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This is a list of intended revisions that go beyond the scope of a simple erratum. These
revisions represent attempts to clarify the presentation, or in some cases, to expand
the discussion slightly to fill in gaps in the original presentation. In case there is ever
an opportunity to publish a second edition of the book, I would expect to include
these revisions there.

In what follows, red font is used for new text, and [blue] is for deleted old text.

List of changes

• p. 69, Eq. (2.88) should be changed to

(En −H)|∂λn⟩ =
[
∂λ(H − En)

]
|n⟩ . (2.88)

to clarify that the derivative acts only on H and En.

• p. 70: Add the following paragraph just above the paragraph containing Eq. (2.92):

The preceding expressions are exact at arbitrary λ as long as all
relevant quantities (H, |n⟩, En, Qn, etc.) are evaluated at that λ.
In practice, however, we typically carry out a perturbation expansion
around some λ0, evaluating all such quantities once and for all at λ0. In
this context we are describing the first order in a perturbation theory
in λ.

• p. 70, below Eq. (2.92), modify the text to read

for any real An, as can be checked by plugging into Eq. (2.90)(see
Ex. 2.11). [and multiplying on the left by an arbitrary eigenstate ⟨m|
(see Ex. 2.11). In the case that ⟨m| = ⟨n|, this] Multiplying both sides
of Eq. (2.92) on the left by ⟨n| readily yields ⟨n|∂λn⟩ = −iAn, since ...
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• p. 89: Remove the equation number from Eq. (3.35). (See next item.)

• p. 90: Add the following paragraph at the end of Section 3.2.1:

Note that the Berry curvature of Eq. (3.31) can be written in the
notation of Section 2.3 as −2Im ⟨∂µn|Qn|∂νn⟩, where Qn = 1− |n⟩⟨n|
and we have used that ⟨∂µn|n⟩ = iAn,µ and ⟨n|∂νn⟩ = −iAn,ν are pure
imaginary. Thus, Ωn,µν = −2Im ⟨n|(∂µH)T 2

n(∂νH)|n⟩, or explicitly,

Ωn,µν = −2Im
∑
m ̸=n

⟨n|(∂µH)|m⟩⟨m|(∂νH)|n⟩
(En − Em)2

. (3.35)

This is sometimes referred to as the “Kubo formula” for the Berry cur-
vature. It is easy to evaluate in a tight-binding context, but requires in
principle an infinite sum over unoccupied states in a density-functional
context.

• On p. 97, following Ex. 3.5, add a new additional Ex. 3.5a as follows:

A two-band Hamiltonian that depends on a set of parameters λ = {µ, ν}
can always be expanded in Pauli matrices as

h(λ) = g(λ)12×2 + f1(λ)σ1 + f2(λ)σ2 + f3(λ)σ3 .

Recall that for a 3-vector f(λ) depending on two parameters, the solid
angle ω spanned by f on the unit sphere, per unit area in λ space, is

∂2ω

∂µ∂ν
= (∂µf̂)× (∂µf̂) · f̂ .

Using our standard result for the Berry curvature of a spinor, show that
the Berry curvatures of the upper and lower bands (spins pointing along
±f̂) are given by

Ωµν(λ) = ∓(∂µf)× (∂µf) · f
2f 3

respectively. This result is especially relevant to avoided crossings, since
the Hamiltonian in the vicinity of an avoided crossing is typically well
approximated by considering only the two-band subspace.

• p. 137, above Eq. (3.138), the text should be modified to read

Let’s see how these Berry connection and curvature matrices transform
under [the] a multiband gauge change taking the form of of Eq. (3.107).
In the present context, |unk⟩ and |ũnk⟩ represent two different smooth
and periodic choices of gauge. It is useful...
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• p. 147, the middle paragraph should be expanded into two paragraphs as follows:

Recall from Section 2.1.5 that the velocity operator is properly de-
fined as

v =
−i
ℏ

[r, H] . (4.13)

For a simple Hamiltonian of the form H = p2/2m + V (r) the velocity
operator is just v = p/m where m is the electron mass; this simpli-
fied expression often appears in the literature. However, we will adopt
the proper expression in terms of the commutator above, in part be-
cause it must be used in more complicated cases, as when spin-orbit
coupling or external fields are present as discussed in Section 2.1.2. For
finite systems, Eq. (4.13) leads to the standard identity iℏ⟨ψm|v|ψn⟩ =
(En − Em)⟨ψm|r|ψn⟩ relating the dipole matrix elements in velocity and
position form when taken between two different eigenstates of H.

Now we heuristically let our finite system become large, identify its
eigenstates as Bloch states, and make the transformation from H to Hk

with the corresponding vk = e−ik·rveik·r given by

vk =
−i
ℏ

[r, Hk] (4.14)

(since r commutes with eik·r). Then the dipole-matrix-element identity
takes the form iℏ⟨umk|vk|unk⟩ = (Enk − Emk)⟨umk|r|unk⟩, leading to

⟨umk|r|unk⟩ = iℏ
⟨umk|vk|unk⟩
Enk − Emk

. (4.15)

The right-hand side of this equation remains perfectly well defined in the
thermodynamic limit, so we take this as a definition of the expression
⟨umk|r|unk⟩ (valid only for m ̸= n) henceforth.

• p. 158, Ex. 4.2: Modify the text to read

Justify the claim made at the end of Section 4.2.1 to the effect that an
electric field perturbation can also be treated as the adiabatic response
to a time-dependent vector potential[ A(t) = −cEt]. Working in 1D,
let A(t) = −cEt (i.e., increasing uniformly with time) and start from
Eq. (4.25) with A playing the role of λ. Then use the fact that A and k
enter Hk in a similar way to arrive at Eq. (4.22), from which formulas
such as Eq. (4.23) follow.

Note that according to an Erratum, the i should be absent from Eq. (4.25).

• p. 289, just above Eq. (6.27):

3



In view of this quantum of indeterminacy, it is natural to express αiso

in terms of a phase angle θ, known as the “axion angle,” defined via

• Sentence crossing from p. 296-7:

Just as β can be incremented by 2πm for integer m without changing
e−iβ, so can any eigenvalue of B be incremented by 2πm [in the diagonal
representation of B] (keeping the eigenvectors fixed) without changing
U .
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