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Abstract

We present wannier90, a program for calculating maximally-localised Wannier functions (MLWF) from a set of Bloch energy bands that
may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWF in real space. This
is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90 is independent of the
basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure
code. The locality of MLWF can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost.
Furthermore, wannier90 is able to output MLWF for visualisation and other post-processing purposes. Wannier functions are already used in a
wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory
of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling
quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. wannier90 is
freely available under the GNU General Public License from http://www.wannier.org/.

Program summary

Program title: wannier90
Catalogue identifier: AEAK_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAK_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 556 495
No. of bytes in distributed program, including test data, etc.: 5 709 419
Distribution format: tar.gz
Programming language: Fortran 90, perl
Computer: any architecture with a Fortran 90 compiler
Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX
RAM: 10 MB
Word size: 32 or 64
Classification: 7.3
External routines:

• BLAS (http://www/netlib.org/blas).

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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• LAPACK (http://www.netlib.org/lapack).

Both available under open-source licenses.
Nature of problem: Obtaining maximally-localised Wannier functions from a set of Bloch energy bands that may or may not be entangled.
Solution method: In the case of entangled bands, the optimally-connected subspace of interest is determined by minimising a functional which
measures the subspace dispersion across the Brillouin zone. The maximally-localised Wannier functions within this subspace are obtained by
subsequent minimisation of a functional that represents the total spread of the Wannier functions in real space. For the case of isolated energy
bands only the second step of the procedure is required.
Unusual features: Simple and user-friendly input system. Wannier functions and interpolated band structure output in a variety of file formats for
visualisation.
Running time: Test cases take 1 minute.
References:
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1. Introduction

Within the independent-particle approximation, the electronic ground state of a periodic system may be solved in terms of a
set of extended Bloch states ψnk(r). These states are characterised by the good quantum numbers n and k, which refer to the
band index and crystal momentum, respectively. Although this choice is widely used in electronic structure calculations, alternative
representations are available. For example, the Wannier representation constitutes a description in terms of localised functions
labeled by R, the lattice vector of the cell in which the function is localised, and a band-like index n.

Wannier functions give a real-space picture of the electronic structure of a system. They provide insight into the nature of the
chemical bonding and can be a powerful tool in the study of dielectric properties via the modern theory of polarisation.

The phase indeterminacy eiφn(k) of an isolated Bloch state ψnk(r) at each wave-vector k results in the Wannier functions being
non-unique. For a group of isolated bands, such as the valence states of an insulator, this indeterminacy is more general as they
may undergo arbitrary unitary transformations U

(k)
mn amongst themselves at each k. Two of the authors (N.M. and D.V.) developed

a procedure that iteratively refines these degrees of freedom such that they lead to Wannier functions that are well-defined and
localised (in the sense that they minimise the second moment around their centres) [1]. We refer to this procedure as the Marzari–
Vanderbilt (MV) scheme and the resulting Wannier functions as maximally-localised Wannier functions (MLWF).

The MV method was designed to be applicable to isolated sub-groups of bands, i.e., a group of bands that, though they may have
degeneracies with each other at certain points, are separated from all other bands by finite gaps throughout the Brillouin zone. An
important example is the set of valence bands of an insulator. In many applications, however, the bands of interest are not isolated
and one is interested, for instance, in the partially filled bands of a metal close to the Fermi level. In this case the bands of interest
lie within a limited energy range but are attached to, or cross with, other bands that extend further out in energy. Such bands are
referred to as entangled bands.

The complication associated with treating entangled bands is that the states of interest hybridise with unwanted bands. As a
result, the number of bands at each k-point in the relevant energy range may be greater than the number of Wannier functions N

that are required. Before the MV localisation procedure may be applied, a prescription for extracting N bands at each k-point from
the entangled manifold of states is required. Three of the authors developed just such a disentanglement procedure, allowing MLWF
to be determined from a set of entangled bands [2]. This Souza–Marzari–Vanderbilt (SMV) strategy breaks down the procedure
into two steps: first, the correct N -dimensional subspace of bands at every k is selected; and second, N MLWF are localised from
this subspace, exactly in the same way as for an isolated set of bands.

wannier90 is a tool for obtaining MLWF from a set of (possibly entangled) energy bands using the methods of MV and SMV.
The principal ingredient that is required from an electronic structure calculation is the overlap matrix between the periodic part
|unk〉 of Bloch states at neighbouring k-points (described in more detail in Section 2). This matrix is small and independent of the
basis used in the underlying calculation to obtain the Bloch states. As a result wannier90 may be interfaced to any electronic
structure code. At the time of writing, wannier90 is able to:

1. Disentangle an optimally-connected N -dimensional subspace of bands at each k-point and obtain the unitary transformations
that generate MLWF from a given set of bands;

2. Output MLWF in a number of formats suitable for visualisation;

http://www.netlib.org/lapack


A.A. Mostofi et al. / Computer Physics Communications 178 (2008) 685–699 687
3. Generate interpolated band structures, densities of states and Fermi surfaces and output them in formats suitable for visualisa-
tion;

4. Output matrix elements of the Hamiltonian operator in the MLWF basis.

It is worth recording here a brief historical timeline of wannier90:

• 1997: Two of the authors (N.M. and D.V.) develop and implement localisation algorithms in Fortran77; interface to the all-bands
ensemble-DFT CASTEP code [3];

• 1998: Algorithms implemented in the CPMD code [4] by Silvestrelli [5];
• 2001: Three of the authors (I.S., N.M. and D.V.) develop the SMV disentanglement extension; interface to a full-potential-

linearised-augmented-plane-wave (FLAPW) code [6] and to any generic electronic-structure code quickly followed;
• 2006: Two of the authors (A.A.M. and J.R.Y.) completely rewrite the code in Fortran90, employing modern programming

techniques and adding new functionality.

One significant benefit of the 2006 rewrite has been that in most cases wannier90 is faster than the original Fortran77 version
by an order of magnitude, and in some by more than two. Another is that now the source code is easy to follow, which makes
interfacing it to electronic structure codes more straightforward. Indeed, the first such example is already in place within the
QUANTUM-ESPRESSO package [7].

The formalism has seen many and diverse applications: linear-scaling quantum Monte Carlo [8], photonic crystals [9,10], metal-
insulator interfaces [11], as an efficient interpolator for the anomalous Hall effect [12] and electron-phonon couplings [13], and a
powerful tool for the study of large-scale systems [14,15], to cite only a few. In addition, MLWF are playing an increasing role
in bridging density-functional approaches and strongly-correlated ones, to derive model Hamiltonians or as a starting point for
LDA+U or LDA+DMFT [16–18]. They are also closely related to muffin-tin orbitals [19,20].

The remainder of this paper is organised as follows. In Section 2 we review briefly the theoretical background to the problem
of obtaining MLWF and a recent theoretical development in using them to interpolate band structures on arbitrarily fine k-point
meshes. In Section 3 we give an overview of some of the more technical aspects of the wannier90 code. In Section 4 we describe
the overall structure of the code. We demonstrate how to install and run wannier90 in Sections 5 and 6, respectively. Finally, in
Section 7 we provide a number of example calculations and applications of the code.

2. Theoretical background

For an isolated set of N Bloch bands ψnk(r), a set of N Wannier functions wnR(r) = wn(r − R), n ∈ [1,N ], labelled by Bravais
lattice vectors R, may be constructed as

(1)|wnR〉 = V

(2π)3

∫
BZ

[ N∑
m=1

U(k)
mn |ψmk〉

]
e−ik·R dk,

where U(k) is a unitary matrix that mixes the bands at wave-vector k, and the Brillouin zone (BZ) integral may also be interpreted
as a unitary transformation. Different choices for U(k) give rise to different Wannier functions, with different spatial spreads, that
always describe the same manifold. The MV strategy consists of choosing the U(k) that minimise the sum of the quadratic spreads
of the Wannier functions about their centres:

(2)� =
N∑
n

〈
(r − rn)

2〉
n

=
N∑
n

〈
r2 − 2r · rn + |rn|2

〉
n

=
N∑
n

[〈r2〉n − |rn|2
]
,

where 〈Ô〉n ≡ On ≡ 〈wn0|Ô|wn0〉.
It is worth noting that the spread functional may be decomposed into two contributions

(3)� = �I + �̃,

where

(4)�I =
∑
n

[
〈wn0|r2|wn0〉 −

∑
mR

∣∣〈wmR|r|wn0〉
∣∣2

]
and

(5)�̃ =
∑
n

∑
mR �=n0

∣∣〈wmR|r|wn0〉
∣∣2

.
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It can be shown that each of these quantities is non-negative and that �I is gauge invariant, i.e., insensitive to changes in the
matrices U

(k)
mn [1]. Therefore, the minimisation of the spread functional for an isolated set of bands just corresponds to minimising �̃.

2.1. Reciprocal-space formulation

As shown by Blount [21], matrix elements of the position operator between Wannier functions may be expressed in reciprocal-
space as

(6)〈wnR|r|wm0〉 = i
V

(2π)3

∫
eik·R〈unk|∇k|umk〉dk

and

(7)〈wnR|r2|wm0〉 = − V

(2π)3

∫
eik·R〈unk|∇2

k|umk〉dk,

where, as usual, the periodic part of the Bloch function is defined as unk(r) = e−ik·rψnk(r). These expressions enable us to express
the spread functional in terms of matrix elements of ∇k and ∇2

k .
It is assumed that the Brillouin zone is discretised on a uniform Monkhorst–Pack mesh [22] on which the Bloch orbitals are

determined. Thus, the gradient and Laplacian operators may be approximated by finite-difference formulas on the k-space mesh.
If f (k) is a smooth function of k, then

(8)∇kf (k) =
∑

b

ωbb
[
f (k + b) − f (k)

]
and

(9)
〈
f (k)

∣∣∇2
k

∣∣f (k)
〉 = ∣∣∇kf (k)

∣∣2 =
∑

b

ωb

[
f (k + b) − f (k)

]2
,

where {b} are vectors connecting mesh-point k to its nearest neighbours and ωb is a weight factor associated with each shell of
neighbours b = |b|. The choice of b-vectors and weights ωb is discussed in further detail in Section 3.2.

It is worth noting that a finite k-point mesh implies an approximation to both the self-consistent ground state that is obtained
using that mesh and to the accuracy of the finite-difference representation of the operators ∇k and ∇2

k . In principle, for a given
mesh of k-points, the latter may be improved by using higher-order finite-difference expressions.

Having discretised Eqs. (6) and (7) in reciprocal space, the only information required for computing the spread functional is the
overlap matrix

(10)M(k,b)
mn = 〈umk|un,k+b〉.

After some algebra, the two components of the spread functional may be expressed as

(11)�I = 1

Nkp

∑
k,b

ωb

N∑
m=1

[
1 −

N∑
n=1

∣∣M(k,b)
mn

∣∣2

]

and

(12)�̃ = 1

Nkp

∑
k,b

ωb

[
N∑

n=1

(−Im lnM(k,b)
nn − b · r̄n

)2 +
N∑

m �=n

∣∣M(k,b)
mn

∣∣2

]
,

where Nkp is the number of k-points in the Monkhorst–Pack grid and r̄n is the centre of the nth Wannier function, given by

(13)r̄n = − 1

Nkp

∑
k,b

ωbb Im lnM(k,b)
nn .

Using these expressions, the gradient of the spread functional with respect to infinitesimal unitary rotations of the ψnk(r) may
be calculated as a function of M

(k,b)
mn . It is then straightforward to evolve U

(k)
mn (and consequently M

(k,b)
mn ) towards the solution of

maximum localisation using a steepest-descents or conjugate-gradient minimisation algorithm.
It is worth noting that �̃ may be further decomposed into band-diagonal and band-off-diagonal parts

(14)�̃ = �D + �OD,
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where

(15)�D =
∑
n

∑
R �=0

∣∣〈wnR
∣∣r∣∣wn0〉

∣∣2 = 1

Nkp

∑
k,b

ωb

N∑
n=1

(−Im lnM(k,b)
nn − b · r̄n

)2
,

(16)�OD =
∑
m �=n

∑
R

∣∣〈wmR
∣∣r∣∣wn0〉

∣∣2 = 1

Nkp

∑
k,b

ωb

N∑
n=1

N∑
m �=n

∣∣M(k,b)
mn

∣∣2
.

2.2. The case of entangled bands

The above description is sufficient to obtain MLWF for an isolated set of bands, such as the valence states in an insulator. In
order to obtain MLWF for entangled energy bands, e.g., for metallic systems or the conduction bands of an insulator, we use the
“disentanglement” procedure introduced by SMV [2].

The strategy proceeds as follows. An energy window (the “outer window”) is defined by the user such that at each k-point there
are N

(k)
win � N states within the window. An orthonormal set of N Bloch states is obtained at each k-point, defining an N -dimensional

subspace S(k), by performing a unitary transformation amongst the N
(k)
win states that fall within the energy window:

(17)
∣∣uopt

nk

〉 = ∑
m∈N

(k)
win

Udis(k)
mn |umk〉,

where Udis(k) is a rectangular N
(k)
win × N matrix.1

Recall that �I is invariant under gauge transformations within a given subspace. Thus �I may be considered as a functional
of S(k). The subspace selection proceeds by minimising �I with respect to the matrices Udis(k) [2]. For a physical interpretation of
this procedure, Eq. (11) for �I may be rewritten as

(18)�I = 1

Nkp

∑
k,b

ωbtr
[
P̂kQ̂k+b

]
,

where P̂k = ∑N
n=1 |unk〉〈unk| is the projector onto S(k), and Q̂k = 1 − P̂k. Now it can be seen that �I is a measure of the degree

of mismatch between the subspaces S(k) and S(k + b). Minimising �I corresponds to choosing self-consistently at every k the
subspace that has maximum overlap as k is varied.

Once the projected N -dimensional subspace at each k-point has been found, the MV localisation procedure described above may
be used to minimise �̃ within that subspace and hence obtain MLWF. As an alternative to this two step minimisation, a procedure
to minimise the total spread function � has been proposed [23] and was found to give very similar MLWF to the present scheme.

It may be the case that the energy bands of the projected subspace do not correspond to any of the original energy bands due to
mixing between states. In order to preserve exactly the properties of a system within a given energy range (e.g., around the Fermi
level) a second inner energy window is introduced. States lying within this inner, or frozen, energy window are included unchanged
in the projected subspace. The reader is referred to Ref. [2] for further details of the algorithm.

It is worth noting that the MLWF themselves are never explicitly constructed unless required for visualisation or other post-
processing purposes. Minimisation of the spread functional results in finding the converged Udis(k) (if disentanglement was used)
and U(k). Along with M(k,b), this is sufficient to define the centres and spreads of the MLWF. If the periodic parts of the Bloch
wavefunctions are available, then the MLWF may be calculated on a real-space grid. For systems with time-reversal symmetry, we
always find the MLWF corresponding to the minimum spread to be real, apart from a global complex phase factor, in empirical
agreement with a recent claim of a mathematical proof [24].

2.3. Wannier interpolation

Having found Udis(k) and U(k) for the target system, it is straightforward to express the Hamiltonian in the basis of MLWF. We
first obtain the Hamiltonian in the basis of rotated Bloch states

(19)H(W)(k) = (U(k))†(Udis(k))†H(k)Udis(k)U(k),

where Hnm(k) = εnkδnm. Next we find its Fourier sum

(20)Hnm(R) = 1

N0

∑
k

e−ik·RH(W)
nm (k).

1 As Udis(k) is rectangular, this is a unitary operation in the sense that (Udis(k))†Udis(k) = I.
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This operation is done once and for all for each of the N0 lattice vectors R lying in a supercell conjugate to the k-mesh (in practice we
choose a Wigner–Seitz supercell centred on the origin [25]). Hnm(R) can be recognised as the matrix elements of the Hamiltonian
between MLWF. Due to the strong localisation of the MLWF, the matrix elements Hnm(R) decay rapidly with R. In the spirit of a
Slater–Koster interpolation scheme [26] this allows us to compute the Hamiltonian on a much finer mesh of k-points in the original
Bloch space. We can perform the inverse Fourier transform

(21)Hnm(k′) =
∑

R

eik′·RHnm(R),

to yield the interpolation of Eq. (19) onto an arbitrary k-point k′. The final step is to diagonalise Hnm(k′) to obtain the interpolated
band energies.

By construction, the interpolated band energies coincide with the true bandstructure at the original k-points of the Monkhorst–
Pack mesh (if the SMV scheme is used, this is only guaranteed to occur within the inner energy window). At intermediate k-points,
the accuracy of the interpolation is dependent on the density of the original mesh [14,25].

Within wannier90 this interpolation procedure can be used to obtain plots of band structure, density of states and the Fermi
surface at modest computational cost. The Wannier interpolation formalism is rather general and can also be used to interpolate
arbitrary periodic operators [25].

3. Some technical aspects

3.1. Initial guess for iterative minimisation

The iterative minimisation of �I begins with an initial guess for the subspaces S(k). One possible choice is to start from the
initial, random phases of the Bloch states provided by the ab initio code. Alternatively, we may define a set of N trial functions
gn(r), n ∈ [1,N ], as an initial approximation to the N MLWF. These are projected onto the cell-periodic parts of the N

(k)
win Bloch

eigenstates inside the energy window:

(22)|φnk〉 =
N

(k)
win∑

m=1

A(k)
mn|umk〉,

where A
(k)
mn = 〈umk|gn〉 is an N

(k)
win × N matrix. Orthonormalising the resulting N functions {|φnk〉} via a Löwdin transformation,

we find

(23)
∣∣uopt

nk

〉 = N∑
m=1

(S−1/2)mn|φmk〉 =
N

(k)
win∑

m=1

(AS−1/2)mn|umk〉,

where Smn ≡ S
(k)
mn = 〈φmk|φnk〉 = (A†A)mn, and AS−1/2 is used as the initial guess for Udis(k).

The same trial orbitals {|gn〉} can also be used to initialise the minimisation of �̃. Using a similar projection procedure to the
one described above, an initial guess for the N × N unitary matrices U(k) is obtained at each k-point.

We now come to the choice of trial orbitals. As the minimisation scheme is quite robust, one option is to choose a set of
spherically-symmetric Gaussian functions whose centres are chosen randomly; wannier90 supports this option. On the other
hand, a user may wish to apply chemical and physical insight in order to select a better starting point. An ab initio code that is
interfaced to wannier90 may use any localised functions desired to construct the projections A

(k)
mn. For convenience, we have

defined a standard set of projection functions that should suffice for most situations. This is the set of atomic orbitals of the
hydrogen atom, which is a convenient choice for two reasons: first, analytical mathematical forms exist in terms of the good
quantum numbers n, l and m; and second, hybrid orbitals (sp, sp2, sp3, sp3d, etc.) may be constructed by simple linear combination
|φ〉 = ∑

nlm Cnlm|nlm〉, for some coefficients Cnlm. The angular parts of our projection functions are not the canonical spherical
harmonics Ylm of the hydrogenic Schrödinger equation, but rather the real (in the sense of non-imaginary) states Θlmr , mr ∈
[1,2l + 1], obtained by unitary transformation of the Ylm.

Each localised function is associated with a site and an angular momentum state. Optionally, one may define the spatial ori-
entation, the radial form and the diffusivity for each function. wannier90 is able to project onto functions with s, p, d and f
symmetry, plus the hybrids sp, sp2, sp3, sp3d, sp3d2. The user is referred to the documentation in the wannier90 distribution for
mathematical definitions and details on how to specify projection functions in the input file.

In general, the spread functional � has local minima and, occasionally, the minimisation becomes trapped in one. In other words,
the final solution may depend on the initial choice for S(k) and hence {gn(r)}. In most cases, we find that these local minima give
rise to MLWF that are complex, i.e., they have significant imaginary parts. In some cases, MLWF associated with local minima of
� are found to be real and the reader is referred to Ref. [27] for more details.
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3.2. Choosing the b vectors

As discussed in Section 2.1, in order to compute the spread functional we require a finite-difference formula for ∇k. We now
describe an automatic procedure to choose, for cells of arbitrary symmetry, the simplest such formula.

It is assumed that the Brillouin zone is discretised on a uniform Monkhorst–Pack mesh [22]. The vectors {b} connect each mesh-
point k to its nearest neighbours. Nsh shells of neighbours are included in the finite-difference formula, with Ms vectors in the sth
shell. For ∇k to be correct to linear order we require that (see Eq. (B1) of Ref. [1])

(24)
Nsh∑
s

ωs

Ms∑
i

bi,s
α b

i,s
β = δαβ,

where bi,s , i ∈ [1,Ms], is the ith vector belonging to the sth shell with associated weight ωs , and α and β run over the three
Cartesian indices. If f (k) is a smooth function of k, then its gradient may be expressed according to Eq. (8). For the case of a
linear function f (k) = f0 + g · k, this finite-difference formula gives the exact result ∇k,αf = ∑

b ωbbαgβbβ = δαβgβ = gα , where
summation convention over repeated Greek indices is assumed.

In order to find the weights ωs , we notice that Eq. (24) is symmetric in the Cartesian indices, therefore, there are six independent
elements that may be expressed through a matrix equation

(25)Aw = q,

where q is a vector of length six containing the six elements of the lower triangular part of δαβ , w is the vector of weights with
length Nsh, and A is a 6 × Nsh matrix given by Aj,s = ∑

i b
i,s
α b

i,s
β , where there is a one-to-one correspondence between j ∈ [1,6]

and the six independent pairings of α and β . A may be factorised using a singular value decomposition [28],

(26)A = UDVT,

which permits inversion of Eq. (25) and solution for the shell weights,

(27)w = VD−1UTq.

Our automatic procedure for choosing the shells is as follows: we add shells in order of increasing |b|; with each additional shell
we obtain the shell weights, and check to see if Eq. (24) is satisfied; if not, then we add a new shell and repeat the procedure. A new
shell may be linearly dependent on the existing shells, in which case one or more of the singular values will be close to zero and we
reject the new shell. When the Bravais lattice point group is cubic, the first shell of nearest neighbours is sufficient. The maximum
number of shells required is six (for triclinic symmetry). For the case of a very elongated unit cell it may be necessary for the routine
to search through a large number of shells in order to find the correct combination.

With the above finite-difference formalism, the quadratic spread converges only polynomially with the sampling of the Brillouin
zone. This slow convergence is a property of the spread operator, whereas the underlying MLWF converge rapidly with the k-point
density [29]. It may be possible to achieve improved accuracy and k-point convergence by using higher-order finite-difference
formulas for ∇k, but this has not been explored.

In some cases, the automatic procedure outlined above might not find the shells and weights that give the most spherically sym-
metric representation of the position operator. When this happens, special care may be required to ensure that the most symmetric
choice of shells is made [6], and this can be done explicitly (i.e., by hand) in the input file.

3.3. Specific algorithms for �-point sampling

For isolated molecules or extended systems of large unit cell, single �-point sampling in the reciprocal space can provide an
accurate description of the physical quantities of interest. When the �-point is sampled exclusively, the computational cost can be
reduced by exploiting the symmetries of the overlap matrices M(�,b).

First, at �, the b-vectors are linear combinations of the primitive vectors of the reciprocal lattice, thus imposing the following
conditions:

(28)ψn,�+b(r) = ψn�(r), un,�+b(r) = e−ib·run�(r).

Then, it follows that M(�,−b) is the Hermitian conjugate of M(�,b),

M(�,b)
mn = 〈um�|un,�+b〉 = 〈un,�+b|um�〉∗ = 〈un�|um,�−b〉∗

(29)= (
M(�,−b)

nm

)∗
.

Second, at �, the Bloch eigenfunctions may be chosen to be real. Then, the overlap matrices become symmetric, M
(�,b)
mn = M

(�,b)
nm ,

and only the upper or the lower half of M(�,b) is independent.
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Table 1
Timings (in seconds) for the valence states of crystalline silicon with (i) different densities of Monkhorst–Pack mesh

Nkp TSCF TM,A TW90 Niter

64 7 5 < 1 5
512 52 44 4 14

1728 190 142 13 30
4096 462 329 56 96

TSCF is the time taken by PWSCF to obtain the ground state wavefunctions at all Nkp k-points of the Monkhorst–Pack

mesh, TM,A is the time taken by pw2wannier90 to calculate M
(k,b)
mn and A

(k)
mn , and TW90 is the time taken by

wannier90 to localise and plot the MLWF. Niter is the number of iterations required to minimise the total spread.

Fig. 1. Convergence of total spread � for crystalline silicon with an 8 × 8 × 8 Monkhorst–Pack k-point grid. Solid curve: bond-centred s projection. Dashed
curve: atom-centred sp2-like projection. Dotted curve: atom-centred s and p projection. Dot-dashed curve: randomly centred spherical s-type projection. �0 is the
converged total spread and is independent of the initial projection used.

wannier90 includes a �-only branch of algorithms that is able to exploit these symmetries. These algorithms may be activated
by means of a logical keyword in the input file and they rely on the above relations being satisfied, i.e., the Bloch wavefunctions
must be real.

There are several other advantages beside the significant decrease in the number of operations. In the disentanglement pro-
cedure [2], the diagonalisation of a complex Hermitian matrix at each iteration step is replaced by that of a real symmetric
matrix, which ensures that Udis(�) is real. The localisation procedure in the �-only branch adopts an efficient algorithm pro-
posed by Gygi et al. [30]. This method minimises �OD (not �̃) by simultaneously diagonalising a set of real symmetric matrices,
{Re M(�,b), Im M(�,b)}. The U(�) from this method is inherently real, giving real MLWF as a final product.

It is worth mentioning that these MLWF are not necessarily identical to those obtained from the MV localisation procedure
unless �D is strictly zero due to symmetry of the system.

3.4. Representative timings and convergence

In this section, timings and convergence characteristics for representative calculations are presented. The initial band-structure
calculations are performed using the PWSCF code [7]. The self-consistent ground state is obtained, then the required overlap ma-
trices and projections are calculated using the post-processing routine pw2wannier90, supplied with the PWSCF distribution.
wannier90 is then used to obtain the MLWF. The PWSCF and pw2wannier90 calculations were performed on a four-processor
(dual dual-core) Intel Woodcrest 5130 2.0 GHz desktop computer and the wannier90 calculations on a single processor of the
same machine. The gauge-invariant and gauge-dependent spreads were converged to a tolerance of 10−10 Å2.

3.4.1. Crystalline silicon
First, we consider a two-atom unit cell of crystalline silicon. A kinetic-energy cutoff of 25 Ry is used for the plane-wave

expansion of the valence wavefunctions. The core-valence interaction is described by means of norm-conserving pseudopotentials in
separable Kleinman–Bylander form [31]. Table 1 gives timings for obtaining the valence MLWF for various densities of Monkhorst–
Pack k-point grid. Bond-centred s-type functions were used for the initial projection. It can be seen that the most time consuming
part of the procedure is the computation of the band structure, followed by construction of M

(k,b)
mn and A

(k)
mn, with wannier90

taking only 5–7% of the total time to perform the localisation of the MLWF and to write files for their visualisation.
In Fig. 1 the effect of using different initial projections for the MLWF is demonstrated. It is worth noting that even when choosing

randomly-centred s-type functions the correct MLWF are found in less than 10% of the total time.
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Table 2
Timings (in seconds) for MLWF in fullerene from general k-point and �-specific schemes

Projection � N TM,A TW90 Tdis Ndis
iter Tloc N loc

iter

Randomly-centred s F 120 901 33 n/a n/a 33 226
T 120 368 1 n/a n/a 1 16

Bond-centred s F 120 893 18 n/a n/a 18 117
T 120 372 <1 n/a n/a <1 11

Bond-centred s F 150 1595 46 22 75 24 83
Atom-centred pz T 150 623 12 11 75 1 9

Different initial projections are tested. “T” in the second column (�) indicates that the �-only branch of algorithms is used. N is the number of MLWF obtained.

TM,A is the time taken to calculate M
(k,b)
mn and A

(k)
mn, and TW90 is the total time taken by wannier90 to disentangle and localise MLWF. The individual time and

the number of iterations for each of these operations are given as Toper and N
oper
iter (where oper = dis or loc), respectively.

3.4.2. Fullerene
We consider an isolated fullerene molecule (C60) as a test case for the �-only algorithms. The molecule was placed in a cubic

supercell of side-length 40 a0 (21.2 Å), and the calculations were performed with �-point sampling, ultrasoft pseudopotentials [32],
and a plane-wave cut-off of 30 Ry.

Fullerene has 120 valence states in total. For the localisation of the valence MLWF, two choices of initial projections are com-
pared, one being 120 randomly-centred s-orbitals and the other being 120 s-orbitals placed on the MLWF centres generated by
the former run. The disentanglement procedure is tested on the extended 150 states comprising 120 valence states and 30 states
that cover the full π∗-manifold. Those 30 states are disentangled from the 100 unoccupied eigenfunctions spanning up to 7.5 eV
above the HOMO level. The final set of MLWF are found to consist of 60 atom-centred pz orbitals and 90 bond-centred σ -bonding
orbitals, similar to the MLWF shown in Fig. 4.

Timings for these calculations are summarised in Table 2. TM,A decreases by 60% when the �-only branch is used, because
only half the b-vectors are needed and the post-processing routine pw2wannier90 is optimised to take full advantage of real
wavefunctions.

The minimisation method used in the �-only branch is apparently more efficient than the conjugate-gradient algorithm, es-
pecially when the initial projections are far from the final, converged MLWF. �D vanishes in the case of a simple cubic lattice,
and � from the two different minimisation methods converges to an identical value up to the given tolerance. Tdis decreases by
50% for the reason discussed in Section 3.3, but Ndis

iter is the same, as it should be, and �I is identical within machine preci-
sion.

4. Structure of the program

The schematic structure of the program is outlined in Fig. 2. Each box represents a Fortran90 module and the lines represent
module dependencies. Modules only use data and subroutines from lower modules in the diagram. A description of the purpose of
each module is given below.

• constants: definition of constants (e.g., π ).
• io: error handling, timing, and input and output units.
• utility: commonly used operations such as conversion of Cartesian to fractional co-ordinates, string functions, matrix

multiplication wrapper, etc.
• parameters: all physical parameters relevant to the calculation and subroutines for reading them from the input file at the

start of a calculation. Subroutines for writing checkpoint files for restarting previous runs.
• kmesh: set up of the framework for reciprocal-space derivatives and, if in post-processing mode, writing a file which commu-

nicates to an ab initio code information on how to calculate M
(k,b)
mn and A

(k)
mn.

• overlap: reading of the overlap matrices M
(k,b)
mn and A

(k)
mn.

• disentangle: if using entangled energy bands, finding the optimal subspace within a specified energy window by minimis-
ing the gauge-invariant spread.

• wannierise: finding the unitary transformations U
(k)
mn amongst the energy bands which give rise to MLWF.

• plot: routines for output of Wannier functions, Fermi surface and band structure in file formats suitable for visualisation.
• wannier_prog: the main program.
• wannier_lib: library routines. wannier90 may be invoked directly from within an ab initio code as a set of library calls.

The reader is referred to Section 6.1 for a brief description and to the documentation in the wannier90 distribution for full
details.
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Fig. 2. Schematic structure of the program.

5. Installation

wannier90 is distributed as a gzipped tar file (http://www.wannier.org/). On Linux platforms, for example, it may be unpacked
by typing

> tar zxvf wannier90.tar.gz

which creates a directory containing the source files, documentation, examples, etc.
Compilation is straightforward. From the config directory of the distribution the user should select the make.sys.plat

file which corresponds most closely to the platform being used and copy it to the root directory of the distribution, renaming it
make.sys in the process. The values of system-dependent parameters (e.g., the location of the BLAS and LAPACK libraries,
the name of the Fortran compiler, the Fortran optimisation flags, etc.) that are defined therein should be modified to correspond
to the user’s particular system. Once this has been done, typing make from the root directory of the distribution will create an
executable wannier90.x. Further details and make options may be found in the file INSTALL.readme in the root directory of
the distribution.

6. Running wannier90

Before running wannier90 the user must perform a self-consistent first-principles calculation on the system of interest in order
to obtain a set of Bloch energy bands from which MLWF may then be constructed. Once the Bloch bands have been computed
wannier90 may be operated in a post-processing mode as described below.

The master input file for wannier90 is called seedname.win, where seedname is the prefix of all of the input and output
files. The input system is designed to be simple and user-friendly and is described comprehensively in the documentation that is
contained within the wannier90 distribution. An example input file is provided in Appendix A.

wannier90 must be run twice. On the first pass the command line option -pp must be used, as follows:

> wannier90.x -pp seedname

This causes the code to read the master input file seedname.win and generate the file seedname.nnkp that contains
all the information necessary to construct the overlap matrices M

(k,b)
mn and A

(k)
mn from the Bloch bands already obtained from a

first-principles calculation. In order to interface an ab initio code to wannier90 one needs to write subroutines that read seed-
name.nnkp, compute the overlap matrix M

(k,b)
mn and, optionally, A

(k)
mn from the Bloch bands and write these matrices in the

http://www.wannier.org/
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Fig. 3. Band structure of graphite. Solid lines: original band structure from a conventional first-principles calculation. Dotted lines: Wannier-interpolated band
structure. The zero of energy is the Fermi level.

appropriate format to files called seedname.mmn and seedname.amn, respectively. If using the disentanglement procedure or
plotting a band structure, density of states or Fermi surface, wannier90 also requires the eigenvalues εnk corresponding to the
Bloch states ψnk(r), which should be written to a file called seedname.eig. The reader is referred to the documentation that is
contained within the wannier90 distribution for complete details of these files.

Once the necessary files have been written, wannier90 must be run again, this time without any command-line options:

> wannier90.x seedname

On this pass, the code reads the overlap matrices and eigenvalues (if required) from file and performs the maximal-localisation
procedure as outlined in Section 2, writing the output to a file seedname.wout.

At the time of writing, the PWSCF code (a part of the QUANTUM-ESPRESSO package [7]), which is available under GNU General
Public License, has a wannier90 interface in the form of a post-processing program called pw2wannier90. It is the authors’
hope that wannier90 is a sufficiently useful tool for investigators to be motivated to write interfaces to other electronic structure
codes.

6.1. Library mode

wannier90 may also be compiled as a library and invoked with subroutine calls from within an ab initio code. The command

> make lib

creates a library libwannier.a in the root directory of the distribution. The library mode of wannier90 works along exactly
the same lines as the post-processing mode, described above. The formal difference is that in the latter, information is passed
between the ab initio code and wannier90 via files, such as seedname.nnkp and seedname.mmn, etc., whereas, in the
former, it is done via direct calls to library subroutines. As before, there are two stages: first, a call to the library subroutine
wannier_setup, which returns the information necessary to construct the overlap matrices M

(k,b)
mn and A

(k)
mn from the Bloch

bands; second, a call to the subroutine wannier_run, which takes as input the M
(k,b)
mn matrix (and A

(k)
mn and the eigenvalues εnk,

if required) and performs the maximal-localisation procedure as outlined in Section 2. The reader is referred to the documentation
in the wannier90 distribution for further details.

7. Examples

7.1. Graphite

As an example we consider the generation of MLWF to describe the states around and below the Fermi level in Bernal (A-B-A)
graphite. From the bandstructure (Fig. 3) we expect that the minimum number of Wannier functions needed to describe these states
is 10 per unit cell (2.5 per atom). We shall see that this choice corresponds to an intuitive chemical description of the system.

We perform the initial band-structure calculations using the PWSCF code [7]. A kinetic-energy cutoff of 30 Ry is used for
the plane-wave expansion of the valence wavefunctions. The core-valence interaction is described by means of norm-conserving
pseudopotentials in separable Kleinman–Bylander form [31]. We obtain the self-consistent ground state using a 16 × 16 × 16
Monkhorst–Pack mesh of k-points [22] and a fictitious Fermi smearing [3] of 0.02 Ry for the Brillouin-zone integration. Then, we
freeze the self-consistent potential and perform a non-self-consistent calculation on a uniform 6 × 6 × 6 grid of k-points. At each
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Fig. 4. Isosurface contours of MLWF in graphite (red for positive value and blue for negative). [left] σ -type MLWF. [right] pz-type MLWF. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. [left] Band structure of lead. Solid lines: original band structure from a conventional first-principles calculation. Dotted lines: Wannier-interpolated band
structure. The zero of energy is the Fermi level. [right] Fermi surface of lead.

k-point we calculate the first 20 bands. The required overlap matrices and projections are calculated using the post-processing
routine pw2wannier90, supplied with the PWSCF distribution. Projections onto atom centred sp2 and pz functions are used to
construct the initial guess, and wannier90 is used to obtain the MLWF. The gauge-dependent and gauge-independent spreads
converge to machine precision in 300 and 70 steps, respectively. The resulting MLWF are a set of six symmetry-related bond-
centred σ -orbitals and four atom-centred pz-orbitals, shown in Fig. 4 (as plotted with the XCrySDen package [33]). Similar MLWF
were obtained for carbon nanotubes [14]. In Fig. 3 we show the band structure of graphite obtained using Wannier interpolation and
compare it to the band structure obtained from a full first-principles calculation. Within the inner energy window the agreement is
essentially perfect.

7.2. Lead

Let us consider the generation of MLWF to describe the states around and below the Fermi level in lead. As relativistic effects
can be significant in heavy elements, we include spin–orbit coupling in our electronic structure calculation. In lead, the 6s and 6p
states form an isolated set of bands around the Fermi level. The ground-state structure of lead has both time-reversal and inversion
symmetries, so that each band is two-fold degenerate. We will obtain a set of eight MLWF to describe these states.

Once again we perform the initial band-structure calculations using the PWSCF code. A kinetic-energy cutoff of 45 Ry is used for
the plane-wave expansion of the valence wavefunctions. The core-valence interaction is described by means of spin–orbit coupled
norm-conserving pseudopotentials [34] in separable Kleinman–Bylander form. We obtain the self-consistent ground state using a
16 × 16 × 16 Monkhorst–Pack mesh of k-points and a fictitious Fermi smearing [3] of 0.02 Ry for the Brillouin-zone integration.
The self-consistent potential is frozen and we perform a non-self-consistent calculation on a uniform 12 × 12 × 12 grid of k-points.
Then we calculate the required overlap matrices and projections using pw2wannier90. For the initial projection we use orbitals
with sp3 symmetry, four projections onto spin-up states and four onto spin-down states.

wannier90 is used to obtain the MLWF. The gauge-dependent spread is converged in 200 steps. In Fig. 5 we show both the
band structure and Fermi surface obtained using Wannier interpolation. Although the spin–orbit induced splitting is large at certain
points in the band structure (e.g., 3 eV at �), the Fermi surface is not significantly different from a scalar-relativistic calculation.
The reader is referred to Ref. [12] for a detailed discussion of how to construct spinor Wannier functions for ferromagnetic systems
with broken time-reversal symmetry.

8. Conclusions

In conclusion, we present a new code called wannier90 for computing maximally-localised Wannier functions. wannier90
is freely available under the GNU General Public Licence [35]. It is very user-friendly and is written in Fortran90, employing
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modern programming techniques that enable the addition of further functionality, such as transport properties or interpolation of
electron–phonon couplings, in an easy and modular fashion. wannier90 has been seamlessly interfaced to the PWSCF plane-
wave DFT code [7] and, at the time of writing, interfaces to other codes, e.g., ABINIT [36], CASTEP [37] and FLEUR [38], are in
progress. We hope that the availability of wannier90 will encourage the wider use of maximally-localised Wannier functions in
the electronic structure community.
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Appendix A. Sample files

Input file:

num_bands = 20
num_wann = 10
dis_win_max = 19.2
dis_froz_max = 9.8
dis_num_iter = 400
num_iter = 100

Begin Atoms_Frac
C1 0.0000000000 0.0000000000 0.7500000000
C1 0.3333333333 0.6666666667 0.2500000000
C2 0.0000000000 0.0000000000 0.2500000000
C2 -0.3333333333 -0.6666666667 0.7500000000

End Atoms_Frac

Begin Unit_Cell_Cart
2.1304215583 -1.2299994602 0.0000000000
0.0000000000 2.4599989204 0.0000000000
0.0000000000 0.0000000000 6.8000000000

End Unit_Cell_Cart

Begin Projections
C1:sp2;pz
C2:pz

End Projections

bands_plot = true

begin kpoint_path
G 0.0000 0.0000 0.0000 M 0.5000 -0.5000 0.0000
M 0.5000 -0.5000 0.0000 K 0.6667 -0.3333 0.0000
K 0.6667 -0.3333 0.0000 G 0.0000 0.0000 0.0000
G 0.0000 0.0000 0.0000 A 0.0000 0.0000 0.5000

end kpoint_path

mp_grid = 6 6 6

begin kpoints
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.16666667
0.00000000 0.00000000 0.33333333
0.00000000 0.00000000 0.50000000
0.00000000 0.00000000 0.66666667
0.00000000 0.00000000 0.83333333
0.00000000 0.16666667 0.00000000

.
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.

.
0.83333333 0.83333333 0.66666667
0.83333333 0.83333333 0.83333333

End Kpoints

Output file (truncated):

------------------------------------------------------------------------------
Final State
WF centre and spread 1 ( -0.354954, 0.614798, 5.100000 ) 0.59341185
WF centre and spread 2 ( -0.354954, -0.614798, 5.100000 ) 0.59341185
WF centre and spread 3 ( 0.709907, 0.000000, 5.100000 ) 0.59341190
WF centre and spread 4 ( 0.000000, 0.000000, 5.100000 ) 1.04236015
WF centre and spread 5 ( 0.354954, 1.845201, 1.700000 ) 0.59341120
WF centre and spread 6 ( 0.354954, 0.614798, 1.700000 ) 0.59341085
WF centre and spread 7 ( 1.420514, 1.230000, 1.700000 ) 0.59341100
WF centre and spread 8 ( 0.710140, 1.229999, 1.700000 ) 1.04371374
WF centre and spread 9 ( 0.000000, 0.000000, 1.700000 ) 1.04233128
WF centre and spread 10 ( -0.710140, -1.229999, 5.100000 ) 1.04368702
Sum of centres and spreads ( 2.130421, 3.689998, 33.999999 ) 7.73256084

Spreads (Ang^2) Omega I = 6.121019675
================ Omega D = 0.032181361

Omega OD = 1.579353494
Final Spread (Ang^2) Omega Total = 7.732554530

------------------------------------------------------------------------------
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