

Can solve with calculus with luck: can solve numerically for sure



Numerical Integration Solution to Newtons Law best to use V (ave) falling object,  $a = g - \left(\frac{1}{L}\right) v^2$ approx. with  $\frac{\Delta V}{\Delta t} = g - (\frac{L}{V}) v^2$  $\Delta V = V(t_i + \Delta t) - V(t_i)$ V(t;+1t) = V(t;) - g At - (1) V(t;)2 At | V = V - g At - (1) V2 At | Know V; (V(t;)) set Dt

+ you can find V;+, (V(t;+ Dt)) anythody can solve with sproad sheet 4-22

| $\Delta x = v_{ava} \Delta t =$ | $\frac{\mathbf{v}_1 + \mathbf{v}_2}{\Lambda t}$ |
|---------------------------------|-------------------------------------------------|
| $\Delta X - v_{ave} \Delta t$   | $\frac{1}{2}$                                   |

4-22a

| <b>P</b> | NUMRE | AL06.xls         |             |                   |
|----------|-------|------------------|-------------|-------------------|
|          | A     | В                |             | С                 |
| 1        | t     | v(t)             | <u> </u>    | x(t)              |
| 2        |       | B3+9.8*0.05-B3^2 | *0.05/417   | C3+0.05*(B5+B3)/2 |
| 3        | 0.05  |                  | 0           | 0                 |
| 4        | 0.1   |                  | 0.49        | 0.02449928        |
| 5        | 0.15  |                  | 0.979971211 | 0.073495682       |
| 6        | 0.2   |                  | 1.469856062 | 0.146984887       |
| 7        | 0.25  |                  | 1.959597012 | 0.244959703       |
| 8        | 0.3   |                  | 2.449136578 | 0.367410063       |
| 9        | 0.35  |                  | 2.938417361 | 0.514323029       |
| 10       | 0.4   |                  | 3.427382073 | 0.685682802       |
| 11       | 0.45  |                  | 3.915973567 | 0.881470725       |
| 12       | 0.5   |                  | 4.404134856 | 1.101665293       |
| 13       | 0.55  |                  | 4.891809148 | 1.346242161       |
| 14       | 0.6   |                  | 5.378939868 | 1.615174157       |
| 15       | 0.65  |                  | 5.865470684 | 1.908431292       |
| 16       | 0.7   |                  | 6.351345534 | 2.225980776       |
| 17       | 0.75  |                  | 6.836508653 | 2.567787029       |
| 18       | 0.8   |                  | 7.320904594 | 2.933811702       |

$$\mathbf{x}_2 = \mathbf{x}_2 + \frac{\mathbf{v}_1 + \mathbf{v}_2}{2} \Delta t$$