Ligand Isomerism and Stacking in Square Planar Platinum(II) Complexes

M. J. Coyer, M. Croft, J. Chen, and R. H. Herber

Received September 12, 1991

The structure and bonding in two forms of the bistiocyanate complex of Pt(II), Pt[(bpy)(X)] (where bpy is 2,2'-bipyridyl and X is the pseudohalide), have been studied by solution and solid-state NMR, FTIR, and EXAFS spectroscopies. The yellow complex, which is soluble in a variety of organic solvents, contains two cis S-bonded SCN ligands and is the kinetically favored form. On heating, either in solution or as a solid, this complex transforms to a red insoluble complex, in which the SCN ligands have "flipped" to become N-bonded and which appears to be the thermodynamically stable form at room temperature. Conversion of the solid does not involve loss of a solvent molecule. EXAFS experiments involving the Pt-L edge show the presence of two Pt-Pt distances in the red solid, one of which is indicative of the formation of stacked square planar Pt moieties, in which the 18-electron rule is satisfied.

The majority of known complexes of Pt(II), a d⁸ transition metal, involve Pt sp²d hybridization, giving rise to a square planar coordination of the ligands around the metal center. Such complexes display a rich (and challenging) set of chemical and physical properties, including various types of isomerism, ¹ polycondensation, ² optical properties, ³ and a tendency to form chain-type polymers with anisotropic transport properties. ⁴ In addition, their importance as anisotropic organometallic therapeutic agents ⁵ have made these complexes the subject of intense study in recent years.

In particular, the thiocyanate complexes of Pt(II) have aroused considerable attention because of their unusual chemical and physical properties and have been the subject of several recent reviews. ⁶ The bistiocyanate complexes of Pt(II), in which two coordination sites are occupied by a bidentate ligand, thus forcing the pseudohalide ligands to occupy cis positions, are of particular interest. Subtle chemical modifications of the bidenate ligand can be used to influence the nature of the pseudohalide bonding and the solvation of the solids, as well as the chemical properties of the product. In his extensive review of "ambidentate ligands", Burmeister ⁷ points out that there are, in fact, 10 distinguishable modes in which the SCN group can bond to a metal center, including ionic, simple covalent, bridging, linear, and bent bond formation. Of these, the M-SCN (type 13) and M-NCS (type 12) ligations are most fundamental in understanding the interaction between Pt and the "soft" (more easily polarizable, i.e., S) and "hard" (i.e., N) end of the ligand as it exists in a particular complex.

In this context, it was reported some time ago ⁸ that the bistiocyanate complex of Pt(bpy) (where bpy is 2,2'-bipyridyl) can exist in two isomorphic forms: a yellow complex which is soluble in a variety of (coordinating) solvents and which transforms under relatively mild conditions to a polymeric (red) species, which is difficult to compare quantitatively the two signal intensities. However, if the EPR signal of 2 arises from the thermally populated S = 2 state (antiferromagnetic coupling ⁹), then at 205 K for Kₐ = 1 × 10⁻⁴ we calculate the signal intensity ratio, I(3)/I(S) = 2 of 2, to be 1/11, 1/3, and 1/1 for parts A, C, and D of Figure 2, respectively; this is the correct trend, with only the Figure 2D ratio appearing to be too small.

Acknowledgment. We are grateful to Robert Ditchfield and Russell Hughes for valuable discussions and thank Russell Hughes for the use of his glovebox. We thank one reviewer for drawing our attention to overlap between the chloride pₚ and chromium dₒ orbitals in 3 and another for pointing out the relationship between monomer and total metal concentrations for a dimer–monomer equilibrium. The EPR spectrometer was purchased in part with funds from the National Science Foundation (Grant CHE 8701406) and the Dreyfus Foundation.

Contribution from the Departments of Chemistry and Physics, Rutgers University, New Brunswick, New Jersey 08903

1Department of Chemistry.
2Institute of Physics.
occurred in going from the M-SCN to the M-NCS form. Moreover, the relationship between this flip and the stacking of complexes to give Pt-Pt interactions (and an effective 18-electron configuration around the metal atom) has not been examined in detail.

In the present study, extended X-ray absorption edge measurements (EXAFS) in conjunction with detailed FTIR spectroscopic and solution and solid-state NMR measurements on 15N and 13C isotopically labeled species have been carried out to provide a more detailed description of the differences in the two forms of the bipyridyl complex and to account for the chemical behavior of platinum with respect to the amphoteric SCN ligand.

Experimental Section

(a) Synthesis of the Complexes. (1) Pt[L(SCN)2] (L = 2,2'-bipyridyl (bpy) and 1,10-Phenanthroline (phen)). Commercial K2PtCl4 (Aldrich) was used without further purification and converted into Pt[L(Cl)]2 by literature methods. A known amount of this product was dissolved in a minimum amount of DMSO with heating, and to this was added twice the stoichiometric amount of AgClO4 in ca. 5 mL of H2O, yielding immediately a gray precipitate of AgCl and a yellow solution. The solution was stirred at 100 °C for 2 h in vacuum or air. From I by heating the solid, a 100 °C solution was obtained. From I by heating the DMSO solution, filtration, and slow cooling. From I by heating the NMP solution, filtration, and slow cooling. The 15N labeled complex; numbers in brackets are calculated 14N values. 15N labeled complex; numbers in brackets are calculated 14N values.

Table I. Summary of IR Data in the CN Stretch Region for PtLX2 (L = 2,2'-bipyridyl, X = SCN)

<table>
<thead>
<tr>
<th>compound</th>
<th>form</th>
<th>vCN/cm−1 (Γ1/2/cm−1)</th>
<th>vCN(1)cm−1 (Γ1/2/cm−1)</th>
<th>vCN(2)cm−1 (Γ1/2/cm−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(SCN)2</td>
<td>2130.9sym (5), 2118Δsym (14)</td>
<td>2127.2 (12)</td>
<td>2108.2 (24)</td>
</tr>
<tr>
<td>II</td>
<td>(SCN)2</td>
<td>2118.4 (14)</td>
<td>2125.9 (11)</td>
<td>2107.0 (23)</td>
</tr>
<tr>
<td>II</td>
<td>(SCN)2</td>
<td>2115.6 (15)</td>
<td>2127.1 (11)</td>
<td>2108.4 (22)</td>
</tr>
<tr>
<td>II</td>
<td>(SCN)2</td>
<td>2096.3 (15)</td>
<td>2130.6 (23)</td>
<td>2082.5 (22)</td>
</tr>
<tr>
<td>II</td>
<td>(SCN)2</td>
<td>2096.7 (20)</td>
<td>2129.6 (23)</td>
<td>2073.8 (38)</td>
</tr>
<tr>
<td>mean values</td>
<td>(SCN)2</td>
<td>2117.1 (17)</td>
<td>2127.5 (13)</td>
<td>2107.7 (25)</td>
</tr>
</tbody>
</table>

1Γ1/2 refers to line width at half-maximum. 2vCN(1) is the highest frequency band in the vCN stretching region (see text). vCN(2) is the lowest frequency band in the vCN stretching region (see text). 3Synthesized by diazothiocyanate metathesis discussed in the text. 4From I by heating the solid, at 100 °C for 2 h in vacuum or air. From I by heating the DMSO solution, filtration, and slow cooling. From I by heating the NMP solution, filtration, and slow cooling. 5The yellow form of Pt[(bpy)(SCN)]2, will be identified as compound I, unless otherwise stated.

(e) Gravimetric Studies. The thermal stability of the subject compounds was examined using a Du Pont Model 990 Thermal Analyzer in the range 30 < T °C < 350. Sample weight changes as small as 0.05% are readily detected by this equipment.

Results and Discussion

In the following discussion, the yellow form of Pt[(bpy)(SCN)]2 will be identified as compound I, while the red form, Pt[(bpy)(NCS)]2, will be identified as compound II, unless otherwise noted.

(a)infra Red. The midrange IR spectra were examined in detail in the CN stretching region, as well as in the region associated with the CS stretch of the N-bonded thiocyanate group.

degenerate with the pseudohalide mode). Reduced coupling of the CN and CS stretches, agree within 0.1 cm$^{-1}$ with the values observed for the unlabeled examples. The absorbance consists of poorer value of overlap sufficiently to give the observed band shape. Attempts of the 15N and 13C thiocyanate labeled samples of I1 used in the NMR experiments showed that all three absorbances arise from asymmetric modes, expected to be IR active in that this broad envelope arises from three contributions which to fit the data with only two Lorentzian contributions lead to a qualitatively and quantitatively different from that observed for I2. The observed values for I are in reasonable agreement with those reported by Bertini and Sabatini12 for a number of S-bonded palladium bisthiocyanate complexes, as well as the results of Burmeister and Basolo13 for Pr(bpy)(SCN)$_3$. The CN stretching frequencies for I are not otherwise remarkable, the symmetric and asymmetric modes, expected to be IR active in C$_2v$ point group symmetry, being easily resolved in the spectra. The appearance of the CN stretching mode region for II is both qualitatively and quantitatively different from that observed for I and is reflected in the lower trace of Figure 1. The gross appearance of the IR band(s) is of a broad singlet, centered at about 2117 cm$^{-1}$. The change in band shape of the CN stretch in going from M-SCN to M-NCS bonding has been noted by a number of earlier investigators$^{14-16}$ and was consistently observed in the present study as a general broadening of the absorption band shape. This broadening can be seen from a comparison of the full width at half-maximum parameter (FWHM) summarized in Table I. The use of curve resolution data analysis methods16 showed that this broad envelope arises from three contributions which overlap sufficiently to give the observed band shape. Attempts to fit the data with only two Lorentzian contributions lead to a consistently poorer value of x^2 (goodness of fit). IR examination of the 13N and 13C thiocyanate labeled samples of II used in the NMR experiments showed that all three absorbances arise from the SCN group (i.e., are not impurity or ligand modes accidentally degenerate with the pseudohalide mode). Reduced mass calculations of the absorbance band centers, assuming no significant coupling of the CN and CS stretches, agree within 0.1 cm$^{-1}$ with the values observed for the unlabeled samples. The absorbance

![Figure 1](image1.png)

Figure 1. Portion of the IR spectra of I and II in the CN stretching region. The upper trace in each set is the experimental data curve, the lowest trace is that of the (presumed linear) baseline, and the intermediate curves are of the computer generated components. The shift of the bottom spectrum, compound II, relative to the top spectrum, compound I, arises from the 14N label of the thiocyanate ligand.

and the results are summarized in Table I. A typical portion of the spectrum in the CN stretching region is shown in Figure 1. The observed values for I are in reasonable agreement with those reported by Bertini and Sabatini12 for a number of S-bonded palladium bisthiocyanate complexes, as well as the results of Burmeister and Basolo13 for Pr(bpy)(SCN)$_3$. The CN stretching frequencies for I are not otherwise remarkable, the symmetric and asymmetric modes, expected to be IR active in C$_2v$ point group symmetry, being easily resolved in the spectra. The appearance of the CN stretching mode region for II is both qualitatively and quantitatively different from that observed for I and is reflected in the lower trace of Figure 1. The gross appearance of the IR band(s) is of a broad singlet, centered at about 2117 cm$^{-1}$. The change in band shape of the CN stretch in going from M-SCN to M-NCS bonding has been noted by a number of earlier investigators$^{14-16}$ and was consistently observed in the present study as a general broadening of the absorption band shape. This broadening can be seen from a comparison of the full width at half-maximum parameter (FWHM) summarized in Table I. The use of curve resolution data analysis methods16 showed that this broad envelope arises from three contributions which overlap sufficiently to give the observed band shape. Attempts to fit the data with only two Lorentzian contributions lead to a consistently poorer value of x^2 (goodness of fit). IR examination of the 13N and 13C thiocyanate labeled samples of II used in the NMR experiments showed that all three absorbances arise from the SCN group (i.e., are not impurity or ligand modes accidentally degenerate with the pseudohalide mode). Reduced mass calculations of the absorbance band centers, assuming no significant coupling of the CN and CS stretches, agree within 0.1 cm$^{-1}$ with the values observed for the unlabeled samples. The absorbance

![Figure 2](image2.png)

Figure 2. Portion of the IR spectra of I and II in the CS stretching region. The upper trace shows the presence of two absorbances at 859 and 853 cm$^{-1}$ associated with the CS stretch of an N-bonded thiocyanate ligand. The absence of this feature in the lower trace is consistent with the S-bonded structure discussed in the text.

<table>
<thead>
<tr>
<th>Compound</th>
<th>13C s/cm$^{-1}$</th>
<th>13C s/cm$^{-1}$</th>
<th>14N s/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr((bpy)(NCS)$_2$)$_2$ (II)</td>
<td>859.2, 852.5, 849.6, 850.4</td>
<td>847.7, 850.4</td>
<td>843.8, 841.6, 840.9, 843.8</td>
</tr>
<tr>
<td>Pr((phenan)(NCS)$_2$)$_2$</td>
<td>857.3, 844.7, 846.3, 845.7</td>
<td>846.6, 848.6</td>
<td></td>
</tr>
</tbody>
</table>

The numbers in brackets refer to the values calculated for 13C14N32S, making the assumptions discussed in the text.

at 2117 cm$^{-1}$ is the dominant feature in the resolved data, but the relative contribution of the other two components (at 2128 and 2108 cm$^{-1}$) appears to be somewhat variable from sample to sample. The average line width of the latter absorbance, 24.9 cm$^{-1}$, which is presumed to arise from a near superposition of two absorbances, is significantly broader than that of the other two components. Finally, it is worth noting that the sum of the fractional areas under the two "outside" bands is approximately equal to that under the 2117-cm$^{-1}$ band. These data suggest that there are two distinct sets of pseudohalide ligands present in II, each giving rise to a symmetric and asymmetric CN stretch, with an accidental degeneracy of the symmetric stretch of one pair and the asymmetric stretch of the other giving rise to the most intense band at 2117 cm$^{-1}$. It is interesting to note that two of these (presumed) four absorbances in II are essentially identical with the two CN stretches observed in I, although in I both thiocyanate ligands are S-bonded. Since the solid-state NMR data of II show that these ligands are N-bonded, a possible explanation for the observed results may involve the existence of both "eclipsed" and "staggered" conformations making up two distinct sets of Pt-Pt chains. The presently available data are not sufficient to rigorously support this hypothesis.

Infrared data below 1000 cm$^{-1}$ have also been examined in detail in this study. The CS stretching mode of metal thiocyanates has been found to be diagnostic of the nature of the pseudohalide bonding.19 Generally, IR bands in the range 720 < ν < 680 cm$^{-1}$ are observed with M-S bonding, while the appearance of these features between 860 and 790 cm$^{-1}$ is associated with M-N bonding, although these generalizations must be applied with some caution.20 The relevant portions of the IR spectra for compounds I and II are shown in Figure 2. The absence of an observable band, characteristic of Pt-SCS in the spectrum of I, and its presence (at ca. 857 cm$^{-1}$) in II is in accord with the postulate that I and

II involve S- and N-bonded structures, respectively. The inability to identify this mode in the IR spectra of I may be due to a shift of unknown magnitude, a change in the oscillator strength of this mode (making it difficult to identify in a region where numerous ligand absorbances occur), or a combination of these. Complex I exhibits absorbances at 859.2 and 852.5 cm⁻¹, associated with the symmetric and asymmetric modes, as a result of the ligand isomerization to the isothiocyanate complex. Isotopic substitution (¹³C and ¹⁵N, separately) of the SCN ligand gave rise to characteristic "red shifts" of the CS bands,¹⁷ since the small shifts of this type can be related to the frequencies associated with the natural abundance data by assuming that the CN moiety acts as a unit, coupled by harmonic oscillator behavior to the S atom. The observed values, as well as the calculated frequencies, are summarized in Table II. Implied in the foregoing is the assumption that the CS bond order does not change appreciably in the change from M-S to M-N bonding. This assumption is supported by crystal structure data for the Pt-S bonded trans-Pt(py)(SCN)₂ and the Pt-N bonded Pt(bpy)(NCS)₂NMP (where py = pyridine, bpy = 2,2'-bipyridine, and NMP = N-methylpyrrolidone).²² These data have pseudohalide CN bond lengths of 1.14 and 1.11 Å, respectively.

(b) NMR Data. The ¹³C and ¹⁵N chemical shifts of I and II, under various conditions, are summarized in Table III.

The ¹³C solution experiments were carried out only on the yellow (S-bonded) form (I) since it was found in this study that the corresponding red (N-bonded) form (II) dissolves with reisomeration to I at (or slightly above) room temperature. Complex I exhibits absorbances at 859.2 and 852.5 cm⁻¹, associated with the symmetric and asymmetric modes, as a result of the ligand isomerization to the isothiocyanate complex. Isotopic substitution (¹³C and ¹⁵N, separately) of the SCN ligand gave rise to characteristic "red shifts" of the CS bands, since the small shifts of this type can be related to the frequencies associated with the natural abundance data by assuming that the CN moiety acts as a unit, coupled by harmonic oscillator behavior to the S atom. The observed values, as well as the calculated frequencies, are summarized in Table II. Implied in the foregoing is the assumption that the CS bond order does not change appreciably in the change from M-S to M-N bonding. This assumption is supported by crystal structure data for the Pt-S bonded trans-Pt(py)(SCN)₂ and the Pt-N bonded Pt(bpy)(NCS)₂NMP (where py = pyridine, bpy = 2,2'-bipyridine, and NMP = N-methylpyrrolidone). These data have pseudohalide CN bond lengths of 1.14 and 1.11 Å, respectively.

The ¹³C solution experiments were carried out only on the yellow (S-bonded) form (I) since it was found in this study that the corresponding red (N-bonded) form (II) dissolves with reisomerization to I at (or slightly above) room temperature. Complex I was found to be appreciably soluble in N-methylpyrrolidone (NMP), and dilute solutions are stable for several hours at room temperature without precipitation of the red complex. Both the bipyridyl and corresponding phenanthrolyl complexes show a thiocyanate ¹³C resonance at about 114 ppm, indicative of Pt-S⁻CN bonding.²⁴ Splitting is seen in the ¹³C resonances of the bidentate ligand due to solid-state effects caused by the precipitation of small amounts of the N-bonded polymer during data acquisition. No major chemical shifts anomalies associated with the C atoms of the bpy or phenan ligands, compared to the corresponding chloro complexes,²³ were observed, and these data will not be further discussed.

Because of the difficulties, arising from the very limited solubility of the red platinum thiocyanate complexes, involved in obtaining comparison NMR spectra of the two forms, ¹³C and ¹⁵N MAS solid sample NMR was used to further elucidate the molecular level changes associated with the I → II conversion. Initial MAS experiments on the bpy complexes were carried out using ¹⁵C-enriched samples. Compound I evidenced a split reson ance with components at 113.0 and 116.9 ppm. The centroid of this doublet agrees well with the ¹³C solution experiments, referred to above, while the observed splitting can be attributed to effects introduced by the solid-state sampling. A single thiocyanate carbon resonance is observed for II, with a chemical shift of 124.0 ppm, indicative of Pt-N⁻CS bonding. The lack of splitting of this signal is presumably a consequence of the higher degree of ordering associated with "stacking" of the monomers to yield Pt-Pt chains in this complex (vide infra).

Although the ¹³C NMR experiments were suggestive of the Pt-S vs Pt-N transformation, the 10 ppm difference in the chemical shift of the thioctyanate resonances left some room for uncertainty, which was subsequently resolved by ¹⁵N MAS experiments on the same sample pair. The advantage of ¹⁵N-labeled NMR experiments arises from the much larger chemical shift differences (δ > 200 ppm for Pt-S and δ ~ 60 ppm for Pt-N thioctyanates), thus permitting a much clearer interpretation of the results. NMR data for the ¹⁵N-labeled forms of I and II are shown in Figure 3. As summarized in Table III, the ¹⁵N resonance appears at 233.6 and 233.0 ppm for the S-bonded bpy and phenan complexes, respectively. The N-bonded complexes exhibit nitrogen resonances at 65.1 and 63.8 ppm, respectively. Moreover, both of the latter resonances are accompanied by "satellite bands" arising from the coupling of the ¹⁵N (δ = 1/2) and ¹⁵N (δ = 1/2) spins, with [¹⁵N(Pt⁻¹⁵N)] values of ~225 Hz, in agreement with literature values.²⁵ These "satellites" are, of course, unobservable in the spectra of the S-bonded isomers as a result of the absence of Pt-S (spin-spin) coupling due to the s = 1/2 of sulfur.

In summary, the solid-state NMR experiments provide unambiguous evidence for ligand isomerization in the I → II transformation in these complexes, consistent with the infrared inferences reported above. Finally, in this context, it is worth noting that scanning gravimetry studies on both I and II have been carried out to a precision of ±0.05%. The loss of one water molecule per complex would entail a weight loss of 3.85%, but no significant loss of weight of the samples in the temperature range 300 < T < 625 was observed. Hence, the I → II transformation does not involve the loss of solvent (H₂O) from the matrix but is an intrinsic property of the anhydrous complex.

(c) EXAFS Evidence for Ligand Isomerism and Molecular Stacking. The two major questions addressed in the present study, ligand isomerism and the formation of chain polymers involving Pt-Pt stacking, have proven to be susceptible to elucidation by

scattering amplitude and phase shift from this standard's known
transferability of these parameters to
teratomic separation peaks.30

the FT peaks occur at distances shifted from the true RDF in-
timate the ligand coordination and bond length in these mate-
tains the following: measuring the
bond length (1.99
spectrum of the former has collapsed to a single peak (centered
occurred in the I
11.

J. Am. Chem. SOC.

100, 621.

15 V.

This procedure yields

Figure 4. Comparison of the FT's of the room temperature EXAFS
results for \(k^3\chi(k)\) for I and II. The yellow complex (I) shows evidence
for both N and S nearest neighbor (nn) atoms, while the red complex
(II) shows only N nn atoms, together with two features identified as
arising from Pt–Pt scattering.

PT EXAFS techniques. A more detailed discussion of the X-ray
absorption studies on this class of square planar Pt compounds
will appear elsewhere.28

In EXAFS analysis the focus is on the normalized wavenumber
\((k)\) dependent oscillation of the X-ray absorption coefficient about
the average \(\chi(k)\).29,30 The Fourier transform of the weighted
function \(k^3\chi(k)\) to real space (denoted hereafter as FT) exhibits
peaks at positions corresponding to back-scattering maxima from
atomic near-neighbor shells. Thus, FT curves convey information
similar to a radial distribution function (RDF). However, there are
two disparities (from a true RDF) to emphasize. First, the
FT peak intensities involve both the atomic back-scattering across
section and the \(k\)-weighting factor.30 Second, the FT peak positions
involve an atomic back-scattering phase shift, and hence, the FT
peaks occur at distances shifted from the true RDF in-
tratomic separation peaks.30

Figure 4 shows the FT of \(k^3\chi(k)\) for both the [Pt(bpy(SCN)_2)]
and [Pt((bpy)(NCS)_2)] forms of the two compounds examined in
detail in this study. The atoms associated with the various FT
features, identified below, are labeled in the figure. It is clearly
evident from the EXAFS results that while both S and N are
present in the Pt nearest neighbor shell in I, only N is present in the
first shell of II. This conclusion follows from the observation
that the double maximum feature between 1.3 and 2 Å in the
spectrum of the former has collapsed to a single peak (centered
at 1.60 Å) in the spectrum of the latter. Thus a ligand flip has
occurred in the I → II conversion.

A standard least-squares fitting method has been used to esti-
mate the ligand coordination and bond length in these mate-
rials.29,30 As applied to the N shell in II, for example, this method
taught the following: measuring the EXAFS for a known
standard, in this case Pt(NCS)_2,31 determining the back-
scattering amplitude and phase shift from this standard's known
bond length (1.99 Å) and 4-fold N-coordination; assuming the transferability of these parameters to II; and minimizing the
theoretical versus experimental \(k^3\chi(k)\) difference with respect to
the Pt–N bond length and coordination. This procedure yields

Figure 5. Same as Figure 4, except that the \(k^5\chi(k)\) analysis emphasizes
the two features identified as due to Pt back-scattering.

a Pt–N bond length in II of 1.97 ± 0.01 Å and an N-coordination
of 3.63 ± 0.67. This bond length is close to those reported for
structurally similar compounds,29–31 and, considering the typically
large coordination shell uncertainties, the 4-fold coordination is
also clear.

The overlapping S and N features in the FT for I (see Figure
4) require a more involved two-shell fitting method. For this
analysis, the \(n = 2\) weighting of \(k^5\chi(k)\) has been used because
the S and N FT features have comparable strengths with this lower
\(k\)-weighting of \(\chi(k)\). (It should be noted that the sulfur FT feature
increasingly dominates that of the nitrogen related feature as \(n\)
becomes larger; for comparison, see Figures 4 and 5.) In
the two-shell fit, the compound K_2Pt(SCN)_4, with a Pt–S distance
of 2.29 Å, has been used as a four-coordinate sulfur standard, and
Pt((bpy)(NCS)_2), with a Pt–N distance of 1.99 Å, as a four-
coordinate nitrogen standard. From this analysis, the results are
2.66 ± 0.79 sulfur atoms at 2.24 ± 0.02 Å and 1.34 ± 0.79
nitrrogens at 1.97 ± 0.02 Å. Within the large coordination
uncertainty, these results support the “flip” on both SCN ligands
accompanying the yellow to red conversion.

A further point to be noted in Figure 4 is the appearance of
two new features (near 2.8 and 4.3 Å) in the FT-EXAFS spectrum
of II in a region where the spectrum of I is structureless. In order
to determine if these features reflect Pt–Pt interactions, it is helpful
to compare the FT of the \(k^3\chi(k)\) results for the two forms of the
complex. The enhancement of these features (Figure 5) relative
to those in the \(k^3\chi(k)\) results (Figure 4) indicates their origin in
back-scattering from high Z atoms for which \(F(k)\), the atomic
back-scattering amplitude, is strongly weighted toward high \(k\).
Since the only heavy atom in these complexes is the Pt atom, the
conclusion that these features reflect metal–metal interactions
seems justified.32

Further confirmation of the Pt–Pt origin of these features can be
obtained from back-transforming (within a real-space window
branching the feature) the FT of the \(k^5\chi(k)\) results to \(k\)-space.
Thermal disorder is well known to dampen significantly the EX-
AFS oscillations and reduce the amplitude of the coordination
peaks in the FT radial distribution curves.29,32 This is especially
true for high-\(k\) related peaks (e.g., Pt–Pt interactions).33 In
order to improve the signal to noise ratio for this analysis, low tem-
perature (7 = 15 K) EXAFS measurements were performed, and

124, 101.

(33) Teo, B. K. EXAFS: Basic Principles and Data Analysis; Springer
Verlag: New York, 1986; Teo, B. K.; Lee, P. A.; Eisenberger, P.;
Square-Planar Pt(II) Complexes

Figure 6. FT of the 15 K EXAFS data for II using $k^3\chi(k)$. The back-transform "windows" for the N, PtI, and PtII features are indicated by the dashed lines.

Figure 7. (Bottom) Back-transformed, filtered FT $k^3\chi(k)$ results for II at 15 K in the PtI window of Figure 6. Both the EXAFS oscillations and the amplitude envelope resulting from the back-transform are shown. (Top) Analogous amplitude envelopes for the proposed PtI (solid line) and PtII (dashed line) features for II at 15 K. Again, the indicated back transform windows are as shown in Figure 6. The amplitude envelope for the strongest feature in the reference (elemental) Pt is shown for comparison (dotted line). For contrast, the amplitude envelope for the low-Z N nn feature (see Figure 6 for the appropriate window) is also shown.

The resulting FT results are shown in Figure 6. The dramatic Debye–Waller factor enhancement of the two presumed Pt–Pt features [PtI and PtII] is clearly noticeable in a comparison of Figures 5 and 6. The k dependence of the amplitude envelope of the back-transformed data (from the two windows indicated in Figure 6) is shown in Figure 7, along with a similar amplitude obtained from a known Pt–Pt feature in an elemental platinum standard. The sharp rise in amplitude for k above 9 Å$^{-1}$, with a broad peak in the 10–14 Å$^{-1}$ region, is clear evidence for Pt involvement in the back-scattering process. [The elemental Pt data were taken at room temperature; hence thermal disorder shifts its envelope peak to somewhat lower k.] For comparison, the very different k dependence of the back-transforms of the low Z N–feature is also shown. Thus, analysis clearly identifies two Pt–Pt distances in the spectra of Pt[(bpy)(NCS)$_2$].

Due to the presence of C and N atoms in the ligands which fall in the 3.2–5 Å range, application of the fitting method to the Pt related features is not feasible. Instead, a standard "ratio method" decomposition of the phase component of the EXAFS to estimate the Pt–Pt bond lengths has been employed. This method involves the use of a standard, in the present case the 2.776-Å nearest-neighbor shell of elemental Pt.

Essentially, this method involves assuming that the k-dependent phase shifts of the unknown (here compound II) and a standard (here the nearest-neighbor shell in elemental Pt) are the same and associating the change in the period of the EXAFS oscillation solely with the standard-to-unknown shell radius change. Using this ratio method, the two Pt–Pt distances for II are calculated to be 3.24 ± 0.05 and 4.52 ± 0.02 Å. The former of these distances can be identified with the metal–metal distance in "stacked" Pt(II) complexes, while the second distance involves a longer interaction. One of the reviewers has pointed out that this longer interaction may arise from a structure in which dimeric units, with Pt–Pt distances of 3.24 Å, form chains with a separation of 4.52 Å between adjacent dimers. Such a structure would, of course, give rise to two distinct scattering maxima in the EXAFS FT. The strength of this larger-distance FT feature indicates that this interaction is fairly robust. The absence of this feature in the spectra of I suggests that in that case the solid consists of independent monomeric units with no significant interunit bridging.

From the above data, it is concluded that the I → II conversion in Pt[(bpy)(SCN)$_2$] involves both ligand isomerization and "stacking" of the monomeric units into a quasilinear array involving Pt–Pt bonding. This polymerization accounts as well for the decreased solubility of II (compared to I) in innocuous solvents. The sequence of these two processes, and the question of whether these two molecular-level events are correlated or independent, cannot be unambiguously answered from the present data.

Acknowledgment. This research was supported in part by the Research Council (M.C.) and by the Research Council and the Busch Fund, Rutgers University (R.H.H.). The infrared spectrometer used in these studies was obtained under Grant 87-0208 from the NIH. We are indebted to Dr. S.-P. Szu for assistance with the solid-state NMR measurements herein reported and to Prof. M. Greenblatt for the use of the thermogravimetric equipment.

References: