$\phi = \mathbf{B}_{\perp} \mathbf{A} = \text{magnetic flux} \qquad \Phi = \sum \mathbf{B}_{\perp} \Delta \mathbf{A}$ $\boldsymbol{\xi} = -\frac{\Delta \phi}{\Delta t} \qquad \boldsymbol{\xi} = -\mathbf{N} \frac{\Delta \Phi}{\Delta t}$

Lentz's Law Direction of current **opposes** $\Delta \varphi$ which created it.

$$(e^{-\frac{t}{L/R}})$$

 $V_{max} = I_{max} Z$ $Z_R = R$ $Z_L = X_L = \omega L$ $Z_C = X_C = \frac{1}{\omega C}$

$$Z_{\rm RLC} = \sqrt{R^2 + (X_L - X_C)^2}$$

PhET

volta

5-2a

Eddy currents

Falling Magnet Applet http://web.mit.edu/jbelcher/www/java/falling/falling.html

Magnet in Cu tube http://www.physics.rutgers.edu/~croft/magnetintube.wmv

http://www.physics.rutgers.edu/~croft/2007magnetonplane.wmv

$$\Delta x = v\Delta t$$

$$\Delta A = \Delta X \ell$$
Suppose

$$I = .2m, B = 0.5T, v = .1 m/s \& R = 3 \Omega$$
What is the I in the circuit ?

$$V = \Delta \phi$$

$$\Delta \phi = B\ell v$$

$$V = \frac{\Delta \phi}{\Delta t} = B\ell v$$

$$V = \frac{\Delta \phi}{\Delta t} = (0.5 \text{ T})(0.2 \text{ m})(0.1 \text{ m/s}) = 0.01 \text{ Tm}^2/\text{s} = 0.01 \text{ V}$$
Units next page

$$V = IR \implies I = \frac{V}{R} = \frac{0.01 \text{ V}}{3 \Omega} = .0033\text{ A}$$
5-3a

Generator: creates alternating current (AC)

Alternating Current (AC)

 $I = I_0 \sin(2\pi ft) = I_0 \sin(\omega t)$ $V = V_0 \sin(2\pi ft) = V_0 \sin(\omega t)$

T= period (sec.) $\frac{1}{T} = f = \text{freq.}(\text{cyc.}/\text{sec})$ $\omega = 2\pi f = ang. freq. (rad/sec.)$ $\mathbf{V} = \mathbf{I} \mathbf{R}$ $\mathbf{P} = \mathbf{I}^2 \mathbf{R} = \mathbf{I} \mathbf{V}$ power $\mathbf{P} = \mathbf{I}_0^2 \mathbf{R} \sin^2(\omega t) = \mathbf{I}_0 \mathbf{V}_0 \sin^2(\omega t)$ Average power over time: $\overline{\sin^2 2\pi ft} = \frac{1}{2}$ $\overline{\mathbf{P}} = \frac{\mathbf{I}_0 \, \mathbf{v}_0}{2}$ $\frac{I_0}{\sqrt{2}} = I_{RMS} = .707I_0$ $\mathbf{P} = \mathbf{I}_{RMS} \mathbf{V}_{RMS}$

$$\frac{V_0}{\sqrt{2}} = V_{RMS} = .707V_0$$

5-5 *Ni

Energy

conservation

$$_{1}^{1}V_{1} = I_{2}V_{2} \longrightarrow \left| \frac{I_{1}}{I_{2}} \right|$$

$$\frac{I_1}{I_2} = \frac{V_2}{V_1} = \frac{N_2}{N_1}$$

Step down transformer ex. Door bell

$$\mathbf{I}_1 \mathbf{V}_1 = \mathbf{I}_2 \mathbf{V}_2$$

Long distance power transmission high V modest current

step down transformer to 120 V & high current

Inductance (L)
$$\{S_{e}|S \ Siald coupling\}$$

From $I_{eops} = N(AB) = N(A[M_{o} \cap I])$
 $f_{eops} = N(AB) = N(A[M_{o} \cap I])$
 $h_{eops} = \frac{H}{I_{eops}} = \frac{N}{I_{eops}} = \frac{N}{I_{eops}} = \frac{N}{I_{eops}}$
 $f = NAM_{o} \frac{N}{R}I = [M_{o} N^{2}A]I$
 $f = NAM_{o} \frac{N}{R}I = [M_{o} N^{2}A]I$
 $f = LI$
 $L = [M_{o} N^{2}A]$
 $H_{ov} L is usod \rightarrow AC circuits$
 $f = I(AC)$
 $I = I = I = I$
 $f = I =$

Units L in Henrys

L 1 5.1 MONA L = $T \cdot m^2 = H A$ Henry's H = T. m2 \Rightarrow

Units

most basic units $\frac{T \cdot m^2}{A} = \left(\frac{N}{Am}\right) \cdot \frac{m^2}{A} = \frac{N}{A^2} = \frac{kgm}{s^2} \frac{m}{C^2/s^2}$ $\mathcal{E} = -\frac{\Delta\phi}{\Delta t}$ - L AI **Check units** $\frac{N \cdot m \cdot s}{C/c} = \frac{k_{g}m}{s^{2}} \frac{m}{C^{2}} = \frac{k_{g}m}{C^{2}}$ HA => H = V.S 2

General AC circuit

$$I = I_{0} \sin(\omega t) \Rightarrow V = V_{0} \sin(\omega t \pm \phi)$$

$$I = \frac{dQ}{dt} \qquad Q = \int I \ dt = \int I_{0} \sin(\omega t) \ dt = I_{0} \frac{-\cos(\omega t)}{\omega}$$

$$V = \frac{Q}{C} \qquad V = \frac{1}{\omega C} I_{0} [-\cos(\omega t)] = [\frac{1}{\omega C}] I_{0} \sin(\omega t - \pi/2)$$

$$V_{0} = [\frac{1}{\omega C}] I_{0} \qquad \text{Note: or usually measured in radius use degrees for simplicity}}$$

$$X_{c} = \frac{1}{\omega C}$$

$$V_{0} = X_{C} \quad I_{0} \qquad \text{Note: } \omega \to \infty X_{c} \to 0$$

$$High \text{ frequency looks like short circuit}}$$

$$\omega \to 0 \quad X_{c} \to \infty$$

$$0 \text{ frequency no AC current}$$

Analogies Between a Mass on a Spring and an LC Circuit

Mass-spring system		LC circuit	
position	X	charge	q
velocity	$v = \Delta x / \Delta t$	current	$I = \Delta q / \Delta t$
mass	т	inductance	L
force constant	k	inverse capacitance	1/C
natural frequency	$\omega = \sqrt{(k/m)}$	natural frequency	$\omega = \sqrt{(1/LC)}$

 $\omega << \omega_0$ I small $Z \sim \sqrt{\left[-\frac{1}{\omega C}\right]^2}$ phase C -like

 $\omega = \omega_0$ phase R –like $Z \sim \sqrt{R^2}$ (0)

> $\omega >> \omega_0$ $Z \sim \sqrt{[\omega L]^2}$ phase L-like 5-16