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An introduction to generalized vector spaces and Fourier analysis. 
                      by M. Croft 
 
FOURIER ANALYSIS : Introduction Reading: Brophy p. 58-63 
This lab is u lab on Fourier analysis and consists of VI parts. In part I the conventional 
three dimensional vector space is reviewed In part II the general concept of a function 
as a vector 
in a vector space of functions is developed in strict analogy to the review in part I. In 
section III Fourier analysis is introduced as a specific example of the general function 
vector space concepts of section II. 
These first three sections are optional material intended as a painless first introduction 
of the professional physics major to .mathematical concepts which will appear again 
and again in future course work. You are encouraged to read these first three sections 
but do-not-become bogged down in them, 
Section IV begins the practical part of this lab. The definitions necessary to expand a 
function in a Fourier series are given along with a helpful note on odd and even 
functions. Section V consists of several worked-out examples with Questions to be 
answered. Section VI consists of experimental verification of some of the: examples 
worked out in section V. 
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I. Three dimensional space review 
Consider the three dimensional vector space familiar to us from introductory physics. 
Any vector A in this space can be written as 
 
 
Where Ai, is the i'th component of A along the Xi'th axis and xi is  the unit vector along 
the xi direction. (Note A1 is just a number).  The fact that any vector in this vector space 
can be written as the sum (1) means that the three vectors Xi; i=1,3 form a complete set 
of unit vectors for this vector space. 
Using the usual dot product (or inner product, or scalar product) in this vector space i.e. 
 
 
 
where 
 
 
 

 

one finds the unit vectors obey the relation 
 
or                                                                                                                   (3) 
 

Here the second notation i j i j
ˆ ˆ ˆ ˆ(x , x ) x  x= i  is a more general notation for an inner product 

and δi.j is the "Kronicker delta” symbol defined as 
 
 
 
 
 
 
 
 

Relation 3 is a statement that the unit vectors are orthogonal (i.e. θAB= 90
° in the sense 

of (2)) and are normalized to unit length i.e. 
2

ix̂ 1= . (These two terms are 

sometimes combined and the unit vectors are called orthonormal). 
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One can project out the component of A along the xi'th axis via the inner product 
 
 
 
 
 
 
 

This relation can be used as a definition of the i’th component of A
�

 (i.e. i i
ˆA =x A
�

i ) 

The length of any vector is defined in terms of the dot product via 
 
 
                                                                                                                    (6) 
 
The dot product of two vectors can also be expressed in terms of the components of the 
two vectors via 
 
 
 
 
 
The key points of this review which we will generalize are 
(1) The existence of a vector space 
(2) The existence of a complete set of unit vectors in terms of which any vector in the 
vector space can be represented 
(3) The exi5tance of an inner product (dot product, or scalar product) with respect to 
which the unit vectors are orthogonal and of unit length. 
 
II. Vector space of functions (general) 
The set of all possible functions f(x) on an interval of x between L1 to L2 forms a vector 
space. (Some extra conditions on these functions will be specified later in t'..e Fourier 
series example). It so happens that the complete set of unit vectors for such a vector 
space are an infinite set of functions 
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The expansion of a function f(x) in terms of these unit vectors is now ( analogy to (1) 
 
                                                                                                                     (II-1}  
 
 
Where f.i is just a number and represents the component of f (x) along the "direction" 

defined by the unit vector ϕ i( x ) .  
 The inner product of two vectors in this vector space is defined as the integral of 
the product of the two functions. Over the interval [L1,L2], the analogy to 3 in this vector 
space, is therefore  
 
                                                                                                                       (II-3) 
 
 
which tells us that the unit vectors are orthonormal, (i.e.. orthogonal to each other and of 
unit length). 

 One can project out the component of f(x) along the ϕ i( x )  axis via this inner 
product as follows 
 
 
                                                                                                                                    (II-5)  
 
 
 
 
 
As before the I’th component of f(x) can be expressed in terms of the above as 
 
 
 
 
The length squared of any vector f(x) in this vector space in terms of the inner product is  
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The inner product of two vectors f(x) and g(x)  can beexpressed in terms of 
their components via 
 
                                                                                                               (II-7) 
 
 
 
 Finally we should emphasize in what mathematical sense the 
representation II-1 is true.  Suppose we cut short the infinite sum in (II-1) after 
some finite number (N) of terms and then subtract this finite sum from f(x)  
 
i. e.' 
 

The difference ∆Nf(x) is a vector in the vector space of functions.  The relation 
(II-1) is said to be true in the sense that the "length" of the difference function 

∆Nf(x) is small and in fact goes to zero as N→∞. That is  
 
 
 
 
 
III Fourier Series 
 
 Now we shall consider a specific example of the Fourier series.  Our 
vector space is the space of all functions on the interval    

                                 -π≤ x ≤ π. 
(Actually for mathematical reasons we require that all the functions in our 
vector space must;  
 
(1) be square -integrable, 
 
 
and (2) have at most a finite number of finite jump discontinuities. 
 Note: (Condition (1) means that we consider vectors of finite length only) The 
complete set of unit vector functions on this interval are 
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(note: Both sin and cos terms are needed for this set to be complete). 
The representation of f(t) in terms of these unit vectors is then called a Fourier 
series 
 
 
 
 
The inner product of two of these unit vectors is in this case 
 
 
 
 
 
 
 
The projection of f(t) along a particular axis is then  
 
 
 
 
 
 
and a similar relation holds for the projection on the M-th cosine axis.  
 The length squared of vectors in this space is just 
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The inner product of two functions in this vector space is 
 
 
 
 
 
 
 
 
 
IV Practical Fourier Series 
 
i. definitions 

This section begins our practical treatment of Fourier analysis. 

Consider a  function f(t) which is (1) periodic with a period T, (2) has at 

most a f inite number of f inite step discontinuit ies over any period T ,  and  

( 3 )  is square integrable over the period T. Then this function can be 

expanded in a Fourier series 

 
                                                                                                      (IV-1) 
 

Here 

2π
ω= =2πν

T
  the constant expansion coefficients  f o ,  

c

nf  and 
s

nf  are given 

by 

 

 

 

 

 
ii) decomposition buildup 

In words; if one has a function which is periodic with 

frequency
ω

ν=
2π

, then this function can be written as an infinite sum of sine 

and cosine functions with frequencies equal to multiples of the original frequency ν. 
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 One can alternatively think of being able to break down f(t) into a sum of sine 

waves or of being able to construct f(t) from a sum of sine saves. How a general 

function can be built up from sine waves is illustrated below where the sum of the 

first N= 1,?., 4, 10, 40 terms of several Fourier series have been plotted.  
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i i i )  e ven  and  odd  f unc t ions  
 

 For a given function f(t) one can find the Fourier coefficients f o ,  
c

nf  

and 
s

nf  by direct i n t e g r a t i o n  as in (Iv-2) (Iv-4). This task can be 

simplified with the following two theorems. 
 
Theorem. If a function is an even function lie, f(-t) = f(t) ] then 
its Fourier series contains only cosine terms. 
Theorem. If a function is odd Lie, f(-t) = f{t) ] then its Fourier 
series contains only sine terms. 
 

These two Theorems are based simply or, the fact that each term of 
the Fourier series must have the same even-odd symmetry as the original 
function f(t). 
 
Note: The definition of a function whether a function is odd with a (Fourier  
sine series), even (with a Fourier cosine series) or neither (with both cosine 
and sine terms in its Fourier series) is somewhat arbitrary. For example 
consider the square wave with the origin (t=o) as specif ied as below the 
function is odd and has a Fourier sine series.  
 
 
 
 
 
 
 

Now translate the function by π/2 and one has 
 

 

 

 

 

 

 

 

 

B y  translating this periodic function by π/2 it becomes an even f unc t ion  

[g ( - τ ) = -g ( τ ) ]  of the variable τ  = t+π/2 with a cosine Fourier series. 
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Thus a statement about the evenness or oddness of a function requires that the origin 

(t=0) be specified. 

 
V Examples 

Note: The following examples are worked out on the interval -π< t< π. To generalize 

to the interval  -T/2< t< T/2 one simply uses the transformation τ=t(T/2π)= t/ω 
 
Square Wave. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:: The slow 1/n  fall off in the higher harmonic terms. This is due to the step 
discontinuity which generates lots of high frequency terms. 
Note: The series is a Sine series because the function is an odd function plus a 
constant.   i.e.. take g(t) = f(t) - h/2 then g(-t) = - g(t) which is the definition of an 
odd function. 
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Triangle Wave 

 
 
 
 
 
 
 
 
 
 
 
  a5   )  

Note: This function is even i.e. f(t) = f(-t) and the series is a cosine series 

Note: The 1/n2 fall off converges much more rapidly than the square wave due 

to the absence of jump disconuities. 

 

Q1.   How can you obtain the Fourier series of the triangle wave from that of 

the square wave? 

Q2.   How can you obtain the Fourier series of the square wave from that of 

the triangle wave? 
 
 
 
Periodic Pulses (try in Exp. pulses of l0us separated by 100us.). 
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This is an even function. Therefore it will have a cosine series, 
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Half-wave rectif ier 

 

 

 

 

 

 

 

 

Q1. why are both sine and cosine terms present? 

Q2. Why is the fall off not 1/n? 

Q3. Show that by simple translation of the origin one can obtain the Fourier series 

of 
 
 
 
 
 
      
Full Wave Rectifier 
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Q1. How can you obtain the result for the full wave rectifier from that of the 

half wave rectifier (Hint: One uses the principle of superposition which is 

true for all linear systems. In this case this means that the Fourier series for 

the sum of two functions is the sum of the separate Fourier series of the 

separate functions) . 
 
VI Experimental  
 
i)  Procedure. 
 You will use a very accurate wave analyzer in this experiment. For your 
purposes this instrument can be thought of as an AC voltmeter with a tuned 
circuit on the input. This tuned circuit acts as a band pass filter allowing 
signals over a narrow frequency range to pass through to the voltmeter. You 
will be adjusting the center frequency of the band pass filter on the voltmeter 
input. 

As you pass through a harmonic (multiple) of the fundamental frequency 
the meter will rise rapidly to a maximum value (at precisely the harmonic 
frequency) and then fall rapidly back to zero. You should record the amplitude 
and frequency of each component of the wave form. Record as many 
harmonics as you can find. 

 
ii. Analysis for the Square Wave 

1) Plot fn versus the frequency ν=nνo where νo is the fundamental frequency 
(note fn is defined in formulas III-9 and III-11) 

2.) Plot ln(ν) versus n 
3) From the plot in 2) above find, by a least squares fit or a BEBF (best-eye-

ball-fit) to what extent the formula ln(fn) = B ln(ν)+A. 
Compare your value of B with the theoretical value of B.  
4) Use the value A and B determined in part 3 to plot a fit line through the data 
plotted in part 1). 
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iii. Analysis for the triangle wave 
The analysis for the triangle wave is the same as that for the 

square wave. The theoretical value for B in the formula fn = B ln ν +A will 
of course be different for the triangle wave. 

 
iv. Analysis for the Pulse Wave 
1) Plot the Fourier amplitudes fn versus the frequency. Verify the periodic 
modulation of the amplitude and compare the observed period of the 
modulation to that expected from the theory and the pulse duration you used. 

2) Fit a theoretical formula fν= (A/ν) sin(δν2π) to your data.  

To do this first recall that δ was determined in step 2). Next choose points at 

the peaks of the modulation (i.e. where |sin(δν2π)| = 1).  Now plot these peak 

values of fν versus 1/ν and extract A either by a least squares or best-eye-
ball-fit. Sketch the theoretical curve on your plot of the data. 
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IV. Complex Fourier Series 

The Fourier sine and cosine series you have been introduced to have 
the advantages of being real functions (of the sort you are most used to), 
and of making intuitively obvious the use of the odd sine and even cosine 
series for odd and even functions respectively. There is however, another 
mathematically more compact way to write a Fourier series based on De 
Moviers Theorem 

 
 

To derive this alternate representation consider the following. 
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All of the general discussions presented earlier now hold for the complete set of 
functions 
 
 
 
There is one important distinction however. The definition of the inner product must 
be changed to take account of the complex nature of the functions, i.e..  

 
 
 
 

where the ϕi
+
 the complex conjugate of ϕi (that is i is replaced everywhere by –I   The 

student should note that it is the above definition of the inner product which one uses 
in quantum mechanics. 
 


