

> Moon orbit
> R_{E}

$L_{\text {M-rot }} \gg L_{E-\text { rot }}$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{E} \text {-rot }}^{=1 \text { day }} \\
& \mathrm{I}_{\mathrm{E}}=\frac{2}{5} \mathrm{M}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}^{2} \\
& \mathrm{~L}_{\mathrm{E}-\text { rot }}=\mathrm{I}_{\mathrm{E}}\left(2 \pi \mathrm{f}_{\mathrm{E}-\mathrm{rot}}\right) \quad \mathrm{I}_{\mathrm{M}}=\frac{2}{5} \mathrm{~m}_{\mathrm{M}} \mathrm{R}_{\mathrm{M}}^{2}=\frac{2}{5} \frac{\mathrm{M}_{\mathrm{E}}}{80}\left(\frac{\mathrm{R}_{\mathrm{E}}}{3.7}\right)^{2}=(0.000913) \mathrm{I}_{\mathrm{E}} \\
& \mathrm{~L}_{\mathrm{M}-\text { rot }}=(0.000913) \mathrm{I}_{\mathrm{E}}\left(2 \pi \mathrm{f}_{\mathrm{E} \text {-rot }}\right) \frac{1}{27} \\
& \mathrm{~L}_{\mathrm{M} \text {-rot }}=(0.0000338) \mathrm{I}_{\mathrm{M}}\left(2 \pi \mathrm{f}_{\mathrm{E}-\text { erot }}\right)
\end{aligned}
$$

Tidal Effect Differential Gravitations Force

