$\mathbf{V}=\mathbf{I} \mathbf{R} \quad \mathrm{R}=\rho\left[\frac{\mathrm{L}}{\mathrm{A}}\right]$
Kirchhoff's Laws

$$
\sum_{\text {junc }} \mathbf{I}_{\mathbf{j}}=0
$$

$$
\frac{L^{-v}}{T^{-}} \downarrow \frac{L^{+v}}{T^{-}}+
$$

$$
3.0
$$

$$
\begin{aligned}
& \sum \mathbf{V}_{\mathrm{j}}=0 \\
& \text { loop } \\
& \mathbf{P}=\mathbf{I} \mathbf{V}=\mathbf{I}^{2} \mathbf{R}=\frac{\mathbf{V}^{2}}{\mathbf{R}} \\
& \mathbf{R}_{\text {eff }}=\mathbf{R}_{1}+\mathbf{R}_{2} \quad \frac{1}{\mathbf{C}_{\text {eff }}}=\frac{1}{\mathbf{C}_{1}}+\frac{1}{\mathbf{C}_{2}} \\
& \frac{1}{\mathbf{R}_{\text {eff }}}=\frac{1}{\mathbf{R}_{1}}+\frac{1}{\mathbf{R}_{2}} \quad \mathbf{C}_{\text {eff }}=\mathbf{C}_{1}+\mathbf{C}_{2}
\end{aligned}
$$

Charges in motion

Potential difference V
cross-section

Effective "drag" force that resists motion

 charge Δq flows through in $\Delta t$$$
\mathrm{I}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}} \quad \text { current }=\frac{\text { coulombs }}{\mathrm{sec}}=\text { ampere }
$$

$\mathrm{Pb}+\mathrm{SO}_{4}^{-2} \Rightarrow \mathrm{PbSO}_{4}+2 \mathrm{e}^{-}$

Electric Potential Source

$$
\mathrm{PbO}_{2}+\mathrm{SO}_{4}^{-2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \Rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Battery - dry cell 1.5 V
Hg cell 1.35 V
Chemical energy \longrightarrow electrical energy
electrical resistivity

$$
\rho=\left[\frac{\mathrm{m}}{\mathrm{nq} \tau}\right]
$$

marerial's reluctance to carry current

Example: 10Ω resistor $\mathrm{V}=\mathrm{IR}=\mathrm{I}(10)$
$\mathrm{V}=10 \mathrm{I}$ theory.

units

$$
\Omega=\frac{V}{A}=\frac{J / c}{\frac{J}{\sec }}=\frac{J \sec }{c^{2}}=\frac{\left(k g \frac{i^{2}}{\sec ^{2}}\right) \sec }{c^{2}}=\frac{k g m^{2}}{\sec c^{2}}
$$

Electrical Measurements

"Amp" meter (very little resistance

Volt meter (very large resistance) (draws \sim NO current.)

DC (direct current) multi-meters measures volts \& amps.
Don't make a mistake on settings! [especially don't try to measure V on amp setting]

Power Example

$$
- \text { or } P=\frac{v^{2}}{R}
$$

-IT $10 \Omega\left[\frac{1}{2} \omega\right.$ resistor $]$.

$$
\text { Limit } \uparrow \text { where its of }
$$

$$
\begin{aligned}
& \begin{array}{l}
P=\frac{v^{2}}{10} \quad \frac{1}{(\Omega)} \\
1 .-\frac{1}{(2)} \\
0.5 w=\frac{v^{2}}{10} \frac{1}{(\Omega)}
\end{array} \\
& 5(w, \Omega)=v^{2} \\
& \left(\frac{\sqrt{s}}{s} \frac{v}{A}\right) \\
& \left(\frac{d}{\frac{1}{2}} \frac{2}{\frac{2}{c}} \frac{\frac{c}{x}}{2}\right) \\
& 2.2 \frac{J}{c}=V \\
& \underset{\text { volts }}{2.2(v)}=V
\end{aligned}
$$

$$
\begin{aligned}
& P=I^{2} R \\
& 0.5(w)=I^{2}(10 \Omega) \\
& I^{2}=0.05 \quad\left[\frac{W}{\Omega}\right] \\
& I=\sqrt{0.05} \sqrt{\left[\frac{J}{\frac{V}{A} \mathrm{~s}}\right]} \\
& I_{i n+t}=0.22 \sqrt{\frac{\frac{J}{J}}{\frac{J^{5}}{} \frac{\frac{1}{L}}{s}}}
\end{aligned}
$$

Circuit Analysis Kirchhoff's Laws

Conservation of current charge

The sum of the currents into any junction must equal zero. (charge does not build up). (+=in -=out) You can choose any direction for I, just stay with your choice throughout.

3-7

Electric potential energy conservation

-The sum of the potential difference around any closed loop is zero!

$$
\begin{aligned}
& v_{a b}+v_{b c}+v_{c d}+v_{d_{a}}=0 \\
& v_{b x}+v_{x y}+v_{y c}+v_{c b}=0 \\
& v_{a x}+v_{x y}+v_{y d}+v_{d a}=0 \\
& v_{a b}+v_{b x}
\end{aligned}
$$

Equivalently

$$
\mathbf{V}_{\mathrm{cdab}}=\mathbf{V}_{\mathrm{cyxb}}=\mathbf{V}_{\mathrm{cb}}
$$

- Potential difference between 2 points same for all possible paths !

Resistors in Series

in general

$$
\begin{gathered}
V=V_{1}+V_{2} \\
V=I R_{1}+I R_{2} \\
V=I\left[R_{1}+R_{2}\right] \\
V=I R_{\text {eff }} \\
R_{\text {eff }}=R_{1}+R_{2}
\end{gathered}
$$

$\mathbf{V}=\mathbf{V}_{1}+\mathbf{V}_{2}+\ldots+\mathbf{V}_{\mathrm{n}}=\mathbf{I} \mathbf{R}_{\text {eff }}$
$\mathbf{R}_{\text {eff }}=\mathbf{R}_{1}+\mathbf{R}_{2}+\ldots+\mathbf{R}_{\mathrm{n}}$

Resistors in Parallel

$$
\mathbf{V}=\mathbf{I}_{1} \mathbf{R}_{1}=\mathbf{I}_{\mathbf{2}} \mathbf{R}_{\mathbf{2}}
$$

$$
\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}}=\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}
$$

$$
\mathbf{I}_{1}=\frac{\mathbf{V}}{\mathbf{R}_{1}} \quad \mathbf{I}_{2}=\frac{\mathbf{V}}{\mathbf{R}_{2}}
$$

$$
\begin{aligned}
& \text { in general } \\
& \mathbf{V}=\mathbf{I} \mathbf{R}_{\text {eff }}
\end{aligned} \mathbf{I}=\mathbf{V} / \mathbf{R}_{\text {eff }}
$$

$$
\frac{\mathbf{1}}{\mathbf{R}_{\text {eff }}}=\left[\frac{\mathbf{1}}{\mathbf{R}_{1}}+\frac{\mathbf{1}}{\mathbf{R}_{2}}+\frac{\mathbf{1}}{\mathbf{R}_{3}} \ldots+\frac{\mathbf{1}}{\mathbf{R}_{n}}\right]
$$

Example:

$\mathrm{R}_{\text {reffi }}=$?

$\frac{1}{R_{e}}=\left[\frac{1}{100}+\frac{1}{33}\right]\left\{\frac{1}{\Omega}\right\}$

$$
=[.01+.03]\left\{\frac{1}{\Omega}\right\}
$$

$$
\frac{1}{R_{e}}=.04 \frac{1}{\Omega}
$$

$$
R_{e}=\frac{1}{.04}=\frac{1}{4}(10)^{2}=.25(10)^{2}
$$

$$
R_{e}=25 \Omega
$$

Example: If $2 \mathrm{~A}=\mathrm{I}$, what is $\mathrm{I}_{33} \& \mathrm{I}_{100}$?
$\mathrm{V}=\mathrm{I}_{100}(100)=\mathrm{I}_{33}(33) \Rightarrow \mathrm{I}_{100}=\mathrm{I}_{33} \frac{33}{100}=.33 \mathrm{I}_{33}$
$\mathrm{I}=\mathrm{I}_{100}+\mathrm{I}_{33}$
$\mathrm{I}=\mathrm{I}_{33}(.33) \mathrm{I}_{33}$
$\mathrm{I}=\mathrm{I}_{33}(1.33)$
$\frac{2}{1.33}=\mathrm{I}_{33} \quad \mathrm{I}_{33}=\frac{2}{\frac{4}{3}}=\frac{3}{2}=1.5 \mathrm{~A}$
$\mathrm{I}_{100}=2 \mathrm{~A}-1.5 \mathrm{~A}=0.5 \mathrm{~A}$

3-11

Symmetry approach for $=$ parallel R's
n resistors of R in //
Refs = ?

I sees n paths "ll the same so $\frac{T}{n}$ in each path

$$
V=\frac{I}{n} R
$$

or $v=I\left(\frac{R}{n}\right)$

$$
R_{\text {eff }}=\frac{R}{n}
$$

> In general current ratio
> $\mathrm{R}_{1} \mathrm{I}_{1}=\mathrm{I}_{2} \mathrm{R}_{2} \Rightarrow \frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \Rightarrow \mathrm{I}_{2}=\mathrm{I}_{1} \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
> $\underline{\mathrm{I}_{2}}=\underline{\mathrm{R}_{1}}$ Ratio of current
> $I_{1}=\frac{R_{2}}{R_{2}}$ inverse ratio of R.
> small R larger power dissipated
> $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{I}_{2}^{2} \mathrm{R}_{2}}{\mathrm{I}_{1}^{2} \mathrm{R}_{1}} \quad \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{2}$
> .25100
> 25 watts
> $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \quad \begin{aligned} & \text { Ratio of power } \\ & \text { inverse ratio of } R .\end{aligned}$
> 3-12
$\mathrm{R}_{\text {eff }}$ in parallel-general observation

$$
R_{1}=1000 \Omega \quad R_{2}=100 \Omega
$$

$$
\mathrm{R}_{1} \mathrm{R}_{2}
$$

$$
\frac{1}{\mathrm{R}_{\text {eff. }}}=\frac{1}{1000}+\frac{1}{100}=\frac{11}{1000}
$$

$$
\frac{1}{R_{\text {eff. }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

$$
\mathrm{R}_{\mathrm{eff} .}=\frac{1000}{11}=91 \Omega
$$

$$
\begin{aligned}
& \mathrm{R}_{1} \text { big } \longrightarrow \begin{array}{l}
\mathrm{R}_{\text {eff. }} \mathrm{A} \text { little less } \\
\mathrm{R}_{2} \text { small }
\end{array} \text { than } \mathrm{R}_{2} \text { (small). }
\end{aligned}
$$

3-13

Capacitors Series

$$
\begin{aligned}
& \mathbf{V}_{1}=\frac{\mathbf{Q}_{1}}{\mathbf{C}_{1}} \\
& \mathbf{V}_{2}=\frac{\mathbf{Q}_{2}}{\mathbf{C}_{2}}
\end{aligned} \quad \mathrm{~V}{ }^{\frac{1}{\square+++\mathbf{+}}+\mathbf{Q}}
$$

$$
\mathbf{V}=\mathbf{V}_{1}+\mathbf{V}_{2} \rightarrow \mathbf{V}=\frac{\mathbf{Q}_{1}}{\mathbf{C}_{1}}+\frac{\mathbf{Q}_{2}}{\mathbf{C}_{2}}
$$

equal charge Q !!
$\therefore \mathbf{V}=\mathbf{Q}\left(\frac{1}{\mathbf{C}_{1}}+\frac{1}{\mathbf{C}_{2}}\right)=\mathbf{Q} \frac{1}{\mathbf{C}_{\text {eff }}}$

$$
\begin{array}{ll}
\frac{1}{\mathbf{C}_{\text {eff }}}=\frac{1}{\mathbf{C}_{1}}+\frac{1}{\mathbf{C}_{2}} \\
\text { In general: } & \frac{1}{\mathbf{C}_{\text {eff }}}=\frac{1}{\mathbf{C}_{1}}+\frac{1}{\mathbf{C}_{2}}+\frac{1}{\mathbf{C}_{3}}+\ldots
\end{array}
$$

Capacitors Parallel

equal voltages Vs !!!
$\mathrm{VC}_{\text {eff. }}=\mathrm{Q}_{\mathrm{tot.}}=\mathrm{Q}_{1}+\mathrm{Q}_{2}$
$\mathrm{VC}_{\text {eff. }}=\mathrm{VC}_{1}+\mathrm{VC}_{2}$

$$
\mathrm{C}_{\mathrm{eff}}=\mathrm{C}_{1}+\mathrm{C}_{2}
$$

Parallel capacitors add in general

$$
\begin{aligned}
& C_{\text {eff }}=C_{1}+C_{2}+C_{3} \ldots \ldots \\
& \text { (opposite from resistors) }
\end{aligned}
$$

like just increasing area of \mathbf{C}

Example:

$$
C_{\text {eff }}=(1.0+1.5+5.0)(\mu f)=7.5 \mu \mathrm{f}
$$

3-16

Exponential Function

$$
\begin{aligned}
f(t)= & e^{-\frac{t}{\tau}} \\
& =\text { time constant }
\end{aligned}
$$

$$
\begin{gathered}
\tau \\
\mathrm{f}(\mathrm{t}=\tau)=\mathrm{e}^{-1}=1 / \mathrm{e}=1 / 2.718
\end{gathered}
$$

$$
\frac{\mathrm{df}}{\mathrm{dt}}=-\frac{1}{\tau} \mathrm{f}
$$

$$
\frac{\mathrm{df}}{\mathrm{dt}}+\frac{1}{\tau} \mathrm{f}=0 \quad \frac{\mathrm{df}}{\mathrm{f}}=-\frac{1}{\tau} \mathrm{dt} \quad \int \frac{\mathrm{df}}{\mathrm{f}}=-\frac{1}{\tau} \int \mathrm{dt}
$$

$$
\text { or } \frac{\Delta \mathrm{f}}{\Delta \mathrm{t}}=-\frac{1}{\tau} \mathrm{f} \quad \ln (\mathrm{f})=-\frac{\mathrm{t}}{\tau} \quad f(t)=e^{-\frac{t}{\tau}}
$$

$$
\begin{array}{l|ll}
\text { 3-17 } & \text { Note: gen. soln. } f(t)=f_{0} e^{-\frac{t}{\tau}} \quad\left(f_{0}=\text { constant }\right)
\end{array}
$$

Time varying electrical current
Example: Capacitor discharge

Capacitor Charging

$$
\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}} \mathrm{R}+\frac{\mathrm{Q}}{\mathrm{C}}=\mathrm{V} \Rightarrow \frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}+\frac{\mathrm{Q}}{\mathrm{RC}}=\frac{\mathrm{V}}{\mathrm{R}} \Rightarrow \frac{\mathrm{dQ}}{\mathrm{dt}}+\frac{\mathrm{Q}}{\mathrm{RC}}=\frac{\mathrm{V}}{\mathrm{R}}
$$

Very similar to before but not identical

$$
\mathrm{t}=0 \quad \mathrm{Q}=0: \mathrm{t}=\infty \quad \mathrm{I}=0
$$

$$
\text { ie. } \mathrm{Q}_{\mathrm{o}}=V C
$$

$$
\mathrm{Q}=\mathrm{VC}\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}\right)
$$

$$
I=-\frac{Q}{R C}+\frac{V}{R}=-\frac{V}{R}\left(1-e^{-\frac{t}{R C}}\right)+\frac{V}{R}
$$

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}} e^{-\frac{\mathrm{t}}{\mathrm{RC}}}
$$

3-19

Appendix I: Temperature dependence of resistivity \& superconductivity

- Atoms vibrate less at low T
\longrightarrow Less electron scattering
\longrightarrow Lower resistivity

Super conductivity $R \Rightarrow 0$ at critical temp. T_{c} in some materials

$1911-\mathrm{Hg} \mathrm{T}_{\mathrm{c}}=4.2 \mathrm{~K}$

1950-1970 $\mathrm{Nb}_{3} \mathrm{Sn}_{\mathrm{c}}=\mathbf{2 3 K}$ $1989 \mathrm{Y}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7} \mathrm{~T}_{\mathrm{c}}=\mathbf{9 5 K}$ $\mathrm{T}_{\mathrm{c}}=121 \mathrm{~K}$ highest yet!!!!

1) $2 \mathrm{e}^{-}$attracted to + ion
2) effective attraction between e^{-}
3) e-ee- pairs form
4) pairs don't scatter so no resistance

An infinite number of mathematicians walk into a bar. The first one tells the bartender he wants a beer.
The second one says he wants half a beer.
The third one says he wants a fourth of a beer.
The bartender puts two beers on the bar and says "You guys need to learn your limits."

Resistors: magnitude and sign convention

Series Resistors

$$
\begin{aligned}
& V-I R_{1}-I R_{2}=0 \\
& \square \quad \therefore \ddot{R}_{1} \xi_{i}^{\prime} \\
& V=I R_{1}+R_{2} I \\
& V=I \underbrace{R_{1}+R_{2}}_{R_{e f f}-\text { forserics }})=I R_{e f f}
\end{aligned}
$$

In General $R_{\text {eff }}=R_{1}+R_{2}+R_{3}+\cdots$.
for series resistors

Resistors in parallel
Curr. Conserr. at Q

$$
\begin{aligned}
& +I-I_{1}-I_{2}=0 \\
& \text { in ont } \\
& I=I_{1}+I_{2} \quad[1]
\end{aligned}
$$

Loop A

$$
+V: I_{2} R_{2}=0 \rightarrow I_{x}=\frac{V}{R_{2}}[2]
$$

hoop B

$$
+V-I_{1} R_{1}=0 \rightarrow I_{1}=\frac{V}{R_{1}}[3]
$$

$4 \operatorname{comp}$

$$
+I_{1} R_{1}-I_{2} R_{2}=0 \rightarrow I_{1} R_{1}=I_{2} R_{2}
$$

$\underset{\substack{\text { going miraigh } \\ \text { buclewards }}}{ }$ 'forvards or $\frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}}$
3-II-4

$$
\begin{align*}
& I_{x}=\frac{V}{R_{2}}[2] \\
& {[2] \text { and }[3] \text { in }[1]} \\
& \text { [1] } I=I_{2}+I_{2}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \\
& I_{1}=\frac{V}{R_{1}}[3] \\
& \Rightarrow I=V \underbrace{\text { forll }}_{\left.1 / \frac{1}{R_{1}}+\frac{1}{R_{2} f f}\right]}=\frac{V}{R_{\text {eff }}} \\
& V=R_{\text {eff }} I \\
& \frac{1}{R_{\text {eff }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} . \\
& \text { ingenern } \\
& \frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{2}}+\frac{1}{R_{4}}{ }^{\prime \prime}=\frac{1}{R_{e f f}}
\end{align*}
$$

