Review of standing waves on string

Note: same
Standing Waves: e.g. string with **fixed end points**

BOUNDARY CONDITIONS: no amplitude at ends

$$L = \frac{\lambda_1}{2} 1$$

$$L = \frac{\lambda_2}{2} 2$$

$$L = \frac{\lambda_3}{2} 3$$

$$L = \frac{\lambda_n}{2} n$$

$$\lambda_n = \frac{2L}{n} : n = 1, 2, 3, 4 ...$$

$$f_n = \frac{v}{\lambda_n} = n \frac{v}{2L} = nf_1$$

12a-2
Interference of right and left traveling waves to give standing wave.

http://www.walter-fendt.de/ph14e/stwaverefl.htm