$$
\phi=\mathrm{B}_{\perp} \mathrm{A}=\text { magnetic flux } \quad \Phi=\sum \mathrm{B}_{\perp} \Delta \mathrm{A}
$$

$$
\varepsilon=-\frac{\Delta \phi}{\Delta \mathrm{t}} \quad \varepsilon=-\mathrm{N} \frac{\Delta \Phi}{\Delta \mathrm{t}}
$$

Lentz's Law Direction of current opposes $\Delta \varphi$ which created it.

$$
\begin{aligned}
& \left(e^{-\frac{t}{L / R}}\right) \\
& \mathbf{V}_{\max }=\mathbf{I}_{\max } \mathbf{Z} \quad \mathbf{Z}_{\mathbf{R}}=\mathbf{R} \quad \mathbf{Z}_{\mathrm{L}}=\mathbf{X}_{\mathrm{L}}=\omega \mathbf{L} \quad \mathbf{Z}_{\mathrm{C}}=\mathbf{X}_{\mathrm{C}}=\frac{\mathbf{1}}{\omega \mathbf{C}} \\
& \mathrm{Z}_{\mathrm{RLC}}=\sqrt{\mathrm{R}^{2}+\left(X_{L}-X_{C}\right)^{2}}
\end{aligned}
$$

Recall: moving charges (I) in $\vec{B} \longrightarrow$ force moving charges (I) \longrightarrow created. \vec{B} Now we consider $(B) \longrightarrow I$ connection.

Define:

Surface A
$\underset{\vec{B}}{\vec{\longrightarrow}}$
$\phi=\mathrm{B}_{\perp} \mathrm{A}=$ magnetic flux

$$
\phi=\mathrm{AB}_{\perp}=\mathrm{AB} \cos \theta
$$

Faraday's Law

$\varepsilon=-\frac{\Delta \phi}{\Delta t}$ EMF created by $\frac{\Delta \phi}{\Delta t}$

Lentz's Law Direction of current opposes $\Delta \varphi$ which created it.

$$
\Delta \varphi=\Delta\left(A B_{\perp}\right)
$$

In these examples $\mathrm{A}=$ constant
$\therefore \Delta \varphi=A \Delta\left(B_{\perp}\right)$

http://phet.colorado.edu/sims/faradays-law/faradays-law_en.html

Eddy currents

Falling Magnet Applet
http://web.mit.edu/jbelcher/www/java/falling/falling.html Magnet in Cu tube http://www.phvsics rutoers edu/~croft/magnetintuhe.wmv

disk with holes is still slowed by
eddy currents if holes allow return path

Magnet- on Cu Inclined plane

 Inclined plane
http://www.physics.rutgers.edu/~croft/2007magnetonplane.wmv

metal rod moving on metal rails in B field

$$
\begin{aligned}
\therefore \quad|\varepsilon|=v=\frac{w}{q}=\begin{array}{c}
\text { work dore / charge moved } \\
\text { length of Rod. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\therefore|\varepsilon| & =\frac{w}{r}=\frac{F l}{q}=\frac{* l v B}{\ell}=\operatorname{lv} B \text { ie } \mid \\
\therefore|\varepsilon| & =\frac{\Delta A}{\Delta t} B \text { or } \phi=B A
\end{aligned}
$$

$$
\left\lvert\, \varepsilon /=\frac{\Delta \phi}{\Delta t}\right.
$$

recall $\quad \mathbf{F}=\mathbf{q v B}$
units $\quad \mathbf{N}=\mathbf{C} \frac{\mathbf{m}}{\mathbf{s}} \mathbf{T}$
$\frac{N}{C} \frac{s}{m}=T$
$\frac{[\mathbf{T}] \mathrm{m}^{2}}{\mathrm{~s}}=\left[\frac{\mathbf{N}}{\mathbf{C}} \frac{\mathbf{s}}{\mathbf{m}}\right] \frac{\mathbf{m}^{2}}{\mathrm{~s}}=\frac{\mathbf{N}}{\mathbf{C}} m=\frac{J}{\mathbf{C}}=V$
$V=\frac{\Delta \phi}{\Delta t}$

5-3b

Generator: creates alternating current (AC)

$$
\begin{aligned}
& I=I_{0} \sin (2 \pi f t)=I_{0} \sin (\omega t) \\
& V=V_{0} \sin (2 \pi f t)=V_{0} \sin (\omega t)
\end{aligned}
$$

$$
\begin{aligned}
& T=\text { period }(\text { sec. }) \\
& \frac{1}{T}=\mathrm{f}=\text { freq. }(\mathrm{cyc} . / \text { sec })
\end{aligned}
$$

$$
\omega=2 \pi \mathrm{f}=\text { and. freq. }(\mathrm{rad} / \mathrm{sec} .)
$$

$V=I R$

$\mathbf{P}=\mathbf{I}^{2} \mathbf{R}=\mathbf{I} \mathbf{V}$ power
$P=I_{0}{ }^{2} R \sin ^{2}(\omega t)=I_{0} V_{0} \sin ^{2}(\omega t)$
Average power over time:

$$
\overline{\mathbf{P}}=\frac{\mathbf{I}_{0} \mathbf{V}_{0}}{2}
$$

$$
\overline{\sin ^{2} 2 \pi f t}=\frac{1}{2}
$$

$\overline{\mathbf{P}}=\mathbf{I}_{\text {RMS }} \mathbf{V}_{\text {RMS }}$

$$
\begin{aligned}
& \frac{\mathrm{I}_{0}}{\sqrt{2}}=\mathrm{I}_{\mathrm{RMS}}=.707 \mathrm{I}_{0} \\
& \frac{\mathrm{~V}_{0}}{\sqrt{2}}=\mathrm{V}_{\mathrm{RMS}}=.707 \mathrm{~V}_{0}
\end{aligned}
$$

$V_{0}=V_{\text {RMs }}(\sqrt{2})=170$ Volts

${ }^{1} \vec{\rightarrow}^{2} \xrightarrow{\rightrightarrows}$

Magnetic field coupling between coils

 $\Delta \mathrm{I}_{1}$ creates $\Delta \mathrm{B}_{1} \rightarrow$ induces I_{2}
Principle of transformer

$$
\mathrm{V}=-\mathrm{N} \frac{\Delta \phi}{\Delta \mathrm{t}} \rightarrow \frac{\mathrm{~V}}{\mathrm{~N}}=-\frac{\Delta \phi^{-}}{\Delta \mathrm{t}} \rightarrow \frac{\text { Same for both } 1 \text { and } 2}{\frac{\mathrm{~V}_{1}}{\mathrm{~N}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~N}_{2}}} \text { More coils more } \mathrm{V}
$$

$\underset{\text { conservation }}{\text { Energy }} \mathrm{I}_{1} \mathrm{~V}_{1}=\mathrm{I}_{2} \mathrm{~V}_{2} \longrightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}} \quad$ More coils more \mathbf{V} but less I

Energy

 conservation$$
I_{1} V_{1}=I_{2} V_{2} \rightarrow \frac{I_{1}}{I_{2}}=\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

Step down transformer ex. Door bell

$$
\mathrm{I}_{1} \mathrm{~V}_{1}=\mathrm{I}_{2} \mathrm{~V}_{2}
$$

Long distance power transmission
high V modest current
step down transformer to $120 \mathrm{~V} \&$ high current

Inductance (L) $\left\{S_{e} / f\right.$ field coupling $\}$

$\begin{aligned} & \text { Units } \\ & \text { in Henry }\end{aligned} \quad \left\lvert\, \begin{aligned} & \phi_{T_{s 01}}=L_{s_{0} 1}\end{aligned} \quad\left[\begin{array}{l}L_{s_{0} 1}=\frac{\mu_{0} N^{2} A}{l} \quad \text { Unit, }\end{array}\right.\right.$
L in Henrys

$$
\begin{aligned}
& T \cdot m^{2}=H A \\
& \text { Henry; } \\
& \Rightarrow H=\frac{T \cdot m^{2}}{A}
\end{aligned}
$$

most basic units

$$
\begin{aligned}
& \frac{T \cdot m^{2}}{A}=\left(\frac{N}{A m}\right) \cdot \frac{m^{2}}{A}=\frac{N m}{A^{2}}=\frac{\mathrm{kgm}}{\mathrm{~s}^{2}} \frac{m}{\mathrm{c}^{2} / \mathrm{s}^{2}} \cdots \cdot \cdot \cdot\left(H=\frac{\mathrm{kg} \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right. \\
& \varepsilon \equiv-\frac{\Delta \phi}{\Delta t}=-L \cdot \frac{\Delta I}{\Delta t}, \\
& V=H \frac{A}{s} \Rightarrow H=\frac{V \cdot s}{A}, \quad \frac{V \cdot s}{A}=\frac{N \cdot m \cdot s}{C / s}=\frac{\mathrm{kgm} m}{\mathrm{~s}^{2} \mathrm{c}^{2}}=\frac{\mathrm{kg} w^{2}}{\mathrm{C}^{2}}
\end{aligned}
$$

Collapse magnetic field in \mathbf{L} Boundary conditions

$\mathrm{t}=0$ move switch.

$$
\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}+\mathrm{I} \mathrm{R}=0
$$

\therefore here $\quad \frac{\Delta \mathbf{I}}{\Delta \mathbf{t}}+\frac{\mathbf{R}}{\mathbf{L}} \mathbf{I}=\mathbf{0}$

$$
\tau=\frac{L}{R}
$$

5-8
I at $t=\infty$

Establishing magnetic field in L
Boundary conditions

$$
\begin{gathered}
t=0=\mathbf{O}=0 \\
\mathbf{I}=\text { constant } \quad V=I R \\
\frac{\Delta I}{\Delta t}=0
\end{gathered}
$$

\therefore here

$$
\mathrm{I}=\left(\frac{\mathrm{V}}{\mathrm{R}}\right)\left(1-e^{-\frac{t R}{L}}\right)
$$

$$
\text { I at } t=\infty
$$

$$
\begin{aligned}
& \text { Recall: } \\
& \frac{\Delta Q}{\Delta t}+\frac{1}{\mathrm{RC}} Q=\frac{\mathrm{V}}{\mathrm{R}} \Rightarrow \begin{array}{l}
\mathrm{Q}=\mathrm{VC}\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}\right) \\
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}
\end{array}
\end{aligned}
$$

General AC circuit

$$
X_{C}=\frac{1}{\omega C} \quad \varphi=90^{0}
$$

$$
\mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}}
$$

$$
I=I_{0} \sin (\omega t) \Rightarrow V=V_{0} \sin (\omega t \pm \phi)
$$

$$
Q=\int I d t=\int I_{0} \sin (\omega t) d t=I_{0} \frac{-\cos (\omega t)}{\omega}
$$

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}
$$

$$
\mathrm{V}=\frac{1}{\omega \mathrm{C}} \mathrm{I}_{0}[-\cos (\omega \mathrm{t})]=\left[\frac{1}{\omega \mathrm{C}}\right] \mathrm{I}_{0} \sin (\omega \mathrm{t}-\pi / 2)
$$

$$
V_{o}=\left[\frac{1}{\omega C}\right] I_{o}
$$

$$
\mathrm{V}_{0}
$$

Note! ω t usually measured in radius use degrees for simplicity

$$
\mathbf{V}_{\mathrm{O}}=\mathbf{X}_{\mathbf{C}}^{\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}} \mathbf{I}_{\mathrm{O}}
$$

5-11cap

Note: $\omega \rightarrow \infty X_{c} \rightarrow 0$

High frequency looks like short circuit

$$
\omega \rightarrow 0 \quad \mathrm{X}_{\mathrm{c}} \rightarrow \infty
$$

0 frequency no AC current

5-12

C-L circuit

Analogies Between a Mass on a Spring and an LC Circuit

Mass-spring system	$L C$ circuit		
position	x	charge	q
velocity	$v=\Delta x / \Delta t$	current	$I=\Delta q / \Delta t$
mass	m	inductance	L
force constant	k	inverse capacitance	$1 / C$
natural	$\omega=\sqrt{ }(k / m)$	natural frequency	$\omega=\sqrt{ }(1 / L C)$

RLC series circuit -Current resonance

Resonance where $\mathbf{X}_{\mathrm{L}}-\mathbf{x}_{\mathrm{C}} \Rightarrow \mathbf{0}$

5-14

V=IR worked well so

$$
\mathrm{V}=\mathrm{V}_{\mathrm{R}}+V_{L}+V_{C} \quad \text { look for relation }
$$

phase

$$
\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}
$$

5-15

