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Abstract. In this Chapter we review the physical basis of the modern theory of
polarization, emphasizing how the polarization can be defined in terms of the ac-
cumulated adiabatic flow of current occurring as a crystal is modified or deformed.
We explain how the polarization is closely related to a Berry phase of the Bloch
wavefunctions as the wavevector is carried across the Brillouin zone, or equiva-
lently, to the centers of charge of Wannier functions constructed from the Bloch
wavefunctions. A resulting feature of this formulation is that the polarization is
formally defined only modulo a “quantum of polarization” – in other words, that
the polarization may be regarded as a multi-valued quantity. We discuss the con-
sequences of this theory for the physical understanding of ferroelectric materials,
including polarization reversal, piezoelectric effects, and the appearance of polar-
ization charges at surfaces and interfaces. In so doing, we give a few examples of
realistic calculations of polarization-related quantities in perovskite ferroelectrics,
illustrating how the present approach provides a robust and powerful foundation
for modern computational studies of dielectric and ferroelectric materials.

1 Why is a Modern Approach Needed?

The macroscopic polarization is the most essential concept in any phenomeno-
logical description of dielectric media [1]. It is an intensive vector quantity
that intuitively carries the meaning of electric dipole moment per unit vol-
ume. The presence of a spontaneous (and switchable) macroscopic polariza-
tion is the defining property of a ferroelectric (FE) material, as the name itself
indicates (“ferroelectric” modeled after ferromagnetic), and the macroscopic
polarization is thus central to the whole physics of FEs.

Despite its primary role in all phenomenological theories and its over-
whelming importance, the macroscopic polarization has long evaded micro-
scopic understanding, not only at the first-principles level, but even at the
level of sound microscopic models. What really happens inside a FE and, more
generally, inside a polarized dielectric? The standard picture is almost invari-
ably based on the venerable Clausius–Mossotti (CM) model [2, 3], in which
the presence of identifiable polarizable units is assumed. We shall show that
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Fig. 1. A polarized ionic crystal having the NaCl structure, as represented within
an extreme Clausius–Mossotti model. We qualitatively sketch the electronic polar-
ization charge (shaded areas indicate negative regions) in the (110) plane linearly
induced by a constant field EEE in the [111] direction as indicated by the arrow. The
anions (large circles) are assumed to be polarizable, while the cations (small cir-
cles) are not. The boundary of a Wigner–Seitz cell, centered at the anion, is also
shown (dashed line)

such an extreme model is neither a realistic nor a useful one, particularly for
FE materials.

Experimentalists have long taken the pragmatic approach of measuring
polarization differences as a way of accessing and extracting values of the
“polarization itself”. In the early 1990s it was realized that, even at the
theoretical level, polarization differences are conceptually more fundamental
than the “absolute” polarization. This change of paradigm led to the devel-
opment of a new theoretical understanding, involving formal quantities such
as Berry phases and Wannier functions, that has come to be known as the
“modern theory of polarization”. The purpose of the present chapter is to
provide a pedagogical introduction to this theory, to give a brief introduction
to its computational implementation, and to discuss its implications for the
physical understanding of FE materials.

1.1 Fallacy of the Clausius–Mossotti Picture

Within the CM model the charge distribution of a polarized condensed system
is regarded as the superposition of localized contributions, each providing an
electric dipole. In a crystalline system the CM macroscopic polarization P CM

is defined as the sum of the dipole moments in a given cell divided by the cell
volume. We shall contrast this view with a more realistic microscopic picture
of the phenomenon of macroscopic polarization.

An extreme CM view of a simple ionic crystal having the NaCl structure
is sketched in Fig. 1. The essential point behind the CM view is that the
distribution of the induced charge is resolved into contributions that can be
ascribed to identifiable “polarization centers”. In the sketch of Fig. 1 these are
the anions, while in the most general case they may be atoms, molecules, or
even bonds. This partitioning of the polarization charge is obvious in Fig. 1,
where the individual localized contributions are drawn as nonoverlapping.
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Fig. 2. Induced (pseudo)charge density ρ(ind)(r) in the (110) plane linearly induced
by a constant field EEE in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [4],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contribu-
tions. We show in Fig. 2 the analog of Fig. 1 for this material, with the elec-
tronic distribution polarized by an applied field along the [111] direction. The
calculation is performed in a first-principle framework using a pseudopoten-
tial implementation of density-functional theory [5, 6]; the quantity actually
shown is the induced polarization pseudocharge of the valence electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [7, 8] can be defined as

ε∞ = 1 + 4πχ = 1 + 4π
∂P

∂EEE , (1)

where P is the macroscopic polarization and EEE is the (screened) electric field.
One would like to replace P with P CM, i.e., the induced bond dipole per
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cell. However, in order to actually evaluate P CM, one must choose a recipe
for truncating the integration to a local region, which is largely arbitrary.
Even more importantly, no matter which reasonable recipe one adopts, the
magnitude of P CM is far too small (by at least an order of magnitude) to
reproduce the actual value ε∞ � 12 in silicon. The magnitude of the local
dipoles seen in Fig. 2 may therefore account for only a small fraction of
the actual P value for this material. In fact, as we shall explain below, it is
generally impossible to obtain the value of P from the induced charge density
alone.

1.2 Fallacy of Defining Polarization via the Charge Distribution

Given that P carries the meaning of electric dipole moment per unit volume,
it is tempting to try to define it as the dipole of the macroscopic sample
divided by its volume, i.e.,

P samp =
1

Vsamp

∫
samp

dr rρ(r) . (2)

We focus, once more, on the case of crystalline silicon polarized by an external
field along the [111] direction. In order to apply (2), we need to assume a
macroscopic but finite crystal. But the integral then has contributions from
both the surface and the bulk regions, which cannot be easily disentangled. In
particular, suppose that a cubic sample of dimensions L×L×L has its surface
preparation changed in such a way that a new surface charge density Δσ
appears on the right face and −Δσ on the left; this will result in a change
of dipole moment scaling as L3, and thus, a change in the value of P samp,
despite the fact that the conditions in the interior have not changed. Thus,
(2) is not a useful bulk definition of polarization; and even if it were, there
would be no connection between it and the induced periodic charge density
in the sample interior that is illustrated in Fig. 2.

A second tempting approach to a definition of the bulk polarization is via

P cell =
1

Vcell

∫
cell

dr rρ(r) , (3)

where the integration is carried out over one unit cell deep in the interior of
the sample. However, this approach is also flawed, because the result of (3)
depends on the shape and location of the unit cell. (Indeed, the average
of P cell over all possible translational shifts is easily shown to vanish.) It
is only within an extreme CM model – where the periodic charge can be
decomposed with no ambiguity by choosing, as in Fig. 1, the cell boundary
to lie in an interstitial region of vanishing charge density – that P cell is well
defined. However, in many materials a CM model is completely inappropriate,
as discussed above.
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As a third approach, one might imagine defining P as the cell average of
a microscopic polarization P micro defined via

∇ · P micro(r) = −ρ(r) . (4)

However, the above equation does not uniquely define P micro(r), since any
divergence-free vector field, and in particular any constant vector, can be
added to P micro(r) without affecting the left-hand side of (4).

The conclusion to be drawn from the above discussion is that a knowledge
of the periodic electronic charge distribution in a polarized crystalline solid
cannot, even in principle, be used to construct a meaningful definition of
bulk polarization. This has been understood, and similar statements have
appeared in the literature, since at least 1974 [9]. However, this important
message has not received the wide appreciation it deserves, nor has it reached
the most popular textbooks [7, 8].

These conclusions may appear counterintuitive and disturbing, since one
reasonably expects that the macroscopic polarization in the bulk region of
a solid should be determined by what “happens” in the bulk. But this is
precisely the basis of a third, and finally rewarding, approach to the problem,
in which one focuses on the change in P samp that occurs during some process
such as the turning on of an external electric field. The change in internal
polarization ΔP that we seek will then be given by the change ΔP samp

of (2), provided that any charge that is pumped to the surface is not allowed
to be conducted away. (Thus, the sides of the sample must be insulating,
there must be no grounded electrodes, etc.) Actually, it is preferable simply
to focus on the charge flow in the interior of the sample during this process,
and write

ΔP =
∫

dt
1

Vcell

∫
cell

dr j(r, t) . (5)

This equation is the basis of the modern theory of polarization that will be
summarized in the remainder of this chapter. Again, it should be emphasized
that the definition (5) has nothing to do with the periodic static charge
distribution inside the bulk unit cell of the polarized solid.

So far, we have avoided any experimental consideration. How is P mea-
sured? Certainly no one relies on measuring cell dipoles, although induced
charge distributions of the kind shown in Fig. 2 are accessible to X-ray crys-
tallography. A FE material sustains, by definition, a spontaneous macroscopic
polarization, i.e., a nonvanishing value of P in the absence of any perturba-
tion. But once again, while the microscopic charge distribution inside the
unit cell of a FE crystal is experimentally accessible, actual measurements of
the spontaneous polarization are based on completely different ideas, more
closely related to (5). As we will see below in Sect. 2, this approach defines
the observable P in a way that very naturally parallels experiments, both for
spontaneous and induced polarization. We also see that the theory vindicates
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the concept that macroscopic polarization is an intensive quantity, insensitive
to surface effects, whose value is indeed determined by what “happens” in
the bulk of the solid and not at its surface.

2 Polarization as an Adiabatic Flow of Current

2.1 How is Induced Polarization Measured?

Most measurements of bulk macroscopic polarization P of materials do not
access its absolute value, but only its derivatives, which are expressed as
Cartesian tensors. For example, the permittivity

χαβ =
dPα

dEβ
(6)

appearing in (1) is defined as the derivative of polarization with respect to
field. Here, as throughout this chapter, Greek subscripts indicate Cartesian
coordinates. Similarly, the pyroelectric coefficient

Πα =
dPα

dT
, (7)

the piezoelectric tensor

γαβδ =
∂Pα

∂εβδ
(8)

of Sect. 4.3, and the dimensionless Born (or “dynamical” or “infrared”) charge

Z∗
s,αβ =

Ω

e

∂Pα

∂us,β
(9)

of Sect. 4.2, are defined in terms of derivatives with respect to temperature T ,
strain εβδ, and displacement us of sublattice s, respectively. Here, e > 0 is
the charge quantum, and from now on we use Ω to denote the primitive-
cell volume Vcell. (In the above formulas, derivatives are to be taken at fixed
electric field and fixed strain when these variables are not explicitly involved.)

We start by illustrating one such case, namely, piezoelectricity, in Fig. 3.
The situation depicted in (a) is the one where (2) applies. Supposing that P
is zero in the unstrained state (e.g., by symmetry), then the piezoelectric
constant is simply proportional to the value of P in the final state. The
disturbing feature is that piezoelectricity appears as a surface effect, and
indeed the debate whether piezoelectricity is a bulk or a surface effect lasted
in the literature until rather recently [10–16]. The modern theory parallels the
situation depicted in (b) and provides further evidence that piezoelectricity
is a bulk effect, if any was needed. While the crystal is strained, a transient
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Fig. 3. Two possible realizations of the piezoelectric effect in a crystal strained
along a piezoelectric axis. In (a) the crystal is not shorted, and induced charges
pile up at its surfaces. Macroscopic polarization may be defined via (2), but the
surface charges are an essential contribution to the integral. In (b) the crystal
is inserted into a shorted capacitor; the surface charges are then removed by the
electrodes, and the induced polarization is measured by the current flowing through
the shorting wire

electrical current flows through the sample, and this is precisely the quantity
being measured; the polarization of the final state is not obtained from a
measurement performed on the final state only. In fact, the essential feature
of (b) is its time dependence, although slow enough to ensure adiabaticity.
The fundamental equation

dP (t)
dt

= j(t) , (10)

where j is the macroscopic (i.e., cell-averaged) current density, implies

ΔP = P (Δt) − P (0) =
∫ Δt

0

dt j(t) . (11)

Notice that, in the adiabatic limit, j goes to zero and Δt goes to infinity,
while the integral in (11) stays finite. We also emphasize that currents are
much easier to measure than dipoles or charges, and therefore (b), much more
than (a), is representative of actual piezoelectric measurements.

At this point we return to the case of permittivity, i.e., polarization in-
duced by an electric field, previously discussed in Sect. 1.1. It is expedient
to examine Figs. 1 and 2 in a time-dependent way by imagining that the
perturbing EEE field is adiabatically switched on. There is then a transient
macroscopic current flowing through the crystal cell, whose time-integrated
value provides the induced macroscopic polarization, according to (11). This
is true for both the CM case of Fig. 1 and the non-CM case of Fig. 2. The
important difference is that in the former case the current displaces charge
within each individual anion but vanishes on the cell boundary, while in the
latter case the current flows throughout the interior of the crystal.

Using the examples of piezoelectricity and of permittivity, we have shown
that the induced macroscopic polarization in condensed matter can be defined
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and understood in terms of adiabatic flows of currents within the material.
From this viewpoint, it becomes very clear how the value of P is determined
by what happens in the bulk of the solid, and why it is insensitive to surface
effects.

2.2 How is Ferroelectric Polarization Measured?

FE materials are insulating solids characterized by a switchable macroscopic
polarization P . At equilibrium, a FE material displays a broken-symmetry,
noncentrosymmetric structure, so that a generic vector property is not re-
quired to vanish by symmetry. The most important vector property is in-
deed P , and its equilibrium value is known as the spontaneous polarization.

However, the value of P is never measured directly as an equilibrium prop-
erty; instead, all practical measurements exploit the switchability of P . In
most crystalline FEs, the different structures are symmetry-equivalent; that
is, the allowed values of P are equal in modulus and point along equivalent
(enantiomorphous) symmetry directions. In a typical experiment, application
of a sufficiently strong electric field switches the polarization from P to −P ,
so that one speaks of polarization reversal.

The quantity directly measured in a polarization-reversal experiment is
the difference in polarization between the two enantiomorphous structures;
making use of symmetry, one can then equate this difference to twice the
spontaneous polarization. This pragmatic working definition of spontaneous
polarization has, as a practical matter, been adopted by the experimental
community since the early days of the field. However, it was generally con-
sidered that this was done only as an expedient, because direct access to the
“polarization itself” was difficult to obtain experimentally. Instead, with the
development of modern electronic-structure methods and the application of
these methods to FE materials, it became evident that the previous “text-
book definitions” [7, 8] of P were also unworkable from the theoretical point
of view. It was found that such attempts to define P as a single-valued equi-
librium property of the crystal in a given broken-symmetry state, in the spirit
of (3), were doomed to failure because they could not be implemented in an
unambiguous way.

In response to this impasse, a new theoretical viewpoint emerged in the
early 1990s and was instrumental in the development of a successful micro-
scopic theory [17–19]. As we shall see, this modern theory of polarization
actually elevates the old pragmatic viewpoint to the status of a postulate.
Rather than focusing on P as an equilibrium property of the crystal in a
given state, one focuses on differences in polarization between two different
states [17]. From the theoretical viewpoint, this represents a genuine change
of paradigm, albeit one that is actually harmonious with the old experimental
pragmatism.

We illustrate a polarization-reversal experiment by considering the case
of the perovskite oxide PbTiO3, whose equilibrium structure at zero temper-
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Fig. 4. Tetragonal structure of PbTiO3: solid, shaded, and empty circles represent
Pb, Ti, and O atoms, respectively. The arrows indicate the actual magnitude of the
atomic displacements, where the origin has been kept at the Pb site (the Ti dis-
placements are barely visible). Two enantiomorphous structures, with polarization
along [001], are shown here. Application of a large enough electric field (coercive
field) switches between the two and reverses the polarization

Fig. 5. A typical hysteresis loop; the magnitude of the
spontaneous polarization is also shown (vertical dashed
segment). Notice that spontaneous polarization is a
zero-field property

ature is tetragonal. There are six enantiomorphous broken-symmetry struc-
tures; two of them, having opposite nuclear displacements and opposite values
of P , are shown in Fig. 4.

A typical measurement of the spontaneous polarization, performed
through polarization reversal, is schematically shown in Fig. 5. The hysteresis
cycle is in fact the primary experimental output. The transition between the
two enantiomorphous FE structures A and B of Fig. 4 is driven by an ap-
plied electric field; the experimental setup typically measures the integrated
macroscopic current flowing through the sample, as in (11). One half of the
difference P B − P A defines the magnitude P s of the spontaneous polariza-
tion in the vertical direction. From Fig. 5, it is clear that P s can also be
defined as the polarization difference ΔP between the broken-symmetry B
structure and the centrosymmetric structure (where the displacements are
set to zero). Notice that, while a field is needed to induce the switching in
the actual experiment, ideally one could evaluate ΔP along the vertical axis
in Fig. 5, where the macroscopic field is identically zero. We stress that the
experiment measures neither P A nor P B, but only their difference. It is only
an additional symmetry argument that allows one to infer the value of each
of them from the actual experimental data.
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2.3 Basic Prescriptions for a Theory of Polarization

For both induced and spontaneous polarization, we have emphasized the
role of adiabatic currents in order to arrive at a microscopic theory of P ,
which by construction must be an intensive bulk property, insensitive to the
boundaries. The root of this theory is in (11), whose form we simplify by
introducing a parameter λ having the meaning of a dimensionless adiabatic
time: λ varies continuously from zero (corresponding to the initial system)
to 1 (corresponding to the final system). Then we can write (11) as

ΔP =
∫ 1

0

dλ
dP

dλ
. (12)

In general, “initial” and “final” refer to the state of the system before and
after the application of some slow sublattice displacements, strains, electric
fields, etc. The key feature exploited here is that dP /dλ is a well-defined bulk
vector property. We notice, however, that an important condition for (12) to
hold is that the system remain insulating for all intermediate values of λ,
since the transient current is otherwise not uniquely defined. Note that for
access to the response properties of (6)–(9), no integration is needed; the
physical quantity of interest coincides by definition with dP /dλ evaluated
at an appropriate λ.

In order to focus the discussion onto the spontaneous polarization of a
FE, we now let λ scale the sublattice displacements (the lengths of the arrows
in Fig. 4) leading from a centrosymmetric reference structure (λ = 0) to the
spontaneously polarized structure (λ = 1). Then the spontaneous polari-
zation may be written [17]

P eff =
∫ 1

0

dλ
dP

dλ
(λ = 0 : centrosymmetric reference) . (13)

For later reference, note that this is the “effective” and not the “formal”
definition of polarization as given later in (20) and discussed in the later
parts of Sect. 3.

The current-carrying particles are electrons and nuclei; while the quantum
nature of the former is essential, the latter can be safely dealt with as classical
point charges, whose current contributions to (11) and to (12) are trivial. We
focus then mostly on the electronic term in the currents and in P , although
it has to be kept in mind that the overall charge neutrality of the condensed
system is essential. Furthermore, from now on we limit ourselves to a zero-
temperature framework, thus ruling out the phenomenon of pyroelectricity.

We refer, once more, to Fig. 2, where the quantum nature of the electrons
is fully accounted for. As explained above, in order to obtain P via (11), one
needs the adiabatic electronic current that flows through the crystal while the
perturbation is switched on. Within a quantum-mechanical description of the
electronic system, currents are closely related to the phase of the wavefunction
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(for instance, if the wavefunction is real, the current vanishes everywhere).
But only the modulus of the wavefunction has been used in drawing the
charge distribution of Fig. 2; any phase information has been obliterated,
so that the value of P cannot be retrieved. Interestingly, this argument is
in agreement with the general concept, strongly emphasized above, that the
periodic polarization charge inside the material has nothing to do with the
value of macroscopic polarization.

Next, it is expedient to discuss a little more thoroughly the role of the elec-
tric field EEE . A direct treatment of a finite electric field is subtle, because the
periodicity of the crystal Hamiltonian, on which the Bloch theorem depends,
is absent unless EEE vanishes (see Sect. 5.1). However, while EEE is by definition
the source inducing P in the case of permittivity in (6), a source other than
the electric field is involved in the cases of pyroelectricity (7), piezoelectric-
ity (8), dynamical effective charges (9), and spontaneous polarization (13).
While it is sometimes appropriate to take these latter derivatives under elec-
trical boundary conditions other than those of a vanishing field, we shall
restrict ourselves here to the most convenient and fundamental definitions in
which the field EEE is set to zero. For example, piezoelectricity, when measured
as in Fig. 3b, is clearly a zero-field property, since the sample is shorted at
all times. Spontaneous polarization, when measured as in Fig. 5, is obviously
a zero-field property as well. Born effective charges, which will be addressed
below, are also defined as zero-field tensors. Then, as an example of two dif-
ferent choices of boundary conditions to address the same phenomenon, we
may consider again the case of piezoelectricity, Fig. 3. While in Fig. 3b the
field is zero, in Fig. 3a a nonvanishing (“depolarizing”) field is clearly pres-
ent inside the material. The two piezoelectric tensors, phenomenologically
defined in these two different ways, are not equal but are related in a simple
way (in fact, they are proportional via the dielectric tensor).

Thus, it is possible to access many of the interesting physical properties,
including piezoelectricity, lattice dynamics, and ferroelectricity, with calcula-
tions performed at zero field. We will restrict ourselves to this case for most
of this chapter. As for the permittivity, it is theoretically accessible by means
of either the linear-response theory (see [20] for a thorough review), or via
an extension of the Berry-phase theory to finite electric field that will be
described briefly in Sect. 5.1.

3 Formal Description of the Berry-Phase Theory

In this section, we shall give an introduction to the modern theory of po-
larization that was developed in the 1990s. Following important preliminary
developments of Resta [17], the principal development of the theory was in-
troduced by King-Smith and Vanderbilt [18] and soon afterwards reviewed
by Resta [19]. This theory is sometimes known as the “Berry-phase theory of



42 Raffaele Resta and David Vanderbilt

polarization” because the polarization is expressed in the form of a certain
quantum phase known as a Berry phase [21, 22].

In order to deal with macroscopic systems, both crystalline and disor-
dered, it is almost mandatory in condensed-matter theory to assume periodic
(Born–von Kármán) boundary conditions [7, 8]. This amounts to considering
the system in a finite box that is periodically repeated, in a ring-like fashion,
in all three Cartesian directions. Eventually, the limit of an infinitely large
box is taken. For practical purposes, the thermodynamic limit is approached
when the box size is much larger than a typical atomic dimension. Among
other features, a system of this kind has no surface and all of its properties
are by construction “bulk” ones. When the system under consideration is a
many-electron system, the periodic boundary conditions amount to requir-
ing that the wavefunction and the Hamiltonian be periodic over the box. As
indicated previously, our discussion will be restricted to the case of vanishing
electric field unless otherwise stated.

We give below only a brief sketch of the derivation of the central formulas
of the theory; interested readers are referred to [18, 19, 23] for details.

3.1 Formulation in Continuous k-Space

If we adopt for the many-electron system a mean-field treatment, such as the
Kohn–Sham one [5], the self-consistent one-body potential is periodic over the
Born–von Kármán box, provided the electric field EEE vanishes, for any value
of the parameter λ. Furthermore, if we consider a crystalline system, the self-
consistent potential also has the lattice periodicity. The eigenfunctions are
of the Bloch form ψnk(r) = eik · r unk(r), where u is lattice-periodical, and
obey the Schrödinger equation H|ψnk〉 = Enk |ψnk〉, where H = p2/2m + V .
Equivalently, the eigenvalue problem can be written as Hk|unk〉 = Enk |unk〉,
where

Hk =
(p + �k)2

2m
+ V . (14)

All of these quantities depend implicitly on a parameter λ that changes slowly
in time, such that the wavefunction acquires, from elementary adiabatic per-
turbation theory, a first-order correction

|δψnk〉 = −i� λ̇
∑
m �=n

〈ψmk|∂λψnk〉
Enk − Emk

|ψmk〉 , (15)
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where λ̇ = dλ/dt and ∂λ is the derivative with respect to the parameter λ.
The corresponding first-order current arising from the entire band n is then1

jn =
dP n

dt
=

i�eλ̇

(2π)3m

∑
m �=n

∫
dk

〈ψnk|p|ψmk〉〈ψmk|∂λψnk〉
Enk − Emk

+ c.c. , (16)

where “c.c.” denotes the complex conjugate. Time t can be eliminated by
removing λ̇ from the right-hand side and replacing dP /dt → dP /dλ on
the left-hand side above. Then, making use of ordinary perturbation theory
applied to the dependence of Hk in (14) upon k, one obtains, after some
manipulation,

dP n

dλ
=

ie
(2π)3

∫
dk 〈∇kunk|∂λunk〉 + c.c. . (17)

It is noteworthy that the sum over “unoccupied” states m has disappeared
from this formula, corresponding to our intuition that the polarization is a
ground-state property. Summing now over the occupied states, and inserting
in (12), we get the spontaneous polarization of a FE. The result, after an
integration with respect to λ, is that the effective polarization (13) takes the
form

P eff = ΔP ion + [P el(1) − P el(0) ] , (18)

where the nuclear contribution ΔP ion has been restored, and

P el(λ) =
e

(2π)3
�

∑
n

∫
dk 〈unk|∇k|unk〉 . (19)

Here, the sum is over the occupied states, and |unk〉 are understood to be
implicit functions of λ. In the case that the adiabatic path takes a FE crystal
from its centrosymmetric reference state to its equilibrium polarized state,
P eff of (18) is just exactly the spontaneous polarization.

Equation (19) is the central result of the modern theory of polariza-
tion. Those familiar with Berry-phase theory [21, 22] will recognize A(k) =
i〈unk|∇k|unk〉 as a “Berry connection” or “gauge potential”; its integral over
a closed manifold (here the Brillouin zone) is known as a “Berry phase”. It is
remarkable that the result (19) is independent of the path traversed through
parameter space (and of the rate of traversal, as long as it is adiabatically
slow), so that the result depends only on the endpoints. Implicit in the anal-
ysis is that the system must remain insulating everywhere along the path, as
otherwise the adiabatic condition fails.
1 In this and subsequent formulas, we assume that n is really a composite index for

band and spin. Alternatively, factors of two may be inserted into the equations
to account for spin degeneracy.
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To obtain the total polarization, the ionic contribution must be added
to (19). The total polarization is then P = P el + P ion or

P =
e

(2π)3
�

∑
n

∫
dk 〈unk|∇k|unk〉 +

e

Ω

∑
s

Z ion
s rs , (20)

where the first term is (19) and the second is P ion, the contribution arising
from positive point charges eZ ion

s located at atomic positions rs. In principle,
the band index n should run over all bands, including those made from core
states, and Z ion should be the bare nuclear charge. However, in the frozen-
core approximation that underlies pseudopotential theory, we let n run over
valence bands only, and Z ion is the net positive charge of the nucleus plus
core. We adopt the latter interpretation here.

We refer to the polarization of (20) as the “formal polarization” to distin-
guish it from the “effective polarization” of (13) or (18). The two definitions
coincide only if the formal polarization vanishes for the centrosymmetric ref-
erence structure used to define P eff , which, as we shall see in Sect. 3.4, need
not be the case.

3.2 Formulation in Discrete k-Space

In practical numerical calculations, equations such as (16), (17), and (19) are
summed over a discrete mesh of k-points spanning the Brillouin zone. Since
the ∇k operator is a derivative in k-space, its finite-difference representation
will involve couplings between neighboring points in k-space.

For pedagogic purposes, we illustrate this by starting from the one-di-
mensional version of (19), namely, Pn = (e/2π)ϕn, where

ϕn = �
∫

dk 〈unk|∂k|unk〉 , (21)

and note that this can be discretized as

ϕn = � ln
M−1∏
j=0

〈un,kj
|un,kj+1〉 , (22)

where kj = 2πj/Ma is the jth k-point in the Brillouin zone. This follows by
inserting the expansion un,k+dk = unk + dk (∂kunk) + O(dk2) into (21) and
keeping the leading term.

In (22), it is understood that the wavefunctions at the boundary points
of the Brillouin zone are related by ψn,0 = ψn,2π/a, so that

un,k0(x) = e2πix/a un,kM
(x) (23)

and there are only M independent states un,k0 to un,kM−1 . Thus, it is natural
to regard the Brillouin zone as a closed space (in 1D, a loop) as illustrated in
Fig. 6.
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Fig. 6. Illustration showing how the Brillouin zone in one dimension (left) can
be mapped onto a circle (right), in view of the fact that wavevectors k = 0 and
k = 2π/a label the same states

Equation (22) makes it easy to see why this quantity is called a Berry
“phase”. We are instructed to compute the global product of wavefunctions

. . . 〈uk1 |uk2〉〈uk2 |uk3〉〈uk3 |uk4〉 . . . (24)

across the Brillouin zone, which in general is a complex number; then the
operation “� ln” takes the phase of this number. Note that this global phase
is actually insensitive to a change of the phase of any one wavefunction uk,
since each uk appears once in a bra and once in a ket. We can thus view the
“Berry phase” ϕn, giving the contribution to the polarization arising from
band n, as a global phase property of the manifold of occupied one-electron
states.

In three dimensions (3D), the Brillouin zone can be regarded as a closed
3-torus obtained by identifying boundary points ψnk = ψn,k+Gj

, where Gj is
a primitive reciprocal lattice vector. The Berry phase for band n in direction j
is ϕn,j = (Ω/e)Gj · P n, where P n is the contribution to (19) from band n,
so that

ϕn,j = Ω−1
BZ �

∫
BZ

d3
k 〈unk|Gj ·∇k|unk〉 . (25)

We then have

P n =
1
2π

e

Ω

∑
j

ϕn,j Rj , (26)

where Rj is the real-space primitive translation corresponding to Gj . To
compute the ϕn,j for a given direction j, the sampling of the Brillouin zone is
arranged as in Fig. 7, where k‖ is the direction along Gj and k⊥ refers to the
2D space of wavevectors spanning the other two primitive reciprocal lattice
vectors. For a given k⊥, the Berry phase ϕn,j(k⊥) is computed along the
string of M k-points extending along k‖ as in (22), and finally a conventional
average over the k⊥ is taken:

ϕn,j =
1

Nk⊥

∑
k⊥

ϕn(k⊥) . (27)

Note that a subtlety arises in regard to the “choice of branch” when taking
this average, as discussed in the next subsection. Moreover, in 3D crystals,
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Fig. 7. Arrangement of Brillouin zone
for computation of component of P
along k‖ direction

it may happen that some groups of bands must be treated using a many-
band generalization of (22) due to degeneracy at high-symmetry points in
the Brillouin zone; see [18, 19] for details.

The computation of P according to (26) is now a standard option
in several popular electronic-structure codes (abinit

2, crystal
3, pwscf

4,
siesta

5, and vasp
6).

3.3 The Quantum of Polarization

It is clear that (22), being a phase, is only well-defined mod 2π. We can see
this more explicitly in (21); let

|ũnk〉 = e−iβ(k) |unk〉 (28)

be a new set of Bloch eigenstates differing only in the choice of phase as a
function of k. Here β(k) is real and obeys β(2π/a) − β(0) = 2πm, where m

is an integer, in order that ψ̃n,0 = ψ̃n,2π/a. Then inserting into (22) we find
that

ϕ̃n = ϕn +
∫ 2π/a

0

dk

(
dβ

dk

)
dk = ϕn + 2πm . (29)

Thus, ϕn is really only well-defined “mod 2π”.
In view of this uncertainty, care must be taken in the 3D case when

averaging ϕn(k⊥) over the 2D Brillouin zone of k⊥ space: the choice of branch
cut must be made in such a way that ϕn(k⊥) remains continuous in k⊥.
In practice, a conventional mesh sampling is used in the k⊥ space, and the
average is computed as in (27). Consider, for example, Fig. 7, where Nk⊥ = 4.
If the branch cut is chosen independently for each k⊥ so as to map ϕn(k⊥)
to the interval [−π, π], and if the four values were found to be 0.75π, 0.85π,
0.95π, and −0.95π, then the last value must be remapped to become 1.05π

2 http://www.abinit.org/
3 http://www.crystal.unito.it/
4 http://www.pwscf.org
5 http://www.uam.es/departamentos/ciencias/fismateriac/siesta
6 http://cms.mpi.univie.ac.at/vasp/
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before the average is taken in (27). That is, the correct average is 0.90π,
or equivalently −1.10π, but not 0.40π as would be obtained by taking the
average blindly.

In other words, care must be taken to make a consistent choice of phases
on the right-hand side of (27). However, it is still permissible to shift all of
the Nk⊥ phases by a common amount 2πmj . Thus, each ϕn,j in (26) is only
well-defined mod 2π, leading to the conclusion that P n is only well-defined
mod eR/Ω, where R =

∑
j mjRj is a lattice vector. The same conclusion

results from generalizing the argument of (28) and (29) to 3D, showing that
a phase twist of the form |ũnk〉 = exp[−iβ(k)] |unk〉 results in

P̃ n = P n +
eR

Ω
, (30)

where R is a lattice vector.
These arguments are for a single band, but the same obviously applies

to the sum over all occupied bands. We thus arrive at a central result of
the modern theory of polarization: the formal polarization, defined via (20)
or calculated through (26), is only well-defined mod eR/Ω, where R is any
lattice vector and Ω is the primitive-cell volume.

At first sight the presence of this uncertainty modulo the quantum eR/Ω
may be surprising, but in retrospect it should have been expected. Indeed, the
ionic contribution given by the second term of (20) is subject to precisely the
same uncertainty, arising from the arbitrariness of the nuclear location rs

modulo a lattice vector R. The choice of one particular value of P from
among the lattice of values related to each other by addition of eR/Ω will
be referred to as the “choice of branch”.

Summarizing our results so far, we find that the formal polarization P ,
defined by (20), is only well-defined mod eR/Ω, where R is any lattice vec-
tor. Moreover, we have found that the change in polarization ΔP along an
adiabatic path, as defined by (12), is connected with this formal polarization
by the relation

ΔP :=
(
P λ=1 − P λ=0

)
mod

eR

Ω
. (31)

This central formula, embodying the main content of the modern theory of
polarization, requires careful explanation. For a given adiabatic path, the
change in polarization appearing on the left-hand side of (31), and defined
by (12), is given by a single-valued vector quantity that is perfectly well
defined and has no “modulus” uncertainty. On the right-hand side, P λ=0

and P λ=1 are, respectively, the formal polarization of (20) evaluated at the
start and end of the path. The symbol “:=” has been introduced to indicate
that the value on the left-hand side is equal to one of the values on the right-
hand side. Thus, the precise meaning of (31) is that the actual integrated
adiabatic current flow ΔP is equal to (P λ=1 − P λ=0) + eR/Ω for some
lattice vector R.
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Fig. 8. Polarization as a lattice-valued quantity, illustrated for a 2D square-lattice
system. Here, (a) and (b) illustrate the two possible states of polarization consistent
with full square-lattice symmetry, while (c) illustrates a possible change in polar-
ization induced by some symmetry-lowering change of the Hamiltonian. In (c), the
arrows show the “effective polarization” as defined in (13)

It follows that (31) cannot be used to determine ΔP completely; it only
determines ΔP within the same uncertainty mod eR/Ω that applies to P λ.
Fortunately, the typical magnitude of P eff , and of polarization differences in
general, is small compared to this “quantum”. For cubic perovskites, a � 4 Å,
so that the effective quantum for spin-paired systems is 2e/a2 � 2.0C/m2.
In comparison, the spontaneous polarization of perovskite ferroelectrics is
typically in the range of about 0.3 to 0.6C/m2, significantly less than this
quantum. Thus, this uncertainty mod eR/Ω is rarely a serious concern in
practice. If there is doubt about the correct choice of branch for a given path,
this doubt can usually be resolved promptly by computing the polarization
at several intermediate points along the path; as long as ΔP is small for
each step along the path, the correct interpretation of the evolution of the
polarization will be clear.

3.4 Formal Polarization as a Multivalued Vector Quantity

A useful way to think about the presence of this “modulus” is to regard the
formal polarization as a multivalued vector quantity, rather than a conven-
tional single-valued one. That is, the question “What is P ?” is answered not
by giving a single vector, but a lattice of vector values related by translations
eR/Ω. Here, we explain how this viewpoint contributes to an understanding
of the role of symmetry and provides an alternative perspective on the central
result (31) of the previous subsection.

Let us begin with symmetry considerations, where we find some surprising
results. Consider, for example, KNbO3 in its ideal cubic structure. Because of
the cubic symmetry, one might expect that P as calculated from (20) would
vanish; or more precisely, given the uncertainty expressed by (30), that it
would take on a lattice of values (m1,m2,m3)e/a2 that includes the zero
vector (mj are integers). This expected situation is sketched (in simplified
2D form) in Fig. 8a.
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Table 1. Atomic positions τ and nominal ionic charges Z for KNbO3 in its cen-
trosymmetric cubic structure with lattice constant a

Atom τx τy τz Z ion

K 0 0 0 +1
Nb a/2 a/2 a/2 +5
O1 0 a/2 a/2 −2
O2 a/2 0 a/2 −2
O3 a/2 a/2 0 −2

However, when the result is actually calculated from (20) using first-
principles electronic-structure methods, this is not what one finds. Instead,
one finds that

P =
(

m1 +
1
2
, m2 +

1
2
, m3 +

1
2

)
e

a2
(integer mj) , (32)

which is indeed a multivalued object, but corresponding to the situation
sketched in Fig. 8b, not Fig. 8a!

While this result emerges above from a fully quantum-mechanical calcula-
tion, it is not essentially a quantum-mechanical result. Indeed, it could have
been anticipated based on purely classical arguments as applied to an ideal
ionic model of the KNbO3 crystal. In such a picture, the formal polarization
is written as

P =
e

Ω

∑
s

Z ion
s τ s , (33)

where τ s is the location, and Z ion
s is the nominal (integer) ionic charge,

of ion s. Evaluating (33) using the values given in Table 1 yields P =
( 1

2 ,
1
2 ,

1
2 )e/a2. However, each vector τ s is arbitrary modulo a lattice vector.

For example, it is equally valid to replace τK = (0, 0, 0) by τK = (a, a, a),
yielding P = ( 3

2 ,
3
2 ,

3
2 )e/a2, which is again consistent with (32). Similarly,

since each Z ion
s is an integer,7 the shift of any τ s by a lattice vector ΔR

simply generates a shift to one of the other vectors on the right-hand side
of (32). This heuristic ionic model then leads to the same conclusion expressed
in (32), i.e., that Fig. 8b and not Fig. 8a is appropriate for the case of cubic
KNbO3.

This may appear to be a startling result. We are saying that the polar-
ization as defined by (20) does not necessarily vanish for a centrosymmetric
structure (or more precisely, that the lattice of values corresponding to P does
not contain the zero vector). Is this in conflict with the usual observation that
7 For precisely this reason, it is necessary to use an ionic model with formal integer

ionic charges for arguments of this kind. This requirement can be justified using
arguments based on a Wannier representation.
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a vector-valued physical quantity must vanish in a centrosymmetric crystal?
No, because this theorem applies only to a normal (that is, single-valued)
vector quantity. Instead, the formal polarization is a multivalued vector quan-
tity. The constraint of centrosymmetry requires that the polarization must
get mapped onto itself by the inversion operation. This would be impossible
for a nonzero single-valued vector, but it is possible for a lattice of vector
values, as illustrated in Fig. 8b. Indeed, the lattice of values shown in Fig. 8b
is invariant with respect to all the operations of the cubic symmetry group,
as are those of Fig. 8a. Actually, for a simple cubic structure with full cubic
symmetry, these are the only two possibilities consistent with symmetry. It is
not possible to know, from symmetry alone, which of these representations of
the formal polarization is correct. A heuristic argument of the kind leading
to (32) can be used to guess the correct result, but it should be confirmed
by actual calculation. The heuristic arguments suggest, and first-principles
calculations confirm, that the formal polarizations of BaTiO3 and KNbO3

are not equal, even though they have identical symmetry; they correspond to
Fig. 8a and Fig. 8b, respectively!

How should we understand the spontaneous polarization P s of ferroelec-
trically distorted KNbO3 in the present context? Recall that P s is defined as
the effective polarization P eff of (13) for the case of an adiabatic path carry-
ing KNbO3 from its unstable cubic to its relaxed FE structure. Suppose that
one were to find that this adiabatic evolution carried the polarization along
the path indicated by the arrows in Fig. 8c. In this case, the effective polar-
ization P eff of (13) is definitely known to correspond to the vector sketched
repeatedly in Fig. 8c. However, when one evaluates ΔP from (31), using only
a knowledge of the endpoints of the path, the knowledge of the correct branch
is lost. For example, one could not be certain that the actual ΔP associated
with this path is the one shown in Fig. 8c, rather than one pointing from an
open circle in one cell to a closed one in a neighboring cell (and differing by
the “modulus” eR/Ω). This is, of course, just the same uncertainty attached
to (31) and discussed in detail in the previous subsection, now expressed from
a more graphical point of view.

3.5 Mapping onto Wannier Centers

Another way of thinking about the meaning of the Berry-phase polarization,
and of the indeterminacy of the polarization modulo the quantum eR/Ω, is
in terms of Wannier functions. The Wannier functions are localized functions
wnR(r), labeled by band n and unit cell R, that span the same Hilbert
subspace as do the Bloch states ψnk. In fact, they are connected by a Fourier-
transform-like expression

|wnR〉 =
Ω

(2π)3

∫
dk eik ·R |ψnk〉 , (34)
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Fig. 9. Illustrative tetragonal crystal (cell dimensions a× a× c) having one mono-
valent ion at the cell corner (origin) and one occupied valence band. (a) The dis-
tributed quantum-mechanical charge distribution associated with the electron band,
represented as a contour plot. (b) The distributed electron distribution has been
replaced by a unit point charge −e located at the Wannier center rn, as given by
the Berry-phase theory

where the Bloch states are normalized to unity over the crystal cell. Once
we have the Wannier functions, we can locate the “Wannier centers” rnR =
〈wnR|r|wnR〉. It turns out that the location of the Wannier center is simply

rnR =
Ω

e
P n + R . (35)

That is, specifying the contribution of band n to the Berry-phase polariza-
tion is really just equivalent to specifying the location of the Wannier center
in the unit cell. Because the latter is indeterminate mod R, the former is
indeterminate mod eR/Ω.

Thus, the Berry-phase theory can be regarded as providing a mapping of
the distributed quantum-mechanical electronic charge density onto a lattice
of negative point charges of charge −e, as illustrated in Fig. 9. While the
CM picture obviously cannot be applied to the situation of Fig. 9a, because
the charge density vanishes nowhere in the unit cell, it can be applied to
the situation of Fig. 9b without problem. The only question is whether the
negative charge located at z = (1 − γ)c in this figure should be regarded
as “living” in the same unit cell as the positive nucleus at the origin or the
one at z = c; this uncertainty corresponds precisely to the “quantum of
polarization” eR/Ω for the case R = cẑ.

It therefore appears that, by adopting the Wannier-center mapping, the
CM viewpoint has been rescued. We are in fact decomposing the charge (nu-
clear and electronic) into localized contributions whose dipoles determine P .
However, one has to bear in mind that the phase of the Bloch orbitals is es-
sential to actually perform the Wannier transformation. Knowledge of their
modulus is not enough, while we stress once more that the modulus uniquely
determines the periodic polarization charge, such as the one shown in Fig. 9a.

Before leaving this discussion, it is amusing to consider the behavior of
the Wannier centers rn under a cyclic adiabatic evolution of the Hamiltonian.
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Fig. 10. Possible evolution of positions of Wannier centers (−), relative to the
lattice of ions (+), as the Hamiltonian evolves adiabatically around a closed loop.
Wannier functions must return to themselves, but can do so either (a) without, or
(b) with, a coherent shift by a lattice vector

That is, we want to integrate the net adiabatic current flow as the system is
taken around a closed loop in some multidimensional parameter space. (For
example, one atomic sublattice might be displaced by 0.1 Å first along +x̂,
then +ŷ, then −x̂, and then −ŷ.) Referring to (12) and (13), we have for this
case

ΔP cyc =
∮ 1

0

dλ
dP

dλ
(cyclic evolution: Hλ=0 = Hλ=1) . (36)

From (31), it follows that ΔP cyc is either exactly zero or else exactly eR/Ω
for some non-zero lattice vector R. The latter case corresponds to the “quan-
tized charge transport” (or “quantum pumping”) first discussed by Thou-
less [24].

Now suppose we follow the locations of the Wannier centers rn during
this adiabatic evolution. Since the initial and final points are the same, the
Wannier centers must return to their initial locations at the end of the cyclic
evolution. However, they can do so in two ways, as illustrated in Figs. 10a,b.
If each Wannier center returns to itself, then ΔP cyc is truly zero. However,
as illustrated in Fig. 10b, this need not be the case; it is only necessary that
each Wannier center return to one of its periodic images. If it does not return
to itself, a quantized charge transport occurs.8

4 Implications for Ferroelectrics

Most of the fundamental and technological interest in FE materials arises
from their polarization and related properties, including the dielectric and
piezoelectric responses. The rigorous formulation of the polarization has al-
lowed detailed quantitative investigation of these properties from first prin-
8 We emphasize that this discussion is highly theoretical. While such a situation

could occur in principle, it is not known to occur in practice in any real ferro-
electric material.
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ciples. In this section, we give an overview of the analysis of three key quan-
tities – the spontaneous polarization, the Born effective charges, and the
piezeoelectric response – and discuss case studies for specific perovskite ox-
ides, primarily the tetragonal phase of the FE perovskite oxide KNbO3.

4.1 Spontaneous Polarization

The experimental Ps values for the most common single-crystal FE per-
ovskites in their different crystalline phases have been known for several
decades. However, despite the fact that Ps is the very property characterizing
FE materials, there was no theoretical access to it until 1993. As discussed
above, the common-wisdom microscopic definition of what Ps was basically
incorrect. The modern theory of polarization provides the correct definition
of Ps, as well as the theoretical framework allowing one to compute it from
the occupied Bloch eigenstates of the self-consistent crystalline Hamiltonian.
As soon as King-Smith and Vanderbilt developed the theory [18] – as out-
lined in Sect. 3 – Resta et al. [25] implemented and applied it to compute
the spontaneous polarization of a prototypical perovskite oxide from first
principles.

The case study was KNbO3 in its tetragonal phase, in a frozen-nuclei
geometry taken from crystallographic data. The reciprocal cell is tetragonal:
the integral in (19) was computed according to Sect. 3.2 (see Fig. 7), using the
occupied Kohn–Sham orbitals [5]. The electronic phase so evaluated depends
on the choice of the origin in the crystalline cell, but translational invariance
is restored when the nuclear contribution is accounted for.

The computed phase turns out to be approximately π/3. This is large
enough that it is advisable to check whether the correct choice of branch has
been made for the multivalued function “� ln” in (22), in order to eliminate
the 2π ambiguity discussed in Sect. 3.3. This is done by repeating the calcu-
lation for smaller amplitudes of the FE distortion and making sure that the
phase is a continuous function of the amplitude, as discussed earlier at the
end of Sect. 3.3.

The first-principles calculation of [25] for tetragonal KNbO3 yielded a
value Ps = 0.35C/m2, to be compared to a best experimental value of
0.37C/m2. A similar level of agreement was later found for other perovskites
and using computational packages with different technical ingredients.

One aspect of the calculation deserves some comment. As stated above,
we have adopted a frozen-nuclei approach, which in principle is appropriate
for describing the polarization of the zero-temperature structure only. In the
calculation for KNbO3 discussed above, as well as in other calculations in
the literature, one addresses instead the spontaneous polarization of a finite-
temperature crystalline phase. In fact, the tetragonal phase of KNbO3 only
exists between 225 and 418 ◦C, while the equilibrium structure at zero tem-
perature is rhombohedral and not tetrahedral. Crystallographic data provide
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the time-averaged crystalline structure, while polarization-reversal experi-
ments provide the time-averaged spontaneous polarization. The question is
then whether the time-averaged polarization is equal, to a good approxima-
tion, to the polarization of the time-averaged structure, as the latter is in
fact the quantity that is actually computed. The answer to this question is
essentially “yes”, supported by the finding that the macroscopic polarization
is roughly linear, at the ±10–20 % level, in the amplitude of the structural
distortion. This essential linearity could not have been guessed from model
arguments, and in fact has only been discovered from the ab-initio calcula-
tions [25, 26].

4.2 Anomalous Dynamical Charges

The Born effective-charge tensors measure the coupling of a macroscopic
field EEE with relative sublattice displacements (zone-center phonons) in the
crystal; they also go under the name of dynamical charges or infrared charges.
Within an extreme rigid-ion model the Born charge coincides with the static
charge of the model ion (“nominal” value), while in a real material the
Born charges account for electronic polarization as well. Before the advent of
the modern theory of polarization in the 1990s, the relevance of dynamical
charges to the phenomenon of ferroelectricity had largely been overlooked.

There are two equivalent definitions of the Born tensor Z∗
s . 1. Z∗

s,αβ , as
defined in (9), measures the change in polarization P in the α direction
linearly induced by a sublattice displacement us in the β direction in zero
macroscopic electric field. (Other kinds of effective charge can be defined
using other electrical boundary conditions [27], but this choice of EEE = 0 is
the “Born charge” one.) 2. Alternatively, Z∗

s,αβ measures the force F linearly
induced in the α direction on the sth nucleus by a uniform macroscopic
electric field EEE in the β direction (at zero displacement):

Fs,α = −e
∑

β

Z∗
s,βα Eβ . (37)

Notice that, in low-symmetry situations, Z∗
s is not symmetric in its Carte-

sian indices. Since any rigid translation of the whole solid does not induce
macroscopic polarization, the Born effective-charge tensors obey

∑
s

Z∗
s,αβ = 0 , (38)

a result that is generally known as the “acoustic sum rule” [28].
The Berry-phase theory of polarization naturally leads to an evalua-

tion of the derivative in (9) as a finite difference, and this is the way
most Z∗

s calculations are performed for FE perovskites. However, expres-
sions (9) or (37) based on linear response approaches [20] can be used
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whenever an electronic-structure code implementing such an approach (e.g.,
http://www.abinit.org/, http://www.pwscf.org) is available.

The Born effective-charge tensors are a staple quantity in the theory of
lattice dynamics for polar crystals [29], and their experimental values have
long been known to a very good accuracy for simple materials such as binary
ionic crystals and simple semiconductors. As for FE materials, some exper-
imentally derived values for BaTiO3 were proposed long ago [30]. However,
the subject remained basically neglected until 1993, when [25] appeared. This
ab-initio calculation demonstrated that in FE perovskites the Born charges
are strongly “anomalous”, and that this anomaly has much to do with the
phenomenon of ferroelectricity. Since then, ab-initio investigations of the Z∗

s

have become a standard tool for the study of FE oxides, and have provided
invaluable insight into ferroelectric phenomena [4, 27, 31].

For most FE ABO3 perovskites the nominal static charges are either 1 or
2 for the A cation, either 5 or 4 for the B cation, and −2 for oxygen. On the
contrary, modern calculations have demonstrated that in these materials the
Born charges typically assume much larger values. We discuss this feature
using as a paradigmatic example the case of KNbO3, which was the first to
be investigated in 1993 [25]. The paraelectric prototype structure is cubic,
and the cations sit at cubic sites, thus warranting isotropic Z∗

s tensors. The
oxygens sit instead at noncubic sites so that Z∗

O has two independent com-
ponents: one (called O1) for displacements pointing towards the Nb ion, and
the other (called O2) for displacements in the orthogonal plane. The results
of [25] are that Z∗

s takes values of 0.8 for K, 9.1 for Nb, −6.6 for O1, and
−1.7 for O2. Both the Nb and O1 values are thus strongly anomalous, being
much larger (in modulus) than the corresponding nominal values.

Such a finding appears counterintuitive, since one would expect that the
extreme ionic picture provides an upper bound on the ionic charges. In partly
covalent oxides one would naively guess values smaller, and not larger, than
the nominal ones, for all ions. Instead, anomalous values for the transition
element and for O1 ions have been later confirmed by all subsequent calcula-
tions, using quite different technical ingredients and/or for other perovskite
oxides [27, 32, 33]. The physical origin of the giant dynamical charges is pre-
cisely the borderline ionic–covalent character of ABO3 oxides, specifically
owing to the hybridization of 2p oxygen orbitals with the 4d or 5d orbitals of
the B cation. A thorough discussion of this issue can be found in [4, 31].

4.3 Piezoelectric Properties

Piezoelectricity has been an intriguing problem for many years. Even the
formal proof that piezoelectricity is a well-defined bulk property – indepen-
dent of surface termination – is relatively recent (1972), and is due to R. M.
Martin. This proof was challenged, and the debate lasted for two decades [10–
16]. The piezoelectric tensor γ measures the coupling of a macroscopic field EEE
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with macroscopic strain. The root of the problems with understanding piezo-
electricity is in the fact that – within periodic Born–von Kármán boundary
conditions – strain is not a perturbing term in the Hamiltonian; instead, it
amounts to a change of boundary conditions.

As in the case of the Born effective charges, there are two equivalent
definitions of γ, which is a third-rank Cartesian tensor. 1. γδαβ measures the
polarization linearly induced in the δ direction by macroscopic strain εαβ at
zero field:

γδαβ =
∂Pδ

∂εαβ
. (39)

2. Alternatively, γδαβ measures the stress σαβ linearly induced by a macro-
scopic field in the δ direction at zero strain:

σαβ =
∑

δ

γδαβ Eδ . (40)

The first ab-initio calculation of piezoelectric constants appeared in
1989 [34]; therein, the III–V semiconductors were chosen as case studies.
This work exploited (40), linear-response theory [20], and the Nielsen–Martin
stress theorem [35–37]. Nowadays, most calculations of the piezoelectric ef-
fect in FE materials are based on the finite-difference approximation to (39),
in conjunction with a Berry-phase calculation. The first such calculation, for
PbTiO3, was performed in 1998 [38, 39]; other calculations for other ma-
terials, including some ordered models of FE alloys, were performed soon
afterwards [40, 41].

Macroscopic strain typically induces internal strain as well. That is, when
the cell parameters are varied, the internal coordinates relax to new equilib-
rium positions, in general not mandated by symmetry. This effect is char-
acterized by a set of material-dependent constants known as internal-strain
parameters. In principle, there is no need to deal with internal strain sepa-
rately; (39) is in fact exact, provided that the internal coordinates are contin-
ually relaxed to their equilibrium values as the strain is applied. However, it
is often more convenient to exploit linearity and to compute the piezoelectric
tensor γ as the sum of two separate terms. The first term is the “clamped-
nuclei” one, evaluated by applying a homogeneous macroscopic strain without
including internal strain (i.e., without allowing any internal coordinates to re-
lax). The second term accounts only for the change in polarization induced by
the internal strain, and can easily be evaluated – knowing the internal-strain
parameters and the Born charges – as the change in polarization associated
with induced displacements associated with polar zone-center phonons.

Whenever the crystal has a nonvanishing spontaneous polarization, the
definition of the piezoelectric response becomes more subtle. The simplest
and most natural definition, usually called the “proper” piezoelectric re-
sponse [42], is based on the current density flowing through the bulk of a
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sample in adiabatic response to a slow strain deformation, as in Fig. 3b. The
proper response corresponds in most circumstances to the actual experimen-
tal setup, and, furthermore, is the one having the most direct link to the
modern theory. In order to evaluate a proper piezoelectric coefficient as a
finite difference, it is enough to adopt a Berry-phase formulation in scaled
coordinates as in (26) and evaluate derivatives of the ϕn,j [19,42]. It is worth
emphasizing that the arbitrary quantum of polarization, Sect. 3.3, does not
give rise to any ambiguity in the proper piezoelectric response, since its strain
derivative is zero [42].

5 Further Theoretical Developments

In this section, we briefly introduce a few advanced topics associated with the
theory of polarization, providing references to the literature for those readers
who desire a fuller treatment.

5.1 Polarization in an Applied Electric Field

Up to this point, our treatment has been limited to the case of insulators in
a vanishing macroscopic electric field. Clearly there are many situations, in
which it is very desirable to treat the application of an electric field directly,
especially for FEs and for other types of dielectric materials. However, the
usual theory of electron states in crystals is based on Bloch’s theorem, which
requires that the crystal potential be periodic. This rules out the presence of
a macroscopic electric field EEE , since this would imply a change by eEEE · R of
the electron potential under a translation by a lattice vector R.

Indeed, the difficulties in treating the case of a finite electric field are quite
severe. Even a small field changes the qualitative nature of the energy eigen-
states drastically, and a theory based on such energy eigenstates is no longer
useful. Even more seriously, because the potential is unbounded from below,
there is no well-defined ground state of the electron system! The “state” that
one has in mind is one in which all “valence” states are occupied and all “con-
duction” states are empty. However, for an insulator of gap Eg in a field EEE , it
is always possible to lower the energy of the system by transferring electrons
from the valence band in one region to the conduction band in a region a
distance � Lt = Eg/E down-field. This “Zener tunneling” is analogous to
the autoionization that also occurs, in principle, for an atom or molecule in
a finite electric field.

Nevertheless, we expect that if we start with an insulating crystal in its
ground state and adiabatically apply a modest electric field, there should be
a reasonably well-defined “state” that we can solve for. Indeed, perturbative
treatments of the application of an electric field have long been known, and
are a standard feature of modern electronic structure theory (for a review,
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see [20]). In 1994, Nunes and Vanderbilt [43] proposed a Wannier-function-
based solution to the finite-field problem that, while successful in principle,
was not very useful in practice. Transforming back to Bloch functions, Nunes
and Gonze showed in 2001 [44] how the known perturbative treatments could
be obtained (and, in some cases, extended) by deriving them from a varia-
tional principle based on minimizing an energy functional F of the form

F = EKS({ψnk}) −EEE · P ({ψnk}) . (41)

Here, EKS({ψnk}) is the usual Kohn–Sham energy per unit volume expressed
as a function of all occupied Bloch functions, and similarly P ({ψnk}) is the
usual zero-field Berry-phase expression for the electronic polarization. This
equation is to be minimized with respect to all {ψnk} in the presence of a
given field EEE ; thus, the Bloch functions at minimum become functions of EEE ,
so that the first term in (41) also acquires an implicit EEE dependence.

Subsequently, Souza et al. [45] and Umari and Pasquarello [46] demon-
strated that (41) was suitable for use as an energy functional for a variational
approach to the finite-field problem as well. The justification for such a pro-
cedure is not obvious, in view of the fact that the occupied wavefunction
solutions {ψnk} are not eigenstates of the Hamiltonian. Instead, they can
be regarded as providing a representation of the one-particle density matrix,
which can be shown to remain periodic in the presence of a field [45, 47], or
by treating the system from a time-dependent framework [47] in which the
field is slowly turned on from zero.

Because the “state” of interest is, in principle, only a long-lived resonance
in the presence of a field, there should be some sense in which the above
theory fails to produce a perfectly well-defined solution. This is so, and it
comes about in an unfamiliar way: the variational solution breaks down if
the k-point sampling is taken to be too fine. Indeed, if Δk 	 1/Lt, where
Lt = Eg/E is the Zener tunneling length mentioned above, the variational
procedure fails [45, 46]. The theory is thus limited to modest fields (more
precisely, to EEE 	 Eg/a, where a is a lattice constant).

In any case, it is interesting to discover that the problem of computing P
in an electric field provides, in a sense, the solution to the problem of comput-
ing any property of an insulator in a finite field: it is precisely the introduction
of the Berry-phase polarization into (41) that solves the problem.

5.2 Interface Theorem and the Definition of Bound Charge

It is well known from elementary electrostatics that the bound charge density
in the presence of a spatially varying polarization field is

ρb(r) = −∇ · P (r) , (42)

where ρb(r) and P (r) are macroscopic fields (i.e., coarse grained over a length
scale much larger than a lattice constant). As long as the polarization changes
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Fig. 11. Sketch of epitaxial interface between two different FE crystals, or between
FE domains of a single crystal. The difference in the interface-normal components
of P 1 and P 2 leads to an interface bound charge given by (43)

gradually over space, as in response to a gradual strain field or composition
gradient, there is no difficulty in associating P (r) with the Berry-phase po-
larization of Sect. 3.3 computed for a crystal whose global structure matches
the local structure at r. There is no difficulty with respect to the “choice
of branch” (see Sect. 3.3) since the gradual variation of P allows the choice
of branch to be followed from one region to another, and the bound charge
of (42) is clearly independent of branch.

The case of an interface between two FE materials, or of a FE domain wall
in a single FE material, is more interesting. Consider an epitaxial interface
between two FE materials, as shown in Fig. 11. One naively expects a relation
of the form σb = n̂ · (P 1 − P 2), where σb is the macroscopic bound surface
charge at the interface and n̂ is a unit vector normal to the interface. However,
in general the two materials may be quite dissimilar, so that a choice of branch
needs to be made for the Berry-phase expressions for P 1 and P 2 separately,
leading to an uncertainty in the definition of the bound interface charge σb.

Indeed, a careful analysis of situations of this type is given in [23], where
it is shown that the interface bound charge is given by

σb = n̂ · (P 1 − P 2) mod
e

Aint
(43)

under the following conditions: 1. the epitaxial match is perfect and disloca-
tion free, with a common 1×1 interface unit cell area Aint; and 2. material 1,
material 2, and the interface are all insulating, with a common gap. The in-
terface need not be as abrupt as illustrated in Fig. 11; some relaxations may
occur in the first few neighboring cells to the interface. It is only necessary
to identify P 1 and P 2 with the Berry-phase polarizations of the crystalline
structures far enough from the interface for these relaxations to have healed,
and to interpret σb as the macroscopic excess interface charge density inte-
grated over this interface region.
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Fig. 12. Sketch of density of states that could be associated with the epitaxial
interface of Fig. 11. Valence bands of materials 1 and 2 are hashed; conduction
bands are unfilled; and a band of interface states may either be (a) entirely empty;
(b) entirely filled; or (c) partially filled (i.e., metallic)

The appearance of the caveat “mod e/Aint” in (43) is remarkable, and
confirms that, at least in principle, there can be an uncertainty in the def-
inition of the interface bound charge. This can be understood in two ways.
First, the uncertainty of P 1 and P 2 mod eR/Ω leads to the uncertainty
(eR/Ω) · n̂ = e/Aint, as can be confirmed from simple geometry. Second, on
more physical grounds, we can expect such an uncertainty because of the
flexibility of the condition (2) stating that material 1, material 2, and the
interface must all be insulating with a common gap. Consider a situation like
that illustrated in Fig. 12, where there are m (counting spin) discrete inter-
face bands lying near the middle of a gap that is common to both materials 1
and 2. Panels (a) and (b) both show situations that satisfy the conditions (1)
and (2) of (43), but the interface charge clearly differs by precisely em/Aint

between these two situation. Panel (c) shows a situation that does not satisfy
the stated conditions, as the interface is metallic. In this case, the charge
counting may be done either with reference to the situation of Panel (a), in
which case one either says that a large free-electron charge density is pres-
ent on top of the bound charge defined by situation (a), or else that a large
free-hole charge density is present on top of the bound charge defined by
situation (b).

Similar considerations lead to a “surface theorem” [23] relating the macro-
scopic bound surface charge at a FE/vacuum interface to the surface-normal
component of the polarization of the underlying medium, mod e/Asurf .

In practice, the change in polarization (P 1 − P 2) between two FE ma-
terials is usually much smaller than the quantum, in which case there is a
“natural” choice of branch for the definition of the interface bound charge σint

in (43). However, for materials with large polarizations, such as certain Pb-
and Bi-based perovskites (see, e.g., [48]), the ambiguity in the definition of
interface bound charge may need to be considered with care.
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5.3 Many-Body and Noncrystalline Generalizations

The treatment given so far is based on the 1993 paper by King-Smith and
Vanderbilt [18] and assumes an independent-particle scheme, where polar-
ization is evaluated as a Berry phase of one-electron orbitals, typically the
Kohn–Sham ones [5], which in a crystalline material assume the Bloch form.
Shortly after the appearance of [18], Ortiz and Martin [49] provided the
many-body generalization of the theory, where polarization is expressed as a
Berry phase of the many-body wavefunction.

A subsequent development, by Resta [50], provides a unified treatment of
macroscopic polarization, dealing on the same footing with either indepen-
dent-electron or correlated systems, and with either crystalline or disordered
systems. This approach is based on a novel viewpoint, which goes under the
(apparently oxymoronic) name of “single-point Berry phase”. On practical
grounds, such a single-point Berry phase is universally adopted in order to
evaluate macroscopic polarization within first-principle simulations of disor-
dered systems.9

Here, we give a flavor of the approach, while we refer to the literature
for more complete accounts [50–52]. Let us consider, for the sake of sim-
plicity, a system of N one-dimensional spinless electrons. The many-body
ground wavefunction is then Ψ(x1, x2, . . . xj , . . . xN ), and all the electrons are
confined to a segment of length L. Eventually, we will be interested in the
thermodynamic limit, defined as the limit N → ∞ and L → ∞, while the
density N/L is kept constant. The wavefunction Ψ is Born–von Kàrmàn peri-
odic, with period L, over each electronic variable xj separately. Equivalently,
one can imagine the electrons to be confined in a circular rail of length L: the
coordinates xj are then proportional to the angles 2πxj/L, defined mod 2π.

The key quantity is the ground-state expectation value

zN = 〈Ψ |U |Ψ〉 =
∫ L

0

dx1 . . .

∫ L

0

dxN |Ψ(x1, . . . xN )|2U(x1, . . . xN ) , (44)

where the unitary operator U , called a “twist operator”, is defined as

U(x1, . . . xN ) = exp

⎛
⎝i

2π

L

N∑
j=1

xj

⎞
⎠ , (45)

and clearly is periodic with period L. The expectation value zN is a dimen-
sionless complex number, whose modulus is no larger than one. The electronic
contribution to the macroscopic polarization of the system can be expressed
in the very compact form [50, 52]:

Pel = − e

2π
lim

N→∞
� ln zN , (46)

9 http://www.cpmd.org/
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Notice that, for a one-dimensional system, the polarization has the dimen-
sions of a charge (dipole per unit length). The essential ingredient in (46) is
� ln zN , i.e., the phase of the complex number zN . This phase can be regarded
as a very peculiar kind of Berry phase.

So far, we have assumed neither independent electrons nor crystalline
order; (46) is in fact a very general definition of macroscopic polarization. In
the special case of a crystalline system of independent electrons, the many-
body wavefunction Ψ is a Slater determinant of single-particle orbitals. For
any finite N , (44) and (46) can then be shown to be equivalent to a discretized
Berry phase of the occupied bands, of the same kind as those addressed in
Sect. 3.2.

5.4 Polarization in Kohn–Sham Density-Functional Theory

Suppose we are given the ground-state interacting electron density n(r) of
an insulating crystal. From this, the Kohn–Sham theory [5] gives a unique
prescription for determining a noninteracting system, with an effective Kohn–
Sham potential, having the same ground-state electron density. The following
question then arises: If one computes the Berry-phase polarization from this
noninteracting Kohn–Sham system, does one arrive, in principle, at the cor-
rect many-body polarization?

As shown by Gonze et al. [53, 54], the answer to this question is that, in
general, one does not obtain the correct polarization.

There are three ways to approach this issue. First, one may restrict one’s
considerations to a strictly infinite crystalline system with a given cell shape
and with a uniform macroscopic electric field EEE [53,54]. One can then demon-
strate a generalized Hohenberg–Kohn theorem stating that a given periodic
density n(r) and macroscopic polarization P together uniquely determine a
periodic external potential Vper(r) and electric field EEE . Moreover, the cor-
responding Kohn–Sham construction involves finding an effective periodic
potential V KS

per (r) and effective electric field EEEKS that yield, for a noninteract-
ing system, the same n(r) and P . In this theory of Gonze et al. [53, 54], the
polarization is correct by construction, but at the expense of introducing a
correction EEEKS −EEE that they referred to as an “exchange-correlation electric
field”. The reader is directed to [53, 54] for details.

A second approach is to consider conventional Kohn–Sham theory in the
context of finite macroscopic sample geometries, surrounded by vacuum, and
having particular surfaces, interfaces, or FE domain configurations. An anal-
ysis of this type [55] again leads to the conclusion that the local polarization
obtained from exact Kohn–Sham theory is not, in general, the correct one.
In general, one finds that the longitudinal part of the polarization field P (r)
must be correct (since the corresponding charge density −∇ · P must be cor-
rect), but the transverse part of the polarization field need not be correct.

A third approach is suggested by (44). The wavefunction ΨKS of the non-
interacting Kohn–Sham system is a Slater determinant and is necessarily
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different from Ψ , despite sharing the same single-particle density. Since the
twist operator U is a genuine many-body operator, its expectation value over
ΨKS is in general different from the one over Ψ . The polarization (46), is
different as well.

5.5 Localization, Polarization, and Fluctuations

An insulator is distinguished from a metal by its vanishing dc conductivity
at low temperature. In contrast to what happens in metals, the electronic
charge in insulators (and quite generally nonmetals) cannot flow freely under
an applied dc field; instead it undergoes static polarization. As first pointed
out in 1964 by Kohn, this fact stems from a basic qualitative difference in the
organization of the electrons in their ground state [56]. The modern theory
of polarization has provided much insight into such different organization.

An insulator sustains a nontrivial, material-dependent, macroscopic po-
larization, which is nonvanishing whenever the Hamiltonian is noncentrosym-
metric. Instead, the polarization of a metallic sample is determined by the
Faraday-cage effect and therefore is not a well-defined property of the bulk
material. At the independent-electron level, the polarization of a crystalline
insulator can be expressed in terms of Wannier functions, as discussed in
Sect. 3.5. The key feature is that, in insulators, a set of well-localized orbitals
(the Wannier functions) spans the same Hilbert space as do the Bloch orbitals
of the occupied bands. This is indeed a qualitative difference in the organiza-
tion of the electrons between insulators and metals. In the latter, in fact, it
is impossible to span the Hilbert space of the occupied Bloch orbitals using
well-localized orbitals. This statement can be made more precise by address-
ing the spherical second moments of the charge distributions of the localized
orbitals [57]. Such second moments can be made finite in insulators, while
they necessarily diverge in metals, as discussed below. It therefore emerges
that the key qualitative feature differentiating the ground state of an insula-
tor from that of a metal is electron localization. This applies well beyond the
independent-electron level; in fact, as emphasized already by Kohn in 1964,
the ground wavefunction of any insulator is localized. The modern theory of
polarization leads to a simple and elegant measure of such localization [52].

It is expedient to refer, as in Sect. 5.3, to a system of N one-dimensional
spinless electrons. From (46) it is clear that macroscopic polarization is a well-
defined quantity whenever the modulus of zN is nonvanishing in the large N
limit. In the latter case, the second moment of the electron distribution can
be defined, following Resta and Sorella [58], as

〈x2〉c = − lim
N→∞

1
N

(
L

2π

)2

ln |zN |2 , (47)

where the subscript “c” stands for “cumulant”. The same concept generalizes
to a Cartesian tensor 〈rαrβ〉c in three dimensions. This localization tensor,
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having the dimension of a squared length, is an intensive property and applies
on the same footing to ordered/disordered and correlated/uncorrelated many-
electron systems; it is finite in any insulator and divergent in any metal. In
the special case of an insulating crystalline system of independent electrons,
the meaning of 〈rαrβ〉c becomes more perspicuous. In fact, the trace of this
tensor is a lower bound to the average spherical second moment of the charge
distributions of the Wannier functions of the occupied bands [57]; in the
metallic case, the lower bound is formally divergent.

Two important questions were left unanswered by Resta and Sorella.
Given that in any insulator the localization tensor 〈rαrβ〉c is, at least in prin-
ciple, a well-defined ground-state observable, the first question is whether this
can be measured, and by which kind of experiments. The second question is
whether 〈rαrβ〉c can be related in some way to dc conductivity, given that
the vanishing of the latter characterizes – in addition to macroscopic polar-
ization – the insulating state of matter. Both questions received a positive
answer owing to the work of Souza et al. [51]. They began by showing that
〈rαrβ〉c measures the mean-square fluctuation of the polarization; then, by
exploiting a fluctuation-dissipation theorem, they explicitly linked 〈rαrβ〉c to
the conductivity of the system.

6 Summary

In this chapter we have reviewed the physical basis of the modern theory
of polarization. From a physical viewpoint, we have emphasized that the
polarization may be defined in terms of the accumulated adiabatic flow of
current occurring as a crystal is modified or deformed, and have discussed
the consequences of this picture for the theory of polarization reversal and
piezoelectric effects in FE materials. From a mathematical viewpoint, we
have explained how the polarization is closely related to a Berry phase of the
Bloch wavefunctions as the wavevector traverses the Brillouin zone, and to
the centers of charge of the Wannier functions that may be constructed from
the Bloch wavefunctions. An essential feature of the theory is the fact that
the polarization is formally defined only modulo a “quantum of polarization,”
or equivalently, that it must be regarded as a multivalued quantity. We have
also attempted to clarify how piezoelectric effects and surface and interface
charges are to be understood in terms of the modern theory.

The capability of computing polarization is now available in almost all
commonly used software packages for bulk electronic-structure calculations.
While initially formulated in vanishing electric field, the case of finite field
can be treated by letting the external electric field couple to the polarization
while retaining the Bloch form of the wavefunctions. These methods allow
for the computation of numerous quantities of interest, including spontaneous
polarization, Born effective charges, linear piezoelectric coefficients, nonlinear
dielectric and piezoelectric responses, and the like. Indeed, taken together,
they provide a robust and powerful foundation for modern computational
studies of the polarization-related properties of FE materials.
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