
PHYSICAL REVIEW B 83, 092407 (2011)

Orbital magnetoelectric coupling at finite electric field
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We extend the band theory of linear orbital magnetoelectric coupling to treat crystals under finite electric fields.
Previous work established that the orbital magnetoelectric response of a generic insulator at zero field comprises
three contributions that were denoted as local circulation, itinerant circulation, and Chern-Simons. We find that
the expression for each of them is modified by the presence of a dc electric field. Remarkably, the sum of the
three correction terms vanishes, so that the total coupling is still given by the same formula as at zero field. This
conclusion is confirmed by numerical tests on a tight-binding model, for which we calculate the field-induced
change in the linear magnetoelectric coefficient.
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Magnetoelectrics are magnetic insulators whose dielectric
polarization P changes linearly under a small applied magnetic
field B and, conversely, whose magnetization M changes
linearly with a small applied electric field E .1,2 This linear
magnetoelectric (ME) coupling is described by the response
tensor3

αij = ∂Mj

∂Ei

= ∂Pi

∂Bj

, (1)

which is odd under both spatial inversion (P) and time-reversal
(T ) symmetries. Thus ME materials must be acentric and
display magnetic order.

In crystals where only one of the two symmetries, P or
T , is present, it may still be possible to induce a linear
ME effect by applying an external field which breaks that
symmetry. So, for example, a centrosymmetric insulating
antiferromagnet placed in a (strong) electric field loses its
inversion center. Likewise, a nonmagnetic ferroelectric crystal
loses time-reversal symmetry when subject to a magnetic field.
In both cases the symmetry is sufficiently lowered that the
tensor α becomes nonzero.

It is useful to view these field-induced effects as higher-
order ME responses of the unbiased crystal.4 Two quadratic
ME effects can be defined in this way. Going to next order in
magnetic field yields the tensor

βijk = ∂αij

∂Bk

= ∂2Pi

∂Bj∂Bk

, (2)

which is odd under P and even under T . Going instead to next
order in the electric field gives

γijk = ∂αji

∂Ek

= ∂2Mi

∂Ej ∂Ek

, (3)

which is even under P and odd under T . Reference 4 lists the
form of these tensors for all the crystal classes. While most
investigations of ME couplings in solids have focused on the

linear response α for a reference state of the crystal at zero
electric and magnetic fields, the quadratic responses β and
γ have also been measured in materials where α vanishes by
symmetry. In particular the electric-field-induced effect, which
constitutes the primary focus of this work, was first measured
by O’Dell in yttrium iron garnet.5

The ME response can be divided into four contributions,
depending on whether the response is frozen ion (purely
electronic) or lattice mediated, and whether it is spin or
orbital in character. We will refer to the frozen-ion part of the
orbital response as the orbital magnetoelectric polarizability
(OMP).6,7 While the OMP is typically a small contribution
to the ME response in conventional magnetoelectrics, it was
recently realized that, under certain conditions of surface
preparation, Z2-odd topological insulators8 should display
a large, quantized OMP response.6,9 This is a remarkable
prediction, especially considering that in this class of materials
T symmetry is preserved in the bulk (it must, however, be
broken on the surface). This topological magnetoelectric effect
has triggered a great deal of interest in orbital magnetoelectric
couplings in solids.

The microscopic theory needed to calculate the OMP at zero
electric and magnetic fields from first principles was worked
out in Refs. 7 and 10. In addition to the so-called Chern-Simons
term responsible for the topological ME effect,6,9,11 it was
found that two more (Kubo) terms contribute to the OMP in
conventional magnetoelectrics in which T and P symmetries
are broken spontaneously in the bulk.

In this work we generalize the band theory of OMP of
periodic insulators7,10 to finite electric fields. That is, we
evaluate the coefficient α at nonzero E ,

αij (E) = ∂Mj

∂Ei

∣∣∣∣
B=0

. (4)

(Henceforth, the condition B = 0 will be implied throughout.
It is also understood that from now on α denotes the OMP
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part of the entire ME response.) A principal result of our work
is the conclusion that the zero-field expression for the total
OMP remains valid at finite electric field, while the above-
mentioned Chern-Simons and Kubo terms separately acquire
field-induced contributions. We confirm our formal results by
numerical tests on a tight-binding model.

Our derivation of a formula for α(E) proceeds along the
lines of Ref. 7. We start from the expression given therein for
the orbital magnetization of a generic band insulator under a
finite electrical bias. It comprises three terms,

Mj (E) = MLC
j (E) + M IC

j (E) + MCS
j (E), (5)

where

MLC
j = −η

2
εjpq

∫
d3k Im 〈̃∂punk|H 0

k |̃∂qunk〉, (6)

M IC
j = −η

2
εjpq

∫
d3k Im

{〈unk|H 0
k |umk〉〈̃∂pumk |̃∂qunk〉

}
,

(7)

and

MCS
j = eη

2
Ej

∫
d3k εpqr tr

[
Ap∂qAr − 2i

3
ApAqAr

]
. (8)

The common prefactor in these formulas is η = −e/h̄(2π )3

(e > 0 is the magnitude of the electron charge), and a sum is
implied over repeated Cartesian (pqr) and valence-band (mn)
indices. The cell-periodic part of the field-polarized Bloch
state12 is denoted by |unk〉, ∂j is the partial derivative with
respect to the j th component of the wave vector k, and the
tilde indicates a covariant derivative ∂̃j = Qk∂j , where Qk =
1 − |unk〉〈unk| (sum implied over n). The Hamiltonian H 0

k is
defined as

H 0
k = e−ik·rH0eik·r, (9)

where H0 is the zero-field part of the crystal Hamiltonian. In
Eq. (8) the symbol Ap denotes the Berry connection matrix

Amnkp = i〈umk|∂punk〉, (10)

and the trace is over the valence bands.
Equations (6) and (7) describe respectively the local and

itinerant circulation contributions to the magnetiztion,7 while
Eq. (8) is the Chern-Simons term. At variance with the other
two terms, whose dependence on the electric field is only
implicit, MCS displays an explicit linear dependence on E . It
is therefore expedient to introduce a new quantity MCS

1 via the
relation

MCS
j (E) ≡ EjM

CS
1 (E), (11)

where the subscript “1” serves as a reminder that MCS
1 enters

the expression for M multiplied by E to the first power.
All three magnetization terms, MLC, MIC, and MCS, are

invariant under gauge transformations within the valence-band
manifold, although in the case of MCS this invariance is only
modulo a quantum of indeterminacy.9 In the limit that E goes
to zero, MCS vanishes and Eq. (5) reduces to the expression
for the spontaneous orbital magnetization.13

As already mentioned, all terms in Eq. (5) can contribute to
the linear ME coupling, Eq. (4), so that

αij (E) = αLC
ij (E) + αIC

ij (E) + αCS
ij (E). (12)

The derivation of the expressions for these objects is straight-
forward though somewhat lengthy. It essentially repeats the
steps in Appendix B of Ref. 7, where the derivation was carried
out for the LC and IC (“Kubo”) terms under the assumption
that E = 0 (the CS term is trivial at E = 0). At E �= 0 one may
show that each of the terms in Eq. (12) consists of a “zero-field”
part plus a “field-correction” part having an explicit linear
dependence on E ,

αij (E) = α0,ij (E) + Ejα1,i(E). (13)

The field-correction terms for the LC and IC contributions
can be traced back to Eqs. (B7) and (B8) in Ref. 7, which
at E �= 0 acquire extra terms. As for the Chern-Simons
contribution, differentiating Eq. (11) with respect to Ej yields
αCS

0,ij = δijM
CS
1 and αCS

1,i = ∂MCS
1 /∂Ei .

Thus, we arrive at the results

αLC
0,ij (E) = ηεjpqIm

∫
d3k

(
〈̃∂punk|

(
∂qH

0
k

)|D̃iunk〉

− 1

2
〈̃∂punk|

(
DiH

0
k

)|̃∂qunk〉
)

, (14)

αIC
0,ij (E) = ηεjpqIm

∫
d3k

(
〈̃∂punk|D̃iumk〉〈umk|

(
∂qH

0
k

)|unk〉

− 1

2
〈̃∂punk |̃∂qumk〉〈umk|

(
DiH

0
k

)|unk〉
)

, (15)

αCS
0,ij (E) = δij η

e

2

∫
d3k εpqr tr

[
Ap∂qAr − 2i

3
ApAqAr

]
,

(16)

αLC
1,i (E) = ηe

∫
d3k εpqrRe[〈D̃iunk |̃∂pumk〉〈̃∂qumk |̃∂runk〉],

(17)

and

αLC
1,i (E) = αIC

1,i(E) = − 1
2αCS

1,i . (18)

In the above expressions, Di is the partial derivative with
respect to the ith component of the electric field. The
terms containing DiH

0
k in Eqs. (14) and (15) are screening

corrections which are present in self-consistent calculations.
Equations (14)–(16) for the zero-field terms are essentially

rewritten from Ref. 7. It should be emphasized, however,
that in the present context these expressions depend on the
electric field implicitly via the wave functions. The explicit
field dependence is given by the field-correction terms,
Eqs. (17) and (18). Remarkably, these terms are not inde-
pendent and add up to zero when inserted into Eq. (12). We
conclude, therefore, that the expression for the total OMP
derived in Refs. 7 and 10 assuming E = 0 remains valid
for E �= 0. This constitutes one of our principal results. The
explicit expression given in Eq. (17) for the field-correction
terms is the other main result of this work. It is useful
if one is interested in the field dependence of the separate
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gauge-invariant contributions to the OMP. Because it contains
three k derivatives and one field derivative, this quantity is
even under P and odd under T , just like the coefficient γ

defined by Eq. (3). This is reasonable since, as one can see
from Eq. (13), α

LC/IC/CS
1 gives a contribution to γ LC/IC/CS and

should therefore have the same symmetry properties.
As a check of our analytic derivation, we have implemented

the formula for α(E) in a tight-binding model, and used it to
calculate the nonlinear ME coefficient γzzz at E = 0. Since the
tensor γ vanishes in T -invariant systems, we need a model
where T is spontaneously broken, and we chose that of Ref. 7.
This is a spinless model with eight sites per primitive cell
arranged on a 2 × 2 × 2 cube, where T symmetry is broken
by complex nearest-neighbor hoppings, and we have used the
same on-site energies and nearest-neighbor hoppings tabulated
in that work. (This choice of parameters also breaks P , so that
the linear ME tensor α is nonzero already at E = 0, but this
is not essential for our present purposes.) As in Ref. 7 the two
lowest bands were treated as occupied, and the phase ϕ of one
of the complex hoppings was chosen as a control parameter
for plotting purposes.

The technical details of the tight-binding implementation
of Eqs. (6)–(8) and (14)–(17) can be found in Ref. 7. The
only significant difference with respect to that work is that
the field derivative |D̃iunk〉 of the cell-periodic Bloch states
must be evaluated at finite E . Under these circumstances the
usual “sum-over-states” formula13 cannot be employed, and
one must instead minimize a suitably defined functional.14

We shall calculate the zzz component of γ from the first
equality in Eq. (3). Combining with Eq. (12) we find

γ = γ LC + γ IC + γ CS. (19)

The CS term is the simplest to evaluate, as the derivative of
Eq. (13) with respect to Ez can be taken analytically. The
zero-field and field-correction terms therein both contribute an
amount αCS

1,z(0) to γ CS
zzz (0). Thus,

γ CS
zzz (0) = 2αCS

1,z(0) = −4αLC
1,z(0), (20)

where the second equality follows from Eq. (18). The quantity
on the right-hand side can be evaluated directly from Eq. (17).
For the LC and IC terms we calculate the derivative of the
zero-field terms in Eq. (13) using finite differences and obtain

γ LC/IC
zzz (0) � α

LC/IC
0,zz (Ez) − α

LC/IC
0,zz (−Ez)

2Ez

+ αLC
1,z(0). (21)

In practice we evaluate the first term from Eqs. (14) and (15),
using small positive and negative fields along z of magnitude
Ez = 1.0 × 10−5 V/m.

The results of the above calculations were compared with
a finite-difference determination of the second field derivative
of M,

γzzz(0) = ∂2Mz

∂E2
z

∣∣∣∣
E=0

� Mz(Ez) − 2Mz(0) + Mz(−Ez)

E2
z

,

(22)

using the k-space expressions from Ref. 7 for the LC, IC,
and CS terms in Eq. (5). The results obtained in this manner
can be taken as a reference, since the k-space expression for

FIG. 1. Decomposition of γzzz of Eq. (19) into γ LC (solid lines),
γ IC (dashed lines), and γ CS (dotted lines) calculated using Eqs. (20)
and (21). Symbols denote the same contributions evaluated using
Eq. (22).

M(E) has been carefully tested by comparing with real-space
calculations on bounded samples cut from the bulk crystal.7

The agreement between the two sets of calculations can
be seen in Fig. 1, where the LC, IC, and CS contributions to
γzzz are plotted separately as functions of ϕ. In this calculation
γ CS

zzz is about an order of magnitude smaller than γ LC
zzz . From

Eqs. (20) and (21) it then follows that the field-correction
terms contribute little, especially in the case of γ LC

zzz . Further
numerical tests focusing on those small terms are therefore
desirable.

FIG. 2. (a) Right-hand side (solid line) and left-hand side
(symbols) of Eq. (23). Squares and circles denote the LC and IC
contributions, respectively. (b) Equation (20) (solid line) and Eq. (22)
for the CS contribution (crosses), both multiplied by a factor of −1/4
for visual check of Eq. (18) by comparison to (a).
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In order to isolate the field-correction terms in γ LC
zzz and γ IC

zzz,
we subtract the zero-field terms from the total:[

∂2M
LC/IC
z

∂E2
z

− ∂α
LC/IC
0,zz

∂Ez

]
E=0

= α
LC/IC
1,z (0). (23)

In Fig. 2(a) we plot, as a function of ϕ, the two sides of
this equation. The field derivatives on the left-hand side are
evaluated by finite differences, while the right-hand side is
calculated from Eq. (17). It is clear that the field-correction
terms in Eq. (13) are nonzero, and the good agreement between
the three curves demonstrates that for both LC and IC they are
given by Eq. (17).

The CS contribution does not need additional tests since, as
noted above, the contributions to γ CS

zzz from the zero-field and
field-correction terms are identical. However, we reproduce
in Fig. 2(b) the CS curve from Fig. 1 multiplied by a factor
−1/4, so that the correctness of Eq. (18) can be verified by
direct visual inspection. This completes the numerical checks
of the k-space formula for α(E).

To summarize, we have extended the recently developed
band theory of orbital magnetoelectric response to treat

crystals under a finite electrical bias. The theory presented
in this work may be especially useful in calculations of the
second-order magnetoelectric effect defined by Eq. (3). While
it is possible in principle to calculate the second derivative of
M by finite differences, the numerical stability is likely to be
improved by taking one of the field derivatives analytically,
leaving only one derivative to be performed numerically.
We have demonstrated that in order to calculate the total
OMP at finite electric field, one may use the same equations
(14)–(16) that were previously derived for zero field. This is
true even though the individual local-circulation, itinerant-
circulation, and Chern-Simons contributions do separately
acquire field-correction terms. At present, we are not aware
of any simple argument that could have anticipated the exact
cancellation of these terms in the expression for the total
OMP.
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