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The Equipartition of Energy Theorem. 
Annotated lecture notes by M. Croft 

---------------------------------------------------------------------------------------------------------------------------- 

 Note this material is important to this course and is not in the book.  This material applies the 

macroscopic concepts of mechanical energy to microscopic collections of ~1023 molecules. In so doing it 

casts the concepts of temperature and heat transfer in terms of physics you have already learned. 

---------------------------------------------------------------------------------------------------------------------------- 

 The equipartition (or equal division) of energy theorem involves the concept that, in thermal 

equilibrium, energy is shared equally among all of its various possible forms (or degree of freedom).  

Moreover the average amount of energy per degree of freedom is kT/2 per molecule or RT/2 per mole. 

[Here k = Boltzmann’s constant, R= k NA is the ideal gas constant and NA is Avogadro’s number.] 

Operationally a degree of freedom is identified with a quadratic term in the total mechanical energy.  For 

this class this means a kinetic energy term involving a velocity component squared.  {It is worth noting that 

it can also be a harmonic oscillator potential energy involving a quadratic displacement from equilibrium 

but this concept is not required for 203.} 

---------------------------------------------------------------------------------------------------------------------------- 

 This figure illustrates the application 

of the equipartition principal to a 

monatomic ideal gas.  Note that there are 

three degrees of freedom associated with the 

<vx
2>, <vy

2> and <vz
2> kinetic energy terms 

respectively.  [Here <> denotes the average 

taken over all of the molecules of the gas].

 By the equal equipartition principal 

the internal energy of the ideal monatomic 

gas, U, is then N 3 (kT/2), where N is the 

number of molecules (atoms here), 3 comes 

from 3 degrees of freedom and kT/2 comes 

from the energy per degree of freedom 

(from the equipartition principal).  

 The constant volume specific heat  

CV= dU/dT|V so that for the ideal 

monatomic gas  

CV= N 3k/2 per molecule or CV= 3R/2 per 

mole. {Technically, for the theoretically 

inclined, the derivative is at constant 

volume (i.e. |V) and is a partial derivative 

(all other variables held constant)} 

 It is worth noting that if the gas were adsorbed onto a surface, where motion in only two directions 

was possible (2 degrees of freedom), that the U would be accordingly reduced.   
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--------------------------------------------------------------------------------------------------------------------- 

 This figure illustrates the application 

of the equipartition principal to a diatomic 

ideal gas.  Note that there are now: 3 

translational degrees of freedom associated 

with the <vx
2>, <vy

2> and <vz
2>; and 2 

rotational degrees of freedom associated 

with the <x
2>, and <y

2>.   

{Important aside.  Because the atoms are 

assumed to be point particles located along 

the z-axis, the moment of inertia for 

rotations about z is zero and there is no 

energy (or degree of freedom) associated 

with it. Although the electron cloud extends 

a distance from the atoms comparable to 

their separation, the mass of the atoms is 

located in the nucleus which is many orders 

of magnitude smaller so that the point-mass 

assumption for the mass distribution is an 

excellent approximation.} 

 Continuing from before the aside, 

the equipartition principal dictates the 

internal energy of the ideal diatomic gas, U, to be N 5 (kT/2).  Here the 5= [3 translational + 2 rotational] 

degrees of freedom and all else is as defined before. The CV is obtained, as before, by taking the derivative 

of the internal energy and is indicated in the figure. 

--------------------------------------------------------------------------------------------------------------------- 

 This figure illustrates the application 

of the equipartition principal to a polyatomic 

ideal gas.  Note that there are still 3 

translational degrees of freedom associated 

with the <vx
2>, <vy

2> and <vz
2>.  However 

for the polyatomic molecule there are now 

the full 3 rotational degrees of freedom 

associated with the <x
2>, <y

2> and <z
2>.  

The equipartition principal therefore dictates 

the internal energy of the ideal polyatomic 

gas, U, to be N 6 (kT/2).  Here the 6= [3 

translational + 3 rotational] degrees of 

freedom. The CV is obtained, as before, by 

taking the derivative of the internal energy 

and is indicated in the figure. 
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--------------------------------------------------------------------------------------------------------------------- 

 The table at right indicates the specific 

heats of a number of gases.  One can see that 

the equipartition of energy theorem works 

exceedingly well in many cases.   

 CO2 is in fact a linear molecule and 

should have a much smaller CV, however it has 

some additional vibrational (bending) degrees 

of freedom {NOT REQUIRED FOR THIS 

COURSE}.  In fact these low lying vibrations 

are part of the infrared active modes that make 

CO2 a greenhouse gas. 

 H2O similarly has some bending 

vibrations and is also a greenhouse gas. 

 Diatomic H2 gas shows 3 translational 

degrees of freedom at low temperature because 

the 2 rotational degrees of freedom “freeze out” 

due to quantum mechanical effects below about 

100K. {This concept is not required for this 

course but is our first encounter with quantum 

mechanics.  Basically a quantum system has 

discrete allowed energies and the equipartition 

principal does not apply.  If the average thermal 

energy, kT, is small compared to the quantum-allowed energy separation then this degree of freedom 

disappears.}  

 

--------------------------------------------------------------------------------------------------------------------- 

 NOT REQUIRED FOR 203.  

This figure illustrates the temperature 

dependence of CV for diatomic H2.  

The freezing out of the rotational 

degrees of freedom at low temperature 

was discussed in the previous slide.  

However, at very high temperature one 

should note another step increase in 

the value of CV.  This step occurs 

because two additional degrees of 

freedom (one kinetic and one 

potential) associated with the vibration 

of the H-atoms about the molecular 

center of mass “freeze out” due to 

quantum mechanical effects below 

about 3000K.   
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--------------------------------------------------------------------------------------------------------------------- 

 NOT REQUIRED FOR 203.  This 

figure illustrates the evaluation of CV for a 

monatomic solid.  Every atom can be 

thought of as being bound to a lattice site 

like a harmonic oscillator.  Thus there are 

three kinetic and three potential degrees of 

freedom for the vibrations of the atoms 

about their equilibrium positions.  This 

allows one to calculate the internal energy 

and specific heat of such a solid and is 

known as the law of Dulong and Petit.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


