fragments with a crystalline interior �crys-

tallites� in Sec. III B. The thermodynamic limit of each term
is then taken, producing the reciprocal-space expressions of
Eqs. �46� and �47� �the details of the derivation can be found
in Appendix C�. Interestingly, we find that our gauge-
invariant terms MSR

�I� and �M differ from—but are simply
related to—those of the gauge-invariant decomposition of
Ref. 9. In the particular case of an insulator with a single
valence band, on the other hand, they reduce exactly to the
terms identified in Ref. 8, as will be discussed in Sec. III C.
Because the work of Ref. 8 is based on a semiclassical pic-
ture of wave packet dynamics, however, it is not easily gen-
eralized to a multiband gauge-invariant framework as is done
here.

In Eq. �26� of Sec. II the decomposition �M=MSR
�II�

+MIC for insulating systems was obtained by working in the
Wannier representation. For insulating crystallites MIC can
be divided further into a “surface” part MIC

�surf� and an “inte-
rior” part MIC

�int�. The interplay between the resulting three
contributions to �M will be the focus of the final two sub-
sections. Single-band insulators are discussed in Sec. III C.
The general case of multiband insulators is considered in
Sec. III D, where the gauge-transformation properties of
those terms are analyzed.

A. Dichroic f-sum rule

The first step is to rewrite the Kubo-Greenwood formula
�8� in a form appropriate for periodic crystals, where dipole
transitions connect valence and conduction Bloch states with
the same crystal momentum k. Equation �4� becomes, drop-
ping the index k for conciseness,

fnm,�� = − �2me�mn/���un���um��um���un� , �31�

where ���� /�k� and we have used the relation21 vnm,�
=�mn�un ���um� for m�n, with �un� a cell-periodic Bloch
state. Equation �8� now reads

	H��� =

e2

2me
� dk

�2
�3

n

occ



m

empty

fnm��� − �mn� . �32�

Consider the frequency integral of 	H���,

�	H� =

e2

2me
� dk

�2
�3

n

occ



m

empty

fnm. �33�

The dichroic f-sum rule will be obtained from the imaginary
part of this complex quantity, while the real part yields the
ordinary f-sum rule �see Appendix A�.

Using Eq. �31� to expand the summation,



n

occ



m

empty

fnm,�� = −
2me

�2 

n

occ



m

empty

�un���um��Em − En��um���un�

= −
2me

�2 

n

occ



m

empty

���un�um��En − Em��um���un�

=
2me

�2 �gk,�� − hk,��� , �34�

where we have introduced a set of notations as follows:
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bk,�� = 

n

occ

��̃�un��̃�un� , �35�

gk,�� = 

n

occ

��̃�un�Ĥ��̃�un� , �36�

and

hk,�� = 

n

occ

En��̃�un��̃�un� . �37�

The symbol �̃ denotes the covariant derivative,9,22 defined as

��̃�unk�= Q̂k���unk�, where Q̂k=
m
empty�umk��umk�. The imagi-

nary part of bk,�� is essentially the Berry curvature while its
real part is related to the quantum metric �Appendix C of
Ref. 16; we discuss the physical content of bk,�� in Appendix
A�. Quantities gk,�� and hk,�� are similar to bk,�� except that
they carry an extra factor of Hamiltonian or energy. Note that
bk,�� corresponds to the quantity fk,�� in Ref. 9, while gk,��

and hk,�� are the same as in that work.
With these definitions Eq. �33� becomes

�	H,��� =

e2

�2 � dk

�2
�3 �gk,�� − hk,��� . �38�

The imaginary part reads, in vector form,

�	A� � =

e2

�2 � dk

�2
�3 �gk� − hk�� . �39�

This is the dichroic f-sum rule in the Bloch representation.
We can now compare this result with the decomposition

obtained in Ref. 9, where the ground-state orbital magneti-
zation was partitioned into two gauge-invariant terms as

Morb = M̃LC + M̃IC, �40�

where

M̃LC =
e

�c
� dk

�2
�3gk� , �41�

M̃IC =
e

�c
� dk

�2
�3hk� . �42�

We thus arrive at our main result

�	A� � =

ec

�
�M̃LC − M̃IC� �43�

relating the integrated MCD spectrum to the components of
the orbital magnetization. Note that the sum rule is propor-
tional to the difference between the gauge-invariant contribu-

tions of Ref. 9. By independently measuring the sum of M̃LC

and M̃IC via gyromagnetic experiments13,14 and the differ-
ence via the magneto-optical sum rule, the value of each
individual term can indeed be measured, in principle, resolv-
ing an open problem posed in Ref. 9.

Strictly speaking, Eqs. �40�–�42� as written are valid for
conventional insulators only. The extension to metals and

Chern insulators is subtle, but the understanding emerging
from Refs. 8–10 is that the appropriate generalization is ob-

tained by making the replacements Ĥ→ Ĥ−� and En→En
−� in Eqs. �36� and �37�, where � is the electron chemical
potential. Clearly gk−hk, and with it the sum rule �39�, are
insensitive to these substitutions.23

Comparing Eqs. �40� and �43� for extended crystals with
Eqs. �16� and �19� for bounded samples, it appears plausible
that the two partitions �16� and �40� of Morb ought to be
related by

MSR
�I� = M̃LC − M̃IC, �44�

�M = 2M̃IC, �45�

or explicitly,

MSR
�I� =

e

�c
� dk

�2
�3 �gk� − hk�� , �46�

�M =
2e

�c
� dk

�2
�3hk� . �47�

The correctness of these identities is demonstrated in Appen-
dix C by taking the thermodynamic limit of results derived in
the next subsection.

B. Magnetization of an insulating crystallite

To gain a better understanding of the bulk expressions
derived in the previous section, we now specialize the results
obtained for bounded samples in Sec. II C to the case that the
sample has a crystalline interior. Working in the Wannier
representation, we are then able to establish connections be-
tween the k-space and Wannier viewpoints and associate a
local physical picture with the various terms appearing in the
bulk orbital magnetization.

Following Refs. 7 and 9, we divide our crystallite into
surface and interior regions. This division is largely arbitrary,
and it only needs to satisfy two requirements: �i� the border
between the two regions should be placed sufficiently deep
inside the sample where the local environment is already
crystalline, and �ii� the surface region should occupy a non-
extensive volume in the thermodynamic limit. The Wannier
orbitals spanning the ground state are assigned to each re-
gion. Those in the interior converge exponentially to the bulk
WFs �Rn� �R is a lattice vector�, and those on the surface
will be denoted by �ws�.

We first divide the orbital magnetization into self-rotation
�SR� and itinerant-circulation �IC� contributions according to
Eqs. �21�–�23�. In the thermodynamic limit the SR part,
which only involves the relative coordinate r̂− r̄i, is domi-
nated by the interior region. Invoking translational invari-
ance,

MSR = 
c

n

��0n�r̂ � v̂�0n� − r̄n � v̄n	 , �48�

where 
c=−e / �2cVc�, with Vc the cell volume, r̄n

= �0n�r̂�0n�, and v̄n= �0n � v̂ �0n�. Henceforth summations over
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bandlike indices span the valence-band states.
Next we break down the self-rotation as in Eq. �24�, set-

ting P̂=
R
n�Rn��Rn� as follows:

MSR
�I� = 
c Re trc�P̂r̂ � Q̂v̂	 , �49�

MSR
�II� = 
c
Re trc�P̂r̂ � P̂v̂	 − 


n

r̄n � v̄n�
= 
c


n



Rm�0n

Re��0n�r̂�Rm� � �Rm�v̂�0n�� . �50�

The symbol trc denotes the trace per unit cell. Note that we
have taken the real part of the traces explicitly; this was not
needed in Eqs. �17� and �25� for bounded samples, where the
traces were automatically real.

Now we turn to the IC term �23� in Eq. �21�. Unlike MSR,
in the thermodynamic limit it generally has contributions
from both interior and surface regions:7,9

MIC = MIC
�int� + MIC

�surf�. �51�

The interior part becomes

MIC
�int� = 
c


n

r̄n � v̄n, �52�

where it was necessary to use



n

v̄n = 0 �53�

when exploiting the translational invariance. Equation �53�
expresses the fact that no macroscopic current, or dynamic
polarization,22 flows through the bulk in a stationary state.
Because of this constraint, the quantity �52� necessarily van-
ishes for insulators with a single valence band. In multiband
insulators it takes the form of an intracell itinerant circula-
tion: the WF centers in each cell can have a net circulation
while their collective center of mass remains at rest.

Finally, the surface contribution is

MIC
�surf� = 



s=1

Ns

r̄s � v̄s. �54�

It was shown in Refs. 7 and 9 that in the thermodynamic
limit this can be recast as

MIC
�surf� = − 
̄c Im 


mnR
R � �m0�r̂�nR��nR�Ĥ�m0� , �55�

where 
̄c=
c /�. This result is remarkable in that it expresses
a circulation in the surface region solely in terms of matrix
elements between the interior WFs, in a way that does not
depend on the precise location of the boundary between the
two regions �provided that the boundary satisfies the two
criteria mentioned earlier�. We emphasize that it holds for
crystalline insulators only.

Whereas MIC
�int� is an intracell-like term, in the bulk form

�55� MIC
�surf� is seen to have an intercell character, vanishing in

the “Clausius-Mossotti” limit of zero overlap between WFs
belonging to different cells. The assignment of the bulk WFs
to specific cells is, however, not unique, and by making a

different choice it is possible to convert between “intracell”
MIC

�int� and “intercell” MIC
�surf�. For this and other reasons to be

detailed in Sec. III D, the interior and surface parts of Morb
are in general not physically well defined, even in crystalline
insulators. Collecting terms, the full orbital magnetization
reads

Morb = MSR
�I� + MSR

�II� + MIC
�int� + MIC

�surf�

�M

,

�56�

which is similar to Eq. �26� except that the IC term has been
separated into interior and surface parts.

This Wannier-based decomposition of the magnetization
of a crystallite follows closely that of Ref. 9. Two differences
are worth noting. First, we have emphasized the distinction
between Wannier self-rotation and itinerant circulation. In
Ref. 9 the emphasis was more on the separation between the
surface contribution MIC

�surf� �denoted by MIC in that work�
and the interior contribution MLC=
c trc�P̂r̂� v̂	 containing
the net magnetic dipole density of the WFs in a crystalline
cell. This “local circulation” includes all of the self-rotation
as well as the intracell part of the itinerant circulation. In the
present notation the decomposition of Ref. 9 reads

Morb = MSR
�I� + MSR

�II� + MIC
�int�

MLC

+ MIC
�surf�.

�57�

Note that for one-band insulators MIC
�int�=0, in which case the

interior contribution coincides with the self-rotation, and the
surface part with the itinerant circulation.7 Second, by iden-
tifying a gauge-invariant part of the self-rotation, we have
been able to organize the four resulting terms into the two
gauge-invariant groups indicated in Eq. �56�.

The present viewpoint appears to be more useful for ar-
riving at a simple physical picture for the sum rule. It has the
additional advantage of being applicable to disordered and
microscopic systems, for which the distinction between inte-
rior and surface contributions loses meaning.

C. One-band insulators

We begin our discussion of Morb in insulators with a
single valence band by considering the remainder �M. We
saw in Sec. III B that, of the three terms into which it is
naturally decomposed in the Wannier representation, one of
them vanishes if there is only one WF per cell,

MIC
�int� = 0. �58�

Remarkably, the two surviving terms become identical,

MSR
�II� = MIC

�surf� =
�M

2
, �59�

and thus individually gauge invariant. This follows from Eqs.
�44� and �45� in the one-band limit. Indeed, the quantities

M̃LC and M̃IC therein were defined in Ref. 9 in such a way
that for one-band insulators they reduce to the quantities
MLC=MSR and MIC

�surf� in Eq. �57�. It is then seen that Eqs.
�44� and �45� correspond to the first and second equalities in
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Eq. �59�, respectively. We emphasize that Eqs. �58� and �59�
only hold for crystalline WFs which respect the full transla-
tional symmetry of the crystal. If, for instance, a larger unit
cell is used �effectively folding the Brillouin zone and turn-
ing the system into a multiband insulator�, the additional
gauge freedom can be used to construct WFs for which Eqs.
�58� and �59� no longer hold.

Consider now the full orbital magnetization. For one-band
insulators the reciprocal-space expressions �46� and �47� re-
duce to

MSR
�I� =

e

2�c
Im � dk

�2
�3 ��kuk� � �Ĥk − Ek���kuk� �60�

and

�M =
e

�c
� dk

�2
�3Ek Im��kuk� � ��kuk� . �61�

Their sum Morb is given by the right-hand side of Eq. �60�
with −Ek replaced by +Ek, which is the expression originally
obtained in Refs. 7 and 8. Moreover, the individual contribu-
tions MSR

�I� and �M coincide with those identified in Ref. 8.
Instead, the derivation of Ref. 7 leads to the alternative—but,
for one-band insulators, also gauge invariant—partition into
the interior and surface parts MLC=MSR=MSR

�I� +�M /2 and
MIC

�surf�=�M /2.
While the individual terms MSR

�I� and �M agree, for
single-band insulators, with those of Ref. 8, we interpret
them somewhat differently here. In Ref. 8, Eq. �60� had the
meaning of an intrinsic magnetic moment associated with the
self-rotation of the carrier wave packets. According to the
present derivation, that term is only part of the Wannier self-
rotation. As for Eq. �61�, in the derivation of Ref. 8 it was
seen to arise from a Berry-phase correction to the electronic
density of states, and was subsequently claimed to be asso-
ciated with a boundary current circulation.24 Instead, accord-
ing to the present viewpoint only half of it originates in the
itinerant circulation MIC

�surf� of the surface WFs, while the
other half is ascribed to the remaining self-rotation MSR

�II� of
the WFs in the bulk.

D. Gauge transformations for multiband insulators

In multiband insulators all three terms MSR
�II�, MIC

�int�, and
MIC

�surf� can be nonzero. However, their individual values are
not physically meaningful, since a gauge transformation can
redistribute the total �M among them. In particular, it is
interesting to consider gauge transformations that shift the
location of a WF by a lattice vector.

A general gauge transformation takes the form16

�unk� → 

m

�umk�Umnk, �62�

where Uk is an Nb�Nb unitary matrix in the band indices.
We assume that a transformation of this kind has already
been applied to transform from the Hamiltonian eigenstates
at each k to a set of states that are smooth in k from which
the WFs are to be constructed. We can then interpose an
additional diagonal gauge transformation

�unk� → e−ik·Rn�unk� , �63�

where Rn is a real-space lattice vector; this has the effect of
shifting the location of WF n by Rn. For a one-band insula-
tor, or if Rn is the same for all bands, this amounts to shifting
the choice of the “home” unit cell. However, in the multi-
band case different WFs can be shifted differently, corre-
sponding to the freedom in choosing which WFs “belong” to
the home unit cell.

For example, Fig. 1 shows four cells of a model two-
dimensional crystal consisting of “molecular magnets” dis-
posed on a square lattice with lattice constant a. Before the
transformation �63�, the home unit cell contains the four WFs
shown in bold in panel �a�. Applying the transformation with
R2=ax̂ and Rm=0 for all other WFs changes the selection of
the “basis” of WFs belonging to the home cell to be that
shown in panel �b�.

How does this affect the individual terms composing
�M? Clearly the self-rotation �48� is not affected. According
to Eq. �52�, MIC

�int� changes by 
cR2� v̄2. To preserve the
overall invariance of �M the remaining term MIC

�surf� must
change by an equal and opposite amount. Let us see in more
detail how this comes about.

We begin with a formal derivation. The k-space expres-
sion for MIC

�surf� is given by9

(a)

4

2

3

1

1 2

4 3

(b)

R2

FIG. 1. Schematic model of a molecular crystal with one mol-
ecule per cell and four WFs per molecule. The range of the orbitals
is indicated by the overlapping circles, and their center-of-mass
velocities v̄n are denoted by arrows. The two panels show in bold
two possible choices of “Wannier basis.”
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MIC
�surf� =

e

2�c
Im 


mn
� dk

�2
�3Emnk��kunk� � ��kumk� .

�64�

A few steps of algebra show that under the transformation
�63� MIC

�surf� changes by

e

�c
Rn � 


m
� dk

�2
�3 Re��un��kum��um�Ĥk�un�� . �65�

Replacing �un ��kum� by −��kun �um� allows us to identify a

term P̂kĤk= Ĥk in the above expression, which becomes

−
e

�c
Rn �� dk

�2
�3 Re��un�Ĥk��kun�� . �66�

Comparing with the Wannier velocity22

v̄n = −
2Vc

�
� dk

�2
�3 Re��un�Ĥk��kun�� �67�

and setting n=2 then produce the desired result −
cR2� v̄2

for the change in MIC
�surf�.

Coming back to the example in Fig. 1, the intramolecular
orbital overlap gives rise to the nonzero velocities v̄n indi-
cated by the arrows. With the choice of Wannier basis of
panel �a�, the collective circulation of the Wannier centers in
each cell results in a finite MIC

�int�, while from Eq. �55� MIC
�surf�

vanishes, since there is negligible intercell overlap. When the
configuration of panel �b� is chosen, MIC

�surf� becomes −
cR2
� v̄2. From the present viewpoint this nonzero value is made
possible by the intramolecular �but now intercell� overlap
between the second WF of each cell with WFs one, three,
and four from the cell shifted by R2.

To view MIC
�surf� as a surface contribution rather than a bulk

intercell term, we consider now a finite sample of the same
crystal �Fig. 2�, which has been divided into surface and
interior regions. In deciding which WFs are “interiorlike”
and which are “surfacelike” we shall require that all WFs
assigned to the same cell must belong to the same region. If
the Wannier basis of Fig. 1�a� is used, the surface region can
be chosen to comprise the outermost layer of molecules, so
that the border between the two regions is given by the
dashed line. The four WFs on each molecule form a unit with

some internal IC but zero center-of-mass velocity. The total
sample magnetization is the sum of all such internal circula-
tions, which in the large-sample limit is interior dominated,
so that MIC

�surf�→0.
If the Wannier basis of Fig. 1�b� is chosen instead, the

upper and lower surface regions are still composed of the
outermost layer of molecules. However, the left surface now
contains, in addition, one WF from each molecule in the
second layer. Those lone surface WFs carry a downward par-
ticle “IC current” which extends along the left surface and is
indicated by an open arrow on the right panel. A correspond-
ing IC current appears on the right surface, and together they
yield MIC

�surf�=−�e /2ca��v̄2�ẑ, which agrees with the result
MIC

�surf�=−
cR2� v̄2 found earlier using a purely bulk argu-
ment �in this example 
c=−e / �2ca2�	. A change of gauge
should not change any physical quantity, such as the actual
current flowing on the left surface. Since it appears to change
by adding the open arrow, there must be another equal and
opposite contribution �the adjacent solid arrow�. This contri-
bution is the interior IC current carried by the remaining
three WFs �filled circles� on the molecules of the second
layer.

The situation just described is reminiscent of the “quan-
tum of polarization” in the theory of dielectric polarization,25

where a change of Wannier basis like that leading from Fig.
1�a� to Fig. 1�b� shifts the polarization by a quantum and also
changes the surface charge by one electron per surface cell
area. This might suggest that the full gauge invariance of the
interior and surface parts of Morb discussed in Sec. III C for
single-band insulators becomes, in multiband insulators, a
gauge-invariance modulo 
cRn� v̄n. While true for this par-
ticular example, this is generally not so.26 Even for this
model it will cease to be true as soon as the molecules start
overlapping significantly. When this happens, the value of
MIC

�surf� can be tuned continuously using other types of gauge
transformations, e.g., the continuous diagonal transformation

�unk� → ei�nk�unk� �68�

with �n,k+G=�nk. This produces a change in MIC
�surf� given by

Eq. �66� with Rn therein replaced by a factor of −�k�nk in the
integrand. Since both r̄n and v̄n remain invariant �the former
was shown in Ref. 21 and the latter follows from Eq. �53�
together with the fact that all other v̄m are unaffected	, so
does MIC

�int�. The change in MIC
�surf� must therefore be absorbed

by MSR
�II�.

To summarize, the transformation �63� transfers discrete
amounts of itinerant circulation between the interior and sur-
face regions, while the transformation �68� converts continu-
ously between interior self-rotation and surface itinerant cir-
culation. Finally, under the most general transformation �62�
all three gauge-dependent terms in Eq. �56� can be affected
simultaneously, so that only their sum �M is unique and
physically meaningful.

IV. SUMMARY AND OUTLOOK

We have presented an exact sum rule for the MCD spec-
trum, elucidated its physical interpretation, and related it to

FIG. 2. A finite sample cut from the bulk crystal of Fig. 1. With
the choice of Wannier basis of Fig. 1�a�, interior and surface WFs
lie inside and outside the dashed line, respectively; with that of Fig.
1�b�, they are denoted by solid and open circles, respectively. Right
panel: open and solid arrows show the extra “itinerant currents” �
MIC

�surf� and MIC
�int�, respectively	 associated with the latter choice.
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the recent rigorous formulation of orbital magnetization in
crystals. In insulating systems the sum rule probes the gauge-
invariant part MSR

�I� of the self-rotation of the occupied Wan-
nier orbitals. The total orbital magnetization has a second,
less obvious contribution �M, arising from the overlap be-
tween neighboring WFs. It comprises both self-rotation �SR�
and itinerant-circulation �IC� parts in proportions which de-
pend on the precise choice of WFs, while �M itself has a
unique value. Although the intuitive interpretation in terms
of the occupied WFs is restricted to Wannier-representable
systems such as conventional insulators, the terms MSR

�I� and
�M are, in fact, well defined for all electron systems, includ-
ing metals and Chern insulators.

The practical importance of the sum rule is that it allows
us to break down Morb into physically meaningful parts, us-
ing a combination of gyromagnetic and magneto-optical
measurements. This should provide valuable information on
the intraorbital �or localized� versus interorbital �or itinerant�
character of orbital magnetism. For example, it has been sug-
gested �Ref. 27, Appendix B� that the anomalously large
g-factors of Bi might be caused by itinerant circulations very
much like the ones discussed here. On the basis of the
present work it should now be possible to test this conjec-
ture.

In the past decade and a half a sum rule for the x-ray
MCD �XMCD� spectrum4 has been used extensively to ob-
tain site-specific information about orbital magnetism in sol-
ids. The resulting orbital moments have been compared with
gyromagnetic measurements of Morb.

28 If a significant itiner-
ant contribution �M is present, one may expect a discrep-
ancy between the XMCD orbital moments and the total Morb
inferred from gyromagnetics. It would therefore be of great
interest to find such systems defying the conventional wis-
dom about the connection between the MCD spectrum and
orbital magnetization.

The ideas discussed in this work should be most relevant
for materials displaying appreciable orbital magnetism and,
in particular, appreciable interorbital effects which might en-
hance the ratio ��M /MSR

�I� �. These criteria do not favor band
ferromagnets. First, their orbital magnetization tends to be
relatively small. In the transition metal ferromagnets Fe, Co,
and Ni, for example, it accounts for less than 10% of the
spontaneous magnetization.13,14 �For comparison, the field-
induced orbital magnetization of the d paramagnetic metals
can be as large as the induced spin magnetization. This has
been established both from gyromagnetic experiments15 and
from first-principles calculations.29� Secondly, ferromag-
netism is favored by narrow bands and localized orbitals, for
which interorbital effects are expected to be relatively minor.
Finally, the spin-orbit-induced Morb of ferromagnets is be-
lieved to be an essentially atomic phenomenom largely con-
fined to a small core region close to the nucleus,30,31 and one
might therefore expect �M to be small. Paramagnets and
diamagnets, with relatively wide bands �e.g., the s-p metals
and semiconductors� and additional contributions to Morb un-
related to spin-orbit, therefore appear to be more promising
candidates. Among ferromagnets, the “zero magnetization
ferromagnets,”32 whose orbital magnetization is so large as
to cancel the spin magnetization, might be particularly inter-
esting.

An important direction for future work is to carry out
first-principles calculations of MSR

�I� and �M for real materi-
als. Such calculations would test the validity of the assump-
tion that orbital magnetism in solids is atomiclike in
nature.30,31 While plausible, that assumption was made in the
past partly out of practical necessity, since a rigorous bulk
definition of Morb in terms of the extended Bloch states was
not available. Confronting experiment with a full calculation
of Morb within spin-density functional theory �SDFT�, in-
cluding the itinerant terms, would clarify whether SDFT can
adequately describe orbital magnetism in solids, or whether
an extended framework �e.g., LSD+U including “orbital po-
larization” terms30,31 or current- and spin-density functional
theory10� is needed.

In Appendix A we place the dichroic f-sum rule in the
broader context of other known sum rules. We note, in par-
ticular, that by taking different inverse-frequency moments,
the interband MCD spectrum can be related to two other
phenomena resulting from broken time-reversal symmetry,
namely, orbital magnetism and intrinsic anomalous Hall ef-
fect. These are generally expected to coexist, and this is in-
deed the case for ferromagnets, where all three occur spon-
taneously. In the case of Pauli paramagnets, however, the
intrinsic Hall mechanism of Karplus and Luttinger has re-
ceived little if any attention. On the other hand, it is known
that Pauli paramagnets can display a field-induced MCD
spectrum.33,34 This raises the question as to what role the
Berry curvature may play in their “ordinary” �field-induced�
Hall effect. Such a “dissipationless” contribution is undoubt-
edly present in principle by virtue of the sum rule �A7�.
First-principles calculations of this effect will be presented in
a future Communication.35

To conclude, we have described the orbital magnetization
of crystals in terms of localized �MSR

�I� � and itinerant ��M�
parts, and shown how to relate them to magneto-optical and
gyromagnetic observables. This should allow one to probe
more deeply into the nature of magnetism in condensed-
matter systems than previously possible.
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APPENDIX A: OTHER SUM RULES

In this appendix we derive three additional sum rules for
Bloch electrons and discuss their relation to the dichroic
f-sum rule. All four involve inverse-frequency moments
��−p	H� �in the notation of Eq. �11�	 of the absorption spec-
trum �6�. They are given by p=0 and p=1, and in each case
two sum rules are obtained by taking the real and imaginary
parts: one ordinary and the other dichroic, respectively.

We first consider p=0. From the imaginary part of Eq.
�38� we obtained the dichroic f-sum rule �43�. To discuss the
real part we revert from �38� to the form �33�,

�	S,��� � =

e2

2me
� dk

�2
�3

n

occ



m

empty

fnm,��� . �A1�

Since fnm,��=−�fmn,��	*,
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n

occ



m

empty

fnm,��� = 

n

occ



m�n

fnm,��� = 

n

occ ���� − 
me

me
*�

n,��
� ,

�A2�

where the second equality is the effective-mass theorem.
Hence we find

�	S,��� � =

e2

2me
� dk

�2
�3

n

occ ���� − 
me

me
*�

n,��
� , �A3�

the modified f-sum rule36 for the ordinary spectrum.
To obtain the two sum rules for p=1 we again start from

Eq. �32�, but now replace Eq. �34� by



n

occ



m

empty
fnm,��

�mn
=

2me

�
bk,��, �A4�

where bk,�� was defined in Eq. �35�. Thus

��−1	H� =

e2

�
� dk

�2
�3bk. �A5�

For the dichroic part, noting that �k=−2bk� is the Berry
curvature summed over the occupied states at k, and com-
paring with the “intrinsic” Karplus-Luttinger Hall
conductivity37

�A� �� = 0� = −
e2

�
� dk

�2
�3�k, �A6�

one finds the Hall sum rule,

��−1�A� � =



2
�A� �� = 0� . �A7�

This is the �→0 limit of the Kramers-Kronig relation for the
antisymmetric conductivity.12 Since only the interband part
of the optical conductivity was included on the left-hand
side, the intrinsic dc Hall conductivity was obtained on the
right-hand side. Extrinsic contributions to the latter �e.g.,
skew scattering� presumably arise from intraband terms in
the former.

Finally, consider the ordinary �real� part of Eq. �A5�. The
quantity bk,��� is the quantum metric.16 It is related to the
localization tensor ��� of insulators by38

��� =
V

N
� dk

�2
�3bk,��� , �A8�

where N /V is the electron density. Hence we recover the
electron localization sum rule19

��−1	S,��� � =

e2N

�V
���. �A9�

In summary, we have in Eqs. �38� and �A5� two general
sum rules for the zeroth and first inverse frequency moments
of the optical absorption, respectively. Taking imaginary and
real parts of Eq. �38� gives the dichroic f-sum rule �43� and
the modified ordinary f-sum rule �A3�, while taking imagi-
nary and real parts of Eq. �A5� gives the Hall sum rule �A7�
and the electron localization sum rule �A9�.

Besides emerging from a unified formalism, the four sum
rules display certain similarities. For instance, it will be
shown in AppendixB that the dichroic f-sum rule yields the
expectation value of the many-electron center-of-mass circu-
lation operator, while the trace of the localization tensor
yields the spread of the center-of-mass quantum distribution.
Moreover, in a one-particle picture each quantity can be
viewed as the gauge-invariant part of the corresponding
property �self-rotation or spread� of the Wannier orbitals, as
discussed in Sec. II C for bounded systems. There is, how-
ever, one important difference between the behavior of the
two quantities in the thermodynamic limit. While the center-
of-mass circulation remains well defined for metals, the trace
of the localization tensor is only meaningful for insulators,
diverging in metals.19,38 Interestingly, the delocalization of
electrons in metals is also responsible for a correction to the
f-sum rule. Contrary to the canonical f-sum rule for atoms,1

the modified f-sum rule �A3� does not yield the number den-
sity of valence electrons in a metal, due to the presence of
the last term on the right-hand side. This term appears be-
cause the Bloch states are extended and do not vanish at
infinity.36 The fact that the correction term nevertheless van-
ishes for insulators is a consequence of the localized nature
of insulating many-body wave functions in configuration
space.39

We conclude by noting that Eq. �A7� provides an extreme
example of how sum rules from atomic physics can change
qualitatively when applied to extended systems. Indeed, the
corresponding sum rule for bound systems produces a van-
ishing result,40

��−1	A,��� � =

e2

�V
Im Tr�P̂r̂�Q̂r̂�	 = 0. �A10�

In contrast, the bulk formula �A7� produces for Chern insu-
lators a quantized Hall conductivity, and it also describes the
intrinsic anomalous Hall conductivity of ferromagnetic
metals.37 This apparent contradiction highlights the subtleties
associated with the process of taking the thermodynamic
limit and switching from open to periodic boundary condi-
tions for non-Wannier-representable systems. Such issues are
still not fully resolved in the theory of orbital magnetization.
While a general derivation of the bulk formula for Morb has
been given working from the outset with a periodic crystal,10

derivations which start from finite crystallites and take them
to the thermodynamic limit �Refs. 7 and 9 and Appendix C�
are presently restricted to conventional insulators.

APPENDIX B: DICHROIC f-SUM RULE AND THE MANY-
BODY WAVE FUNCTION

In the main text we interpreted the dichroic f-sum rule,
and the associated decomposition �16� of Morb, in an
independent-particle picture based on WFs. It is also possible
to relate these quantities directly to properties of the many-
electron wave function, without invoking any particular
single-particle representation. In preparation for that, let us
first discuss a one-electron system �e.g., a hydrogen atom in
a magnetic field�. Its absorption spectrum is composed of
sharp lines, and is more conveniently described in terms of
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an oscillator strength rather than an optical conductivity. Tak-
ing the imaginary part of Eq. �4� and using the relation �13�
to replace one of the velocity matrix elements,

fnm,��� = −
me

�
��n�r̂��m��m�v̂��n� − �� ↔ ��	 . �B1�

Summing over m�n and using the closure relation together
with �n�v̂�n�=0 one finds, in vector notation,



m�n

fnm� = −
me

�
�n�r̂ � v̂�n� . �B2�

This is the original dichroic f-sum rule of Hasegawa and
Howard,2 with the orbital angular momentum appearing on
the right-hand side; in the notation of Sec. II B it reads
��A� �= �
ec /��Morb �since here �M=0�.

We now generalize the discussion to N-electron systems.
In this context r̂=
i=1

N r̂i and v̂=
i=1
N v̂i, and it is crucial to

make a distinction between the one-particle operator �̂�1�

=
i=1
N r̂i� v̂i and the two-particle operator �̂�2�= r̂� v̂ appear-

ing in Eq. �B2�, as emphasized in Ref. 41. The former is
related to the electronic angular momentum and orbital mag-
netization, while the latter is related to a many-electron
center-of-mass circulation. �In the classical context, for ex-
ample, a pair of electrons orbiting 180° out of phase in the
same circular orbit would have ��1��0 but ��2�=0.	

The derivation of the dichroic sum rule for the N-electron
case proceeds as before, except that the velocity matrix ele-
ments in Eq. �4� become vnm= ��n�v̂��m�, where ��m� are
now many-body eigenstates. The result is still given by Eq.
�B2�, with �n� replaced by ��n�. Indeed, it is natural to define
the many-body generalization of Eq. �17� as

MSR
�I� = 
��n��̂�2���m� �B3�

so that Eq. �19� continues to hold. From this many-body
perspective the difference �M with respect to the full Morb is

seen to arise from the cross terms 
i,j�i
N r̂i� v̂ j in �̂�2�−�̂�1�.

To recover from Eq. �B3� the independent-particle expres-
sion �17� we specialize to the case where ��m� is a single
Slater determinant. In second-quantized notation r̂
=
ijrijci

†cj, v̂=
ijvijci
†cj, and ��0�=c1

† . . .cN
† �0�, where i and j

label orthogonal one-particle states. Then Eq. �B3� becomes

MSR
�I� = 
��0�cN . . . c1�



ij

rijci
†cj� � 



kl

vklck
†cl��c1

† . . . cN
† �0�� .

�B4�

Terms in which the indices do not pair can immediately be
eliminated. Furthermore, pairings of the form �k= l, i= j� give
no contribution, since this leads to �
i

occrii�� �
k
occvkk� which

vanishes because ��0�v̂��0�=0. The only surviving terms are
those with �j=k, i= l�, yielding

MSR
�I� = 



ij

rij � v ji���0�cjcj
†��ci

†ci��0��

= 


ij

rij � v ji�1 − nj�ni = 


i

occ



j

empty

rij � v ji,

�B5�

where ni is the state occupancy. Clearly the expression on the
right-hand side is equivalent to that in Eq. �16�.

A similar analysis can be made for the other sum rules
presented in Appendix A. For example, the counterpart of the
Hall sum rule for a bounded many-electron system reads



m�0

f0m�

�m0
= −

ime

�
��0�r̂ � r̂��0� = 0, �B6�

which was termed in Ref. 3 the Kuhn sum rule. The
independent-particle form �A10� can be recovered from Eq.
�B6� along the lines of Eqs. �B4� and �B5�. As for the elec-
tron localization sum rule, it yields the second cumulant mo-
ment of the quantum distribution of the many-electron center
of mass.19 In the independent-particle limit this reduces to

���= �1 /N�Tr�P̂r̂�Q̂r̂�	, whose trace yields the gauge-
invariant WF spread �29�. The bulk formula �A8� for insu-
lating crystals can be recovered in the thermodynamic limit
following the strategy described below for the orbital mag-
netization.

APPENDIX C: THERMODYNAMIC LIMIT

In this appendix we start from the expressions �17� and
�18� for MSR

�I� and �M of insulating crystallites and, by tak-
ing the thermodynamic limit in the Wannier representation,
turn them into the reciprocal-space expressions �46� and
�47�.

Before proceeding, recall that the quantities gk and hk
entering Eqs. �46� and �47� were defined in Eqs. �36� and
�37� in the context of the “Hamiltonian gauge” in which n
labels a Bloch energy eigenstate. Here, we work with a gen-
eralized Wannier representation as in Sec. III B, where n
labels a Wannier function and �unk� is the state of Bloch
symmetry �generally not an energy eigenstate� constructed
from that Wannier function.16 The two representations are
related by a k-dependent unitary rotation as in Eq. �62�. Then
Eq. �36� remains valid in the present context, since it already
takes the form of a trace, while Eq. �37� is now replaced by

hk,�� = 

nm

Enmk��̃�umk��̃�unk� , �C1�

where Enmk= �unk�Ĥk�umk�. With gk and hk written as traces
in this way, it is evident that each is a gauge-invariant
quantity.9

1. Gauge-invariant self-rotation MSR
„I…

For insulating crystallites in the thermodynamic limit, Eq.
�17� can be replaced by Eq. �49�. Thus we need to establish
the equivalence between Eqs. �49� and �46�. Using
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v̂ = −
i

�
�r̂,Ĥ	 �C2�

and specializing to the z component of Eq. �49�,

MSR,z
�I� =

e

�cVc
Im trc�P̂x̂Q̂ĤQ̂ŷ − P̂ĤP̂x̂Q̂ŷ	 . �C3�

The second term above may be expanded as a trace in the
Wannier representation as

trc�P̂ĤP̂x̂Q̂ŷ	 = 

R



mn

�0m�Ĥ�Rn��Rn�x̂Q̂ŷ�0m� . �C4�

Then using the identities

�0m�Ĥ�Rn� = Vc� dk

�2
�3e−ik·REmnk, �C5�

�Rn�x̂Q̂ŷ�0m� = Vc� dk

�2
�3eik·R��̃xunk��̃yumk� , �C6�

we obtain

1

Vc
trc�P̂ĤP̂x̂Q̂ŷ	 =� dk

�2
�3hk,��. �C7�

Using a similar argument, it follows that

1

Vc
trc�P̂x̂Q̂ĤQ̂ŷ	 =� dk

�2
�3gk,��. �C8�

Combining the above two equations with Eq. �C3� then
yields Eq. �46�.

2. Gauge-invariant remainder �M

To take the thermodynamic limit of �M we start from Eq.
�18� and apply it to a large crystallite to arrive at Eq. �47�.
Focusing on the z component,

��M�z = 
 Tr�P̂x̂P̂v̂y	 − 
 Tr�P̂ŷP̂v̂x	 . �C9�

Now use Eq. �C2� to obtain

��M�z = − 2i
̄ Tr�x̂P̂ŷP̂ĤP̂ − ŷP̂x̂P̂ĤP̂	 , �C10�

where we defined 
̄=
 /� and replaced P̂Ĥ by the more sym-

metrical form P̂ĤP̂. Using −i Tr�Ô−O†	=2 Im Tr�Ô	, this
becomes

��M�z = 4
̄ Im Tr�x̂P̂ŷ�P̂ĤP̂�	 . �C11�

At this point we are still considering a bounded sample.
To obtain a bulk expression we first need to manipulate Eq.

�C11� into a form where the unbounded operators x̂ and ŷ are

sandwiched between P̂ and Q̂, as in Eq. �C3�. That ensures
that ill-defined diagonal position matrix elements between
the extended Bloch states do not occur. We will make use of
the following rules for finite-dimensional Hermitian matrices
A, B, C, and D:

Im Tr�ABCD	 = Im Tr�DABC	 , �C12�

Im Tr�ABCD	 = − Im Tr�DCBA	 , �C13�

Im Tr�AB	 = 0, �C14�

and, if any two of the matrices A, B, and C commute,

Im Tr�ABC	 = 0. �C15�

Rules �C12� and �C13� result from elementary properties of
the trace. Rule �C14� is a consequence of rules �C12� and
�C13�, and rule �C15� follows from rule �C14�. Replacing the

first P̂ in Eq. �C11� by 1̂− Q̂ and applying rule �C15� to the

term containing 1̂ ��x̂ , ŷ	=0 and P̂ĤP̂ is Hermitian�, we ob-
tain

��M�z = − 4
̄ Im Tr�P̂ĤP̂x̂Q̂ŷ	 , �C16�

which has the desired form.
Now we invoke Wannier representability to write

Tr�P̂ĤP̂x̂Q̂ŷ	 = 

j

�wj�ĤP̂�x̂ − x̄j�Q̂�ŷ − ȳ j��wj�

�C17�

�note that P̂r̄Q̂=0�. Since only the relative coordinate ap-
pears, the contribution from the surface orbitals is nonexten-
sive, vanishing in the thermodynamic limit. We are then left
with a bulklike expression

Tr�P̂ĤP̂x̂Q̂ŷ	 → 

Rm



R�n

�Rm�Ĥ�R�n��R�n�x̂Q̂ŷ�Rm� .

�C18�

Both matrix elements on the right-hand side depend on R
and R� only through R�−R, and therefore, comparing with
Eq. �C4�,

1

Nc
Tr�P̂ĤP̂x̂Q̂ŷ	 → trc�P̂ĤP̂x̂Q̂ŷ	 , �C19�

where Nc is the number of crystalline cells in the sample.
Combining Eqs. �C7�, �C16�, and �C19� one obtains Eq. �47�,
which concludes the proof.
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