

Kirchhoff's Laws $\sum_{junc} \mathbf{I}_{j} = 0$

 $\sum V_{j}$ =0loop

$$\mathbf{P} = \mathbf{I} \ \mathbf{V} = \mathbf{I}^2 \ \mathbf{R} = \frac{\mathbf{V}^2}{\mathbf{R}}$$
$$\mathbf{R}_{\text{eff}} = \mathbf{R}_1 + \mathbf{R}_2 \quad \frac{1}{\mathbf{C}_{\text{eff}}} = \frac{1}{\mathbf{C}_1} + \frac{1}{\mathbf{C}_2}$$
$$\frac{1}{\mathbf{R}_{\text{eff}}} = \frac{1}{\mathbf{R}_1} + \frac{1}{\mathbf{R}_2} \quad \mathbf{C}_{\text{eff}} = \mathbf{C}_1 + \mathbf{C}_2$$

 $-IR \qquad I \qquad \longrightarrow I \qquad +IR \qquad \leftarrow I$

3.0

Electrical Measurements

"Amp" meter (very little resistance

DC (direct current) multi-meters measures volts & amps.

Don't make a mistake on settings! [especially don't try to measure V on amp setting]

Power disipated to heat in resistor

$$\frac{F}{I} = \frac{V}{R} = \frac{V}{R} = \frac{A \theta}{A t}$$
Work
A moved in At
work
A moving A across V

$$\frac{F}{I} = \frac{A W}{A t} = \frac{A \theta}{A t} V \Rightarrow P = I V$$
Units of power

$$\frac{F}{I} = \frac{A W}{A t} = \frac{A \theta}{A t} V \Rightarrow P = I V$$
Units of power

$$P = IV$$
A V = $\left(\frac{C}{sec}\right)\left(\frac{J}{C}\right) = \frac{J}{sec}$
work/time

$$\frac{I}{I} = V \Rightarrow P = I (IR) \Rightarrow I^{2}R = P$$
also $I = \frac{V}{R}$ so $P = I (IR) \Rightarrow I^{2}R = P$

$$3-5$$

Power Example $- \text{ or } \rho = \frac{\sqrt{2}}{R}$ L' W resister] L' Limit D where it's OK 10 A P=. P=I²R 0 V to Limit 0.5 (W) = I2 (10 2) 5 (w.a) = 12 I2= 0.05 1 4 (글북) $\left[\frac{5}{\frac{1}{4}s}\right]$ I = 10.05 $\left(\frac{1}{2}\frac{c}{2}\right)$ <u>Ž</u>s⁷ 2 I ~ 0.22 2.2 5 = I. 2 0.22 (5) = V 2.2(V) 3-6

Circuit Analysis Kirchhoff's Laws

Conservation of current charge

The sum of the currents into any junction must equal zero.

(charge does not build up). (+=in -=out)

You can choose any direction for I, just stay with your choice throughout.

Electric potential energy conservation

•The sum of the potential difference around any closed loop is zero!

Equivalently

- $\mathbf{V_{cdab}} = \mathbf{V_{cyxb}} = \mathbf{V_{cb}}$
- Potential difference between 2 points same for all possible paths !

Resistors in Series

Symmetry approach for = parallel R's n resistors of R in // Reff = ? I sees n paths all the same So I in each path $V = \prod_{n=1}^{\infty} R$ or $v = I\left(\frac{R}{n}\right)$ R Refs = 3-11a

R_{eff} in parallel-general observation

$$\frac{1}{R_{eff.}} = \frac{1}{1000} + \frac{1}{100} = \frac{11}{1000}$$

 $R_1 = 1000\Omega$ $R_2 = 100\Omega$

 $R_{eff.} = ---- = 91\Omega$ $R_{1} big \qquad R_{eff.} A little less than R_{2} (small).$

Capacitors <u>Series</u>

equal charge Q !!

 $\frac{1}{C_{eff}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$

In general:

3-14

Capacitors <u>Parallel</u>

$$\mathbf{V} \mathbf{C}_{\text{eff.}} = \mathbf{Q}_{\text{tot.}} = \mathbf{Q}_1 + \mathbf{Q}_2$$

$$V C_{eff.} = V C_1 + V C_2$$

$$C_{eff} = C_1 + C_2$$

Parallel capacitors add in general

$$C_{eff} = C_1 + C_2 + C_3 \dots$$

(opposite from resistors)

like just increasing area of C

Example: 1.0 μf 1.5 μf C_{eff} =(1.0+1.5+5.0)(μf)=7.5 μf 5.0 μf 3-16

3-19

Appendix I: Temperature dependence of resistivity & superconductivity

Less electron scattering
 Lower resistivity

Super conductivity $R \Rightarrow 0$ at critical temp. T_c in some materials 1911-Hg $T_c=4.2K$ 1950-1970 Nb₃Sn $T_c=23K$ 1) 2 e⁻ attracted to + ion 2) effective attraction between e⁻ 1989 Y₁Ba₂Cu₃O₇ $T_c=95K$ 3) e⁻-e⁻ pairs form

4) pairs don't scatter so no resistance

3-I-2

An infinite number of mathematicians walk into a bar.

attractive ++ attractive

The first one tells the bartender he wants a beer.

The second one says he wants half a beer.

T_c =121 K highest yet!!!!

The third one says he wants a fourth of a beer.

The bartender puts two beers on the bar and says "You guys need to learn your limits."

Appendix II: Formal Kirchhoff's Laws approach/concepts

3-II-1

Voltage drop around loop = 0 (Energy conservation !!)

voltage drops around loop 0 TR 3-II-2

3-II-3

I, = K [2] $I_{i} = \frac{1}{R_{i}} \begin{bmatrix} 3 \end{bmatrix}$

[2] and [3] in[1] $\begin{bmatrix} I \end{bmatrix} \quad I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2}$ $I = V \left[\frac{1}{R_1} + \frac{1}{R_2} \right] = \frac{V}{R_{eff}}$ $I \left[\frac{1}{R_{eff}} + \frac{1}{R_2} \right] = \frac{V}{R_{eff}}$ -7 V = Reff. Reff = R. + R2 In gener 京+京+京, +京, +市, *** = 下をFF 3-II-5