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The direct calculation of elastic and piezoelectric tensors utilizing density-functional perturbation theory has
been extended to encompass generalized-gradient-approximation functionals. Expressions for the first- and
second-order exchange-correlation potentials and energies are found to have structures particular to the strain
perturbation.
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Density-functional perturbation theory1 �DFPT� can be
combined with the quantum-mechanical theory of stress2 and
the Berry-phase theory of polarization3 to permit the direct
calculation of such material properties as the elastic tensor,
the piezoelectric tensor, and the internal strain coupling pa-
rameters. To this end, homogeneous strain must be intro-
duced as a perturbation within the framework of DFPT,
which involves certain subtleties and appears to require a
treatment differing from that suitable for “ordinary” pertur-
bations such as atomic displacements.4,5 Several of the au-
thors recently produced a metric tensor formulation of strain
in DFPT, which places it on the same formal footing as other
perturbations, and provides a framework for the systematic
development of all the relevant terms entering into DFPT
calculations.6 These include first-order operators and poten-
tials needed to find self-consistent first-order wave functions,
and explicit second derivatives of the energy functional
evaluated with ground-state “frozen” wave functions.1 We
shall refer to Ref. 6 as I, and refer to equations in that paper
as Eq. �I-1�, etc.

The analysis presented in I was restricted to local-density-
approximation �LDA� functionals. The first-order exchange-
correlation �xc� potential Vxc

�1��x� could be expressed as a
simple product of a local xc kernel times the strain-induced
first-order density. The frozen-wave-function contribution to
the second-order xc energy was given as the integral of the
product of the first-order potential times a first-order density,
plus that of the ground-state potential Vxc

�0� times second-
strain derivatives of the density. This structure paralleled that
previously found for atomic displacement perturbations.1

The xc terms entering DFPT for gradient-corrected function-
als such as the generalized gradient approximation7–9 �GGA�
have been shown to exhibit the same structure for atomic
displacements,10 although with the simple multiplicative ker-
nel replaced by a more complex linear operator.11 We will
denote this structure as the “standard form.”

The strain perturbation introduces a qualitatively different
feature, since the strain perturbs the gradient operator itself,
not merely the densities. This has been recognized in the
analysis of stress for GGA functionals.12 In this paper, we
apply the methods of I to derive the DFPT strain response
within the GGA. We find that the structure of the xc terms
cannot be expressed in the standard form described above,

but requires additional classes of terms and the introduction
of two similar but distinct first-order potentials.

Following I, we shall concentrate on the plane-wave basis
set and norm-conserving pseudopotentials.13 It has been
found that the exchange-correlation potentials entering into
the Kohn-Sham equations14 for GGA functionals have con-
siderably more rapid spatial variation than corresponding
LDA potentials, and require the use of significantly higher
plane-wave cutoff energies to achieve comparable conver-
gence. An effective solution to this problem was introduced
by White and Bird.15 Modern realizations of plane-wave
density-functional theory perform local potential operations
on wave functions on real-space grids, using fast Fourier
transforms �FFT’s� to cycle between real and reciprocal
space representations.16 The spatial integral defining the xc
contribution to the density-functional energies is, in practice,
approximated as a summation over the real-space FFT mesh.
White and Bird observed that when this sum, rather than the
integral it approximates, is taken as the fundamental defini-
tion of the xc energy and the density gradient is defined by
the corresponding FFT, the potential consistently defined on
the same spatial mesh leads to much more rapid conver-
gence, comparable to that of the LDA.15 We have developed
the DFPT strain analysis for GGA strictly within the White
and Bird functional form. Our results will be presented for
the non-spin-polarized case, with a brief discussion of the
straightforward extension to a spin-polarized treatment at the
end.

The analysis of I expressed the entire density functional in
reduced coordinates, designated by tildes. Conventional co-
ordinates were related to these through primitive lattice vec-
tors in Eqs. �I-20� and �I-21�. Let us designate the FFT mesh
within one unit cell by the set of N points �x� corresponding
to the reduced-coordinate set �x̃�, and the complementary

subsets of reciprocal lattice vectors as �G� and �G̃�.17 The
White and Bird xc energy functional is then

Exc�n� =
�

N
�
�x��

fxc„n�x�,��x�… =
�

N
�
�x̃��

fxc„n�x̃�,��x̃�… , �1�

where � is the unit cell volume, n is the electron density, and
��	�n	2. While it is conventional to specify 	�n	 as the
second argument of GGA functions, in fact only even powers
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of this quantity enter the widely used PW91 �Ref. 8� and
PBE �Ref. 9� forms, and using the square simplifies our sub-
sequent analysis. We also follow White and Bird in using the
energy-density fxc rather than the more common density-
energy product n�xc.

15 The sums in Eq. �1� are term-by-term
identical whether indexed by the real or reduced coordinate
mesh.

The White and Bird form requires the gradient of n to be
defined on the �x̃� mesh in a way consistent with the discrete
Fourier representation of the charge density,

g̃�x̃� =
1

N
�

�x̃��,�G̃�

iG̃e2�iG̃·�x̃−x̃��n�x̃�� , �2�

where we have introduced g̃ as our notation for �n expressed
as a reduced reciprocal-space vector. The squared magnitude
is then given in terms of the reciprocal-space metric tensor
�ij defined in Eq. �I-22� as

��x̃� = �
ij

g̃i�x̃��ijg̃j�x̃� , �3�

where we follow the convention of I in denoting reduced
coordinate component indices by i , j , . . . =1 ,2 ,3. The White
and Bird xc potential is given on the discrete �x̃� mesh as a
set of ordinary partial derivatives rather than functional de-
rivatives. The density is no longer treated as a function, but
as a set of independent variables, one on each mesh point.
This implies that dn�x̃�� /dn�x̃�=�x̃�x̃. Substituting Eqs. �2�
and �3� into Eq. �1�, and changing variables appropriately
before carrying out the required derivatives, we find

Vxc
�0��x̃� �

N

�

�Exc

�n�x̃�
=

�fxc�x̃�
�n

+
2

N
�

�G̃�,�x̃��

ie2�iG̃·�x̃�−x̃��fxc�x̃��
��

�
ij

G̃i�ijg̃j�x̃�� .

�4�

A single term from the FFT summation in Eq. �2� has been
selected by the Kronecker delta, and what was the “external”
x̃ sum from Eq. �1� now generates the spatial FFT in Eq. �4�.
Introducing x̃ the argument of the fxc derivatives is a short-
hand notation indicating that they are to be evaluated with
actual arguments n�x̃�, ��x̃�. We have also taken advantage
of the fact that �ij is symmetric in its indices. Equation �4� is
equivalent to Eq. �10� of Ref. 15.

We can now derive the strain derivatives of Vxc needed in
the self-consistent Sternheimer equation of DFPT, Eq. �I-10�.
Following the conventions of I, all strains �	
 are Cartesian,
with components labeled by 	 ,
 ,� , . . .. It is convenient to
denote all contributions to the strain derivatives of the charge
density by a single symbol incorporating both the explicit
strain dependencies of the ground-state valence-electron den-
sity ne

�0� and the model core-charge density nc, and the first-
order charge n�1� arising from the wave-function perturba-
tion, Eq. �I-8�,

n�	
��x̃� � �n�x̃�/��	


= − �	
ne
�0��x̃� + �nc�x̃�/��	
 + n�1,	
��x̃� . �5�

The core-charge derivative is given by Eq. �I-64�. The re-
duced gradient is dependent on strain only through the den-
sity, since the metric tensor does not occur in Eq. �2�. The
strain derivative of g̃ is thus

g̃�	
��x̃� �
�g̃�x̃�
��	


=
1

N
�

�x̃��,�G̃�

iG̃e2�iG̃·�x̃−x̃��n�	
��x̃�� . �6�

The strain derivative of Vxc, denoted with a similar super-
script, is straightforwardly found from Eq. �4�,

Vxc
�	
��x̃� =

�2fxc�x̃�
�n2 n�	
��x̃� +

�2fxc�x̃�
�n��

�
ij

�g̃i�x̃��ij
�	
�g̃j�x̃�

+ 2g̃i�x̃��ijg̃j
�	
��x̃�� +

2

N
�

�x̃��,�G̃�

ie2�iG̃·�x̃�−x̃�

�
 �2fxc�x̃��
�n��

n�	
��x̃���
ij

G̃i�ijg̃j�x̃��

+
�fxc�x̃��

��
�
ij

�G̃i�ij
�	
�g̃j�x̃�� + G̃i�ijg̃j

�	
��x̃���

+
�2fxc�x̃��

��2 �
ij

G̃i�ijg̃j�x̃���
kl

�g̃k�x̃���kl
�	
�g̃l�x̃��

+ 2g̃k�x̃���klg̃l
�	
��x̃���� , �7�

where ��	
� is the strain derivative of the metric tensor de-
fined in Eq. �I-26�. Equation �7� contains two classes of
terms: the familiar linear-operator-on-first-order-charge
terms of the standard form,1,11 and new terms combining
zero-order density gradients and metric-tensor derivatives.
Only the first term remains in the LDA case, which reverts to
the standard form and is equivalent to Eq. �I-60�. In spite of
its many terms, the computational effort involved in evaluat-
ing Eq. �7� is only slightly greater than that involved in ob-
taining Vxc

�0� itself, as its FFT structure is the same as that of
Eq. �4�.

Next, we consider the frozen-wave-function contributions
to the second-order energies. While in the following we will
continue to use the same superscript notation for density and
reduced-gradient strain derivatives, only the explicit deriva-
tives represented by the first two terms of Eq. �5� are to be
included, dropping the third “self-consistency” term. First,
we will deal with the volume prefactor in Eq. �1�, recalling
Eq. �I-29�,

�2Exc

��	
����

= �	
���Exc
�0� + �	


�

N

��NExc/��
����

+ ���

�

N

��NExc/��
��	


+
�

N

�2�NExc/��
��	
����

. �8�
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The first strain derivatives are

��NExc/��
��	


= �
�x̃�

�fxc�x̃�
�n

n�	
��x̃�

+ �
�x̃�,ij

�fxc�x̃�
��

�g̃i�x̃��ij
�	
�g̃j�x̃�

+ 2g̃i�x̃��ijg̃j
�	
��x̃�� . �9�

It is useful to rewrite Eq. �9�. By substituting Eq. �6� for
gj

�	
� and interchanging summation indices, we can identify a
subexpression equivalent to the right side of Eq. �4� and
show

��NExc/��
��	


= �
�x̃�

Vxc
�0��x̃�n�	
��x̃�

+ �
�x̃�,ij

�fxc�x̃�
��

g̃i�x̃��ij
�	
�g̃j�x̃� . �10�

This form is to be preferred for evaluating the second deriva-
tives, and is computationally efficient for the first-order
terms.

Taking a second strain derivative of Eq. �10�, we find

�2�NExc/��
������	


= �
�x̃�

�Vxc
����n�	
� + Vxc

�0�n�	
����

+ �
�x̃�,ij

�2fxc

�n��
g̃i�ij

�	
�g̃jn
����

+ �
�x̃�,ij

�fxc

��
�2g̃i�ij

�	
�g̃j
���� + g̃i�ij

�	
���g̃j�

+ �
�x̃�,ijkl

�2fxc

��2 g̃i�ij
�	
�g̃j�g̃k�kl

����g̃k

+ 2g̃k�klg̃l
����� , �11�

where all spatial arguments are understood to be x̃. The
metric-tensor second derivative ��	
��� is given by Eq. �I-
28�. The density second derivative n�	
���=�	
���ne

+nc
�	
���, with the core contribution nc

�	
��� given by Eq. �I-
66�, and g̃i

�	
��� is given by Eq. �6� with n�	
�→n�	
���.
Equation �11� does not have the standard form, nor does it
appear to be symmetric under the interchange of the order of
differentiation. However, substituting Eq. �7� for Vxc

�	
� in Eq.
�11� and selectively regrouping terms, an explicitly symmet-
ric expression can be recovered. Most terms in this expres-
sion can be reformulated as modified first-order potentials
acting on first-order charge densities. This is both computa-
tionally efficient and easily combined with the remaining
terms in Eq. �8� to give the following overall result,

�2Exc

������	


=
�

N
�
�x̃�
��	
Vxc

�0� +
1

2
Vxc

*�	
��n����

+ ���Vxc
�0� +

1

2
Vxc

*�����n�	
� + Vxc
�0�n�	
����

+
�

N
�

�x̃�,ij

�fxc

��
g̃i��	
����� + �����	
� + �ij

�	
����g̃j

+
�

N
�

�x̃�,ijkl

�2fxc

��2 g̃i�ij
�	
�g̃jg̃k�kl

����g̃l, �12�

where Vxc
*�	
� is defined by making the substitution �ij

�	
�

→2�ij
�	
� in Eq. �7�.18 The first sum in Eq. �12� is as close to

the standard form as possible. However the appearance of the
modified potential Vxc

*�	
� in the first term, rather than Vxc
�	
�

itself as in the standard form is unexpected. We also find, as
in the case of the first-order potential, additional terms that
arise solely from the action of strain on the gradient operator
itself. These are most efficiently evaluated just as written.
While the notation in Eq. �12� is somewhat different from the
LDA expression, Eq. �I-67�, substituting the first two terms
of Eq. �5� for n�	
� and n���� and dropping all gradient terms
does reproduce that result.

As discussed in I, mixed second derivatives with respect
to one strain and one atomic displacement are required to
compute the atomic-relaxation contributions to the elastic
and piezoelectric tensors. Following the notation of I, we
first compute the reduced-atomic-displacement derivative of
Exc,

��NExc/��
��̃i

= �
�x̃�

Vxc
�0��x̃�

nc�x̃�
��̃i

. �13�

The strain derivative of this expression is now straightfor-
wardly evaluated. Restoring the � /N factor, we find

�2Exc

��	
��̃i

=
�

N
�
�x̃�
�Vxc

�	
� �nc

��̃i

+ Vxc
�0��	


�nc

��̃i

+
�2nc

��	
��̃i
�� .

�14�

Expressions for the core-charge derivatives required here are
described in I as simple modifications of Eqs. �I-64� and
�I-66�. The first-order potential in Eq. �14� is the actual Vxc

�	
�

strain derivative given by Eq. �7�, not the modified version
required in Eq. �12�. Once the nonstandard contributions to
Vxc

�	
� have been taken into account, this second derivative is
consistent with the standard form. Both the modified poten-
tial and the additional terms in Eq. �12� arise from the inter-
play of two strain derivatives acting on the gradient operator,
whereas the atomic displacement perturbation affects only
the density itself.

To avoid further complicating the above expressions, only
the non-spin-polarized case was explicitly treated. The gen-
eralization of Eqs. �7�, �12�, and �14�, to spin-polarized ex-
pressions is straightforward.11 In the PW91 �Ref. 8� and PBE
�Ref. 9� formulations of the GGA, the exchange portion of
fxc is strictly a sum of spin-up and spin-down terms. The
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correlation portion depends on both spin densities, but only
on the gradient of the total density. Thus only one mixed-
spin derivative, �2fxc /�n↑�n↓, needs to be introduced.

The present results have been incorporated in the open-
source ABINIT software package,19 which utilizes the White
and Bird form of the GGA.15 They have been extensively
tested by comparing DFPT calculations of elastic, piezoelec-
tric, and internal strain force-response tensors with numerical
derivatives of ground-state stresses, electrical polarizations,
and atomic forces following the procedures discussed in I.
Capabilities for treating reduced-atomic-displacement pertur-

bations within a number of popular LDA and GGA formula-
tions had already been incorporated in ABINIT,19 so relaxed-
atom elastic and piezoelectric tensors can now be readily
obtained for all these functionals by appropriately combining
a set of DFPT results.20
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