Air/Fluid Resistance to Moving Object

$$
+\quad F_{\mathrm{rs}}=\frac{\mathrm{C} P \mathrm{AA}}{2} \mathrm{v}^{2} \quad \operatorname{ma}=\mathbf{F}
$$

$\sqrt{v} \overbrace{\mathrm{mg}}^{4 \mathrm{~m}}$

Can solve with calculus with luck : can solve numerically for sure

$$
\begin{aligned}
& \text { - (air moving at } v_{\mathrm{a}} / \mathrm{v}_{\text {rel }}=\mathrm{V}+\mathrm{v}_{\mathrm{a}} \text {) }
\end{aligned}
$$

Sky Diver: $\mathrm{m}=70 \mathrm{Kg} ; \mathrm{A}=0.7 \mathrm{~m}^{2}$; $\mathrm{C}=0.4$

Numerical Integration Solution to Newtons Lan

$$
\begin{aligned}
& a=g-\left(\frac{1}{2}\right) r^{2} \\
& \frac{\Delta v}{\Delta t}=g-\left(\frac{1}{2}\right) v^{2} \\
& \Delta v=g \Delta t-\left(\frac{1}{L}\right) v^{2} \Delta t \\
& \left.\begin{array}{cc}
\text { calling ohpect } \\
\text { with air resishece } \\
\text { example }
\end{array}\right] \\
& \text { best to use } \bar{v} \text { (ave) } \\
& \frac{\text { approx. wind }}{\underline{V\left(t_{i}\right)}} \text { ! } \\
& v\left(t_{i}+\Delta t\right)=v\left(t_{i}\right)-g \Delta t-\left(\frac{1}{2}\right) v^{2} \Delta t \\
& \Delta v=v\left(t_{i}+\Delta t\right)-v\left(t_{i}\right) \\
& V\left(t_{i}+\Delta t\right)=V\left(t_{i}\right)-g \Delta t-\left(\frac{1}{L}\right) v\left(t_{i}\right)^{2} \Delta t \\
& v_{i+1}=v_{i}-g \Delta t-\left(\frac{1}{L}\right) v_{i}^{2} \Delta t \\
& \text { know } v_{i}\left(v\left(t_{i}\right)\right) \text { set } \Delta t \\
& \text { thou can find } v_{i+1}(v(t ; \Delta t))
\end{aligned}
$$

