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ABSTRACT 
We report the application of an energy dispersive X-ray diffraction (EDXRD) method 
to profile the depth variation of the strain in shot peened materials.  The near surface 
compression, induced by shot peening, has made it a classic industrial technique to 
extend the loading limits and fatigue lives of materials. We have measured the detailed 
depth variation of the strain, in high carbon spring steel plackets of varying thickness, 
and peened with varying peening shot sizes. Our results directly elucidate a number of 
important issues: the magnitude and depth of the near surface compression; the detailed 
coupling of the peening-compression to the underlying plackets elastic strain with the 
resulting radius of placket curvature; and the correlation of the peening-compression 
depth with the peening shot size.  A simple elastic/plastic model is used to 
quantitatively understand the peening effects and experimental results. 
 

INTRODUCTION 
Catastrophic failure of cyclic load-bearing components is, more often than not, near surface 
initiated.  In particular, tensile surface strains/stresses, arising in the manufacture, processing 
or duty cycle of the component, greatly accelerate the surface-initiation and growth of cracks 
[1].  Since antiquity it has been empirically recognized that surface hardness/durability could 
be enhanced by impact-cold-working [2].  The systematic improvement of fatigue life by shot 
peening dates back to the early 1900’s [2].  The high impact velocity of the peening shot 
causes a biaxial surface expansion and a near-surface plastic region, which is rendered in a 
state of compression by the coupling to the underlying bulk material.  The characterization of 
the surface compression/toughening as a function of the peening intensity has been studied 
exhaustively over the years to optimize performance of a multitude of components varying 
from dental picks to airplane wings.   
Characterization of the detailed magnitude and depth of the shot peening surface compression 
are crucial to the systematic improvement of this already highly successful surface 
toughening process.   Such characterization rests on the same repertoire of techniques used in 
the more general field of residual strain/stress (RS/S) depth profiling [2-5].  Many of the most 
frequently used techniques in this area are explicitly destructive, and involve theoretical 
modeling of the strain fields accompanying material removal (e.g. hole drilling and layer 
removal) [3].  Conventional X-ray and neutron scattering have traditionally been the only 
direct (i.e. involving actual lattice parameter measurements), non-destructive methods for 
strain profiling as a function of depth into a material [2-5].  Unfortunately, the short 
penetration depth of the former (< 0.01 mm), and the large sampling volume (~1mm3) of the 
latter make their applicability to shot peening studies quite demanding.  
In recent years high intensity/energy synchrotron radiation has begun to be used for deeply 
penetrating X-ray diffraction strain profiling [5-9]. The high count rates, from small 
diffraction volumes, and simultaneous multi-line diffraction spectra achievable using 
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EDXRD has made it one of the prime techniques for such strain field depth profiling[5-7].   
In this paper we discuss EDXRD strain profiling studies on shot peened test materials.   
 
EXPERIMENTAL 
The measurements were made using the high-energy/intensity "white beam" (20-150 KeV) 
"wiggler" source at X17-B1 at the Brookhaven National Synchrotron Light Source 
(NSLS)[5].  In EDXRD the incident/diffracted beam and sampling volume are fixed with the 
Bragg reflections being collected as a function of energy.  The relation between the Miller 
indexed inter-atomic-plane spacing (dhkl) and the corresponding Bragg reflection energy Ehkl 
is given by Ehkl(in KeV)= 6.199/[sin(θ) dhkl(in Å)], where the scattering angle, 2θ ~ 12° was 
used in this work.  A high-resolution, solid state Ge-detector was used in the data collection.  
The calibration of the detector energy scale and scattering angle were accomplished using 
multiple atomic fluorescence and cubic diffraction standards.  A description of the detailed 
experimental setup can be found elsewhere [5-7]. 
In our EDXRD method the incident/diffracted beams are stationary and apertured to ~40 µm 
in height defining a small gauge volume.  The diffraction profiling is accomplished by 
sample micro-positioning through the fixed gauge volume.  The diffraction data analysis 
involved a several step procedure [7].  Background and flexible peak fitting functions were 
used to determine the Bragg lines centers of gravities. The average lattice parameter (a) was 
determined by least squares fitting over all lines, and was refined by a culling of lines with 
high a-value deviations and/or statistical error.  The relative lattice parameter precision of 
this fitting process was between ±0.0001 and ±0.0003 Å (or better).  It should be noted that 
evaluation of the strain from ∆a/ao, using each Bragg line individually, always tracked (with 
larger error bars) the results of the higher statistics method.   
The stress-free reference lattice parameter (ao), used in the strain ε = ∆a/ao calculation, was 
determined by the equilibrium condition that the integrated stress (σ) across the material 
must be zero [10-11].  In fact for correct strain determination, appropriate determination of ao 
is essential, but usually exceptionally elusive, due to the intrinsic difficulty of creating a truly 
equivalent unstrained lattice [16].  Our procedure automatically yields a precise ao value.  
Here it should be noted that potential variations between the test plackets make the simple 
use of the ao value of the unpeened samples in principle an unknown approximation. In fact 
the principle results would be very little changed if the unpeened ao values were used.  
Detailed measurements by our group have shown that the stress in these peened samples is 
biaxially symmetric.  In this biaxial case the strain is related to the stress by σ = ε E/(1-ν), 
with Young’s modulus E = 200 Gpa and Poisson ration ν= 0.3. [See footnote 12 regarding 
stress versus strain].   
 
RESULTS AND DISCUSSION 
This shot peenning study was conducted on standard 1070 cold rolled spring steel plackets 
heat-treated to 46-48 Rc hardness, and initially having 0.0005 arc flatness.  As we will see, 
these standard steel plackets are also residual “strain-free” to the limit of our resolving 
power.  The shot-peened samples were prepared with the invaluable collaboration of the 
Metal Improvement Company.  In the shot peening industry the evaluation of peening 
intensity is calibrated by the simultaneous peening of spring steel test plackets (Almen-
strips).  The placket’s radius of curvature, R, (measured with an Almen Gauge [2]) is then 
used to quantify the peening-induced stress via the bending-moment response.  A schematic 
of a peened placket, with exaggerated curvature, is shown in Figure 1b.   
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To motivate both the shot peening effect and our strain/stress profile results we will consider 
a simple elastic-plastic model [13,14] (similar to that used for differential thermal expansion 
in bi-metallic strips).  The peened specimen (see Figure 1a) is divided into two parts; the 
peened-plastic-surface region (1) of thickness h1, and the underlying steel (region 2) of 
thickness h2 (note that h1 + h2 = h, is the the placket thickness). The peened-region undergoes 
a plastic deformation that, in the absence of a coupling to the underlying steel, would be a 
dilatation of magnitude εp.  The coupling to region-2 introduces an accommodation, 
compressive stress P1 
 
 
 

 
 
 
 
 
 
 

Figure 1b.  Schematic for bending moment and 
radius of curvature for peened material (see text). 

 Figure 1a.  Schematic of model for shot peening 
strains/stresses (see text).  

 
(and elastic strain ε1) on the peened layer.  In reaction, the underlying steel is also elastically 
strained, with a tensile stress P2 (and the strain ε2 as noted above), to accommodate to the 
peened-plastic-surface.   The matching of the strain at the region-1/2 interface requires εp= 
ε1- ε2 and stress (force) equilibrium mandates that P1=P2=P.  The compressive/tensile force 
couple (P1, P2) introduces a bending moment (M) to the specimen given by M = P(h1+h2)/2= 
Ph/2 [14].  In response to this bending moment there is linear strain/stress (σ/ε) variation 
across the placket given by σ  = E’ ε  = [M/I] y or ε  = [M/(E I)] y = y/R.  Here: y is the depth 
coordinate into the placket, referenced to the null-strain point in the interior; I = bh3/12 is the 
second moment of the beams cross sectional area; E’ is the appropriate elastic modulus (E/[1-
ν] here); and R is the radius of curvature of the placket.   
In the above analysis it should be noted: that 1.) the bending moment and compressive force 
on the peened layer both follow from the placket curvature; but 2.) that the absolutely crucial 
absolute compressive (negative) stress in the peened layer can only be evaluated with a 
knowledge of the peened layer thickness h1 by σ1=P/(h1 b) = E’ε1.  It is, of course, the 
negative value of σ1 that produces the enhanced surface-tensile load capacity in shot peend 
materials as illustrated by the relation σ1+σtensile-load< σtensile-yield.  Although a body of 
empirical and theoretical work has allowed the industry to successfully estimate σ1 for 
various materials and peening conditions using only the Almen curvature, a direct 
measurement of h1 is important for deeper understanding of the shot peening process. Thus 
the nondestructive measurement of both h1 and ε1 (or calculated σ1), via our depth-profiling 
measurements, provide crucial information regarding the fundamentals of the shot peening 
process.  
With this simple model in mind, we show in Figure 2a the lattice-parameter/stress profile of a  
3.85 mm thick spring steel placket, intensly peened, with 550 (1.4 mm diameter) hard shot, to 
a curvature radius of RA=1650 mm (as measured in collaboration with the Metal 
Improvement Corporation, by an Almen Gauge).  Figure 2b shows a microscope picture of 
the indentations  
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on the peened surface with an approximate distance scale. This specimen was an Almen 
gauge calibration standard, and was substantially thicker than the thickest Almen strip used in 
shot peening intensity monitoring.  The lattice paramater profile (see Figure 2a), of the 
peened  
steel placket manifests dramatic internal strains.  Two points should be noted here: our 
technique measures the atomic inter-planar distances parallel to peened surface (i.e. along the 
most important direction in this problem); and our measurements are of elastic strain only, 
with plastic-deformation-stress effects being evidenced by the concomitant strain response.  
The peening-induced plastic compressive strain extends to a depth of about 1 mm (region 1).  
As expected from the simple model, the underlying steel (region 2) responds to the peened 
layer elastically, with the bending moment creating a linear elastic strain vs. position in 
region 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 2a.  Measured
parameter and calcul
profile for a 3.85mm
steel placket peened 
hard steel shot. 

 
 
 
 
 
 
2 given by a = a0 (1- y/R).  Least squares fitting the linear portion of the re
a microscopically-determined curvature of R= 1530 mm, in quite good a
macroscopic Almen Gauge curvature (RA=1650 mm). 
Qualitatively in region 2, an equilibrium-required balancing interior ten
over a wide depth range (region 2t).  The linear elastic response overshoot
yield a compressive elastic strain near the unpeened surface also (reg
compressive elastic stress is to be expected at this concave surface.  In te
model, the “strain free” equilibrium lattice parameter a0 = 2.8664 Å, and
0.00214 and ε2= .000667 were determined.  In Figure 2a, the right-scale s
the stress versus position in the specimen.  The stress in the plastic regi
indicating substantial strain hardening in this layer.  Thus, our strain 
provides a direct and clear quantitative method of characterizing the deta
distribution in such important peening modified materials. 
It should be noted that Figure 2a also shows the lattice parameter profile 
mm thick spring steel blank.  Importantly, our results indicate that this “v
provides an excellent, essentially strain-free standard.  Moreover, the consta
parameter across this standard experimentally sets of the maximal ext
instrumental effects in our data.  Additional experiments on powdered Ge a
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 Figure 3.  Strain profile for a 2.4 

mm thick C-Almen strip peened 
with hard steel shot of diameter 
0.84mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Strain profile for a C-
Almen strip peened on both 
surfaces with hard steel shot of 
diameter 0.58 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
standards” and detailed simulations have directly confirmed this small greatest upper bound 
of systematic instrumental effects in our technique [5-7]. 
In Figure 3, we show the strain profiles for an Almen-C spring steel strip, peened with 330 
hard steel shot (0.84 mm).  In this case, the strain between the atomic planes along both the 
long and short directions of the strip were measured utilizing two sample orientations with 
90° relative rotation.  The peened region extent and the microscopic elastic curvatures in the 
two directions are quite similar. The upturn in the strain very near the peened surface is 
present in many of the strain profiles we have studied and is common in shot peening 
literature.  
In Figure 4 we show the strain profile for another Almen-C strip peened on both  
surfaces with 230 hard steel shot (0.58 mm).  Such “double peening” exploits the balancing 
of the peening on the two surfaces to yield surface toughening of a thin component without 
the elastic curvature that would result from a single pened surface.  Indeed, referring to 
Figure 4, one can see that nearly constant interior tensile strain evidences only a slight slope 
(curvature).  
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Comparison of the depth of the compressed region in Figures 2-4, suggests a direct 
correlation with the peening shot size.  As a first step toward checking this correlation, we 
show in Figure 5 the calculated stress profiles for our all of the peened samples discussed 
here, plotted versus their distance from the peened surface. The linear elastic contributions to 
each curve, indicated in the figure, obscure decisive comparison of the peening depth.  
Accordingly, we have subtracted this linear component from these results and present in 
Figure 6 resulting elastic- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  A comparison of the 
stress profiles for the samples 
discussed above.  The solid 
lines indicate the linear elastic 
components. 

subtracted stress profiles.  To provide a notion of the detailed variability in the peening 
process, the double peened sample data is included twice (once for each surface) and stress 
profiles in two directions for the 0.84 mm-shot-pened sample are also included.   
 

Figure 6.  The stress profiles for the samples in the previous figure with the linear elastic components 
subtracted.  Note that results for both surfaces of the double peened sample are included..  The arrows 
mark the compression onset and half-step depths.  Inset: a plot of the onset and half-step compression 
depths plotted versus peening shot size.  
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The larger-shot-size/deeper-plastic-layer correlation is dramatically apparent in Figure 6.  
Two compression depth indicators are labled by arrows in the figure; the depth of first onset 
of the compressional deviation; and the compression half step depth.  These depths are 
plotted in the inset of Figure 6 versus the peening shot size and their correlation is abundantly 
clear.  With only three points, the linear lines are meant to be guides to the eye, however 
linearity is clearly suggested.    
Some time ago, Al-Hassani [15]used an analytical treatment to derived an exprssion for the 
depth (h1) of the plastically compressed shot peened layer, which can be paraphrased as         
h1/r = [c]1/2[ρ2Pg/ Py]1/4.  Here r is the radius of the shot, Pg is the gas pressure of the peening 
nozzle, Py is the dynamic-yield-strength of the peened martial and ρ is the mass density of the 
peening shot.  The constant “c” can also involve contributions from the details of the nozzle 
and shot size.  However, the impression of his work is that, to first order, a linear plastic-
depth vs. shot-size correlation is not unreasonable, for a given peening setup as employed 
here.  The correlation we observe between the shot-size and plastic-peened-layer depth 
therefore appears consistent with these model calculations. 
 
CONCLUSION 
In summary, our implementation of the EDXRD is well suited to directly and 
nondestructively studying the key details in the depth dependent strain/stress fields induced 
by shot peening.  Specifically, the depth and magnitude of the near surface-plastic-
compression zone and the elastic bending of the underlying material can be probed precisely.  
The correlation between peening shot size and the depth of the plastic-compression zone in 
our results is quite suggestive.  Interestingly, our technique is amenable not only to static 
residual strain measurements, but also to in-situ load experiments.  Thus, the interaction of 
the residual and impressed-load stresses, which are at the basis of the benefits of shot peening 
technology, should be accessible to study.   
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