Physics 203

for syllabus \& important messages see www.physics.rutgers.edu/~croft Prof. Mark Croft -croft AT physics.rutgers.edu

- Physics - nature of things moving - Aristotle 350 BC
-Spirit of physics --e.g. Pythagorean tradition ~ 550 BC
- musical tones described by mathematics (exactly!)
- all nature can be described by mathematics
(approximations and limitations must be recognized)
- careful observation of natural phenomena essential

\bullet Physics

 underlies all sciences
'Beauty is truth, truth beauty,-that is all
Ye know on earth, and all ye need to know.' (Keats)

measure: Space, Time, \& Matter

Units: SI or MKS System

Distance	Mass	Time
meter	kilogram	second
m	kg	s or sec

Originally:
$1 \mathrm{~m}=1 /(10$ Millionth $)$ of distance from equator to North Pole
Now:
$1 \mathrm{~m}=1,650,763.7321$ wavelengths of orange light emitted from Kr.

Derived units

speed = distance/time: $\mathbf{m} /$ sec

later will see

Weight (force of gravity on mass) = mass distance/ time ${ }^{\mathbf{2}}$
Newton $=\mathbf{N}=\mathbf{k g ~ m} / \mathbf{s}^{\mathbf{2}}$ (unit of force)

$$
\text { Weight (in English units) = slug ft/s } \mathbf{s}^{2}=\text { pound }=\mathbf{l b}
$$

unit conversion- mole method

$$
60 \mathrm{mi} / \mathrm{hr}=? \mathrm{~m} / \mathrm{s}
$$

$60 \frac{\mathrm{~min}}{\ln } \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \frac{12 \mathrm{ith}}{1 \mathrm{ft}} \frac{2.54 \mathrm{ctm}}{1.1 \mathrm{~m}} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=? \mathrm{~m} / \mathrm{s}$
cancel

$$
\begin{aligned}
\frac{60 \cdot 5280 \cdot 12 \cdot 2.54}{6060100} & =\frac{5280\left(^{2}(2) 2.54\right.}{60001000}=\frac{26822}{1000} \\
\frac{60 \mathrm{mi}_{i}}{\mathrm{hr}} & =26.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note: the units start and finish with distance/time.

$$
\frac{1 \mathrm{~m},}{\mathrm{hr}_{r}}=0.446 \mathrm{~m} / \mathrm{s}
$$

$$
30 \mathrm{mph} \sim 13.4 \mathrm{~m} / \mathrm{s}
$$

Problem Solving

1. Read problem carefully, reread
2. Draw a diagram and label
3. Write question in symbols
4. Find (better derive) relevant mathematical relation
5. Solve Equation
6. Plug in numbers
7. Check whether answer is reasonable (Numbers \& Units) (Should it be + OR - ?)
8. Talk to someone about the problem and its solution

Measuring Angles

$\theta($ radians $)=\underline{\ell}$
 R

$\theta($ degrees $)=\theta($ radians $) \frac{\ell}{2 \pi R} 360$

See link below for demo on Pythagorean theorem http://i.imgur.com/W8VJp.gif
vector in 1D-magnitude (length) - direction one dimension motion
position coordinate (x) - measure of position
time (t)

\rightarrow define

+ direction
initial
position
time
final
position
time
displacement $\quad \Delta \mathbf{x}=\mathbf{x}_{\mathrm{f}}-\mathbf{x}_{\mathrm{i}}$
- how far
- what direction + or -
magnitude direction

2 dimensions, 3 dimensions, \ldots

vector (position and displacement)

- magnitude (length)
- direction final

http://phet.colorado.edu/sims/vector-addition/vector-addition_en.html $1-8$

$$
\begin{aligned}
& \text { two dimensions } \quad \text { vector position label } \quad \overrightarrow{\mathbf{r}} \\
& 2 \text { ways to represent position } \\
& \text { (x,y) } \\
& \mathbf{x} \text { component } \\
& \text { y component } \\
& \text { r magnitude } \\
& \boldsymbol{\theta} \text { direction } \\
& \mathrm{y} \text {-dir } \quad \mathbf{r}=|\overrightarrow{\mathbf{r}}|=\sqrt{\mathbf{x}^{2}+\mathbf{y}^{2}} \\
& \text { (x, y) } \\
& \mathrm{y}=\mathrm{r} \sin (\theta) \begin{array}{|l|l}
\sin (\theta)=\frac{\mathbf{y}}{\mathbf{r}} & \theta=\sin ^{-1}\left(\frac{\mathbf{y}}{\mathbf{r}}\right) \\
\cos (\theta)=\frac{\mathbf{x}}{\mathbf{r}} & \theta=\cos ^{-1}\left(\frac{\mathbf{x}}{\mathbf{r}}\right) \\
\tan (\theta)=\frac{\mathbf{y}}{\mathbf{x}} & \theta=\tan ^{-1}\left(\frac{\mathbf{y}}{\mathbf{x}}\right)
\end{array} \\
& \mathrm{x}=\mathrm{r} \cos (\theta) \quad \mathrm{x} \text {-dir position vector } \\
& \text { - magnitude (length) } \\
& \text { - direction }
\end{aligned}
$$

general vector not tied to particular origin
y-dir

$$
\mathbf{v}=|\overrightarrow{\mathbf{V}}|=\sqrt{\mathbf{v}_{\mathbf{x}}^{2}+\mathbf{v}_{\mathbf{y}}^{2}}
$$

$$
v_{y}=v \sin (\theta)
$$

x-dir

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}_{\mathrm{x}}}\right) \\
& \theta=\cos ^{-1}\left(\frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{v}}\right) \\
& \theta=\sin ^{-1}\left(\frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}}\right)
\end{aligned}
$$

vector components can be found using different angles

y-dir

$$
\mathbf{A}=|\overrightarrow{\mathbf{A}}|=\sqrt{\mathbf{A}_{\mathbf{x}}{ }^{2}+\mathbf{A}_{\mathbf{y}}{ }^{2}}
$$

$$
\begin{aligned}
& \text { or } \\
& \mathrm{A}_{\mathbf{x}}=\mathrm{A} \cos (\boldsymbol{\theta}) \\
& \mathrm{A}_{\mathbf{y}}=\mathrm{A} \sin (\boldsymbol{\theta}) \\
& \boldsymbol{\theta}=\tan ^{-1}\left(\frac{\mathbf{\mathbf { A } _ { \mathbf { y } }}}{\mathbf{A}_{\mathbf{x}}}\right)
\end{aligned}+\#+
$$

$$
A_{y}=A \cos (\phi)
$$

$$
\phi=\tan ^{-1}\left(\frac{\left|A_{x}\right|}{\left|A_{y}\right|}\right)
$$

x-dir

vector components can be found using different angles

 (angle bigger than 90° example)
Vector equality
$\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$

$$
\begin{aligned}
& |\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}| \\
& \theta_{\mathrm{A}}=\theta_{\mathrm{B}}
\end{aligned}
$$

Scalar Multiplication

$$
\overrightarrow{\mathbf{B}}=s \overrightarrow{\mathbf{A}=\#} \Rightarrow\left\{\begin{array}{c}
\mathbf{B}_{\mathbf{A}}=\mathbf{s} \mathbf{A}_{\mathrm{x}} \\
\mathbf{B}_{\mathbf{y}}=\mathbf{s} \mathbf{A}_{\mathbf{y}}
\end{array}\right.
$$

$$
\underset{\text { same dimection longer }}{\underset{\text { sar }}{\text { or }}}\left\{\begin{array}{c}
\\
\stackrel{\theta_{A}}{\text { a }}=\theta_{\mathbf{B}} \\
|\mathbf{B}|=\mathbf{S}|\overrightarrow{\mathbf{A}}|
\end{array}\right.
$$

vector addition

vector addition

Vector Subtraction

$\overrightarrow{\mathbf{A}}_{\boldsymbol{\mu}} \xrightarrow{\vec{B}}=\overrightarrow{\mathbf{A}}^{\overrightarrow{\mathrm{B}}}+\stackrel{-\vec{B}}{\leftarrow}=\overrightarrow{\mathrm{A}}-\vec{B} / \overrightarrow{\mathbf{A}}$

$$
\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}}+\{-\overrightarrow{\mathrm{B}}\}
$$

\{follows from vector addition +-1 vector reversal\}

Comparison vector addition subtraction

Vector Addition

Unit vectors their uses (book sometimes uses)

$$
\uparrow_{\rightarrow}^{\mathrm{y}} \quad|\hat{y}|^{2}=|\hat{\mathrm{x}}|^{2}=1
$$

$\mathrm{X} \quad$ Unit vectors along x and y directions On length " 1 "
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{\mathrm{x}} \hat{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \hat{y}$
$\vec{B}=B_{x} \hat{x}+B_{y} \hat{y}$
Notation allows keeping track of general vectors with unit vectors to keep track of direction and scalar multiplication to give magnitude.

$$
\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\left(\mathrm{A}_{\mathrm{x}}+\mathrm{B}_{\mathrm{x}}\right) \hat{\mathrm{x}}+\left(\mathrm{A}_{\mathrm{y}}+\mathrm{B}_{\mathrm{y}}\right) \hat{y}
$$

Physics/engineering and advanced students should be aware of the following.

Here $\mathrm{A}_{\mathrm{x}}\left(\mathrm{A}_{\mathrm{y}}\right)$, is the $\mathrm{x}(\mathrm{y})$ component of $\overrightarrow{\mathrm{A}}$ along the

$$
\overrightarrow{\mathrm{A}}=\mathrm{A}_{\mathrm{x}} \mathrm{x}+\mathrm{A}_{\mathrm{y}} \mathrm{y}
$$ x (y) axis and x (y) is the unit vector along the $\mathrm{x}(\mathrm{y})$ direction. (Note $\mathrm{A}_{\mathrm{x}}\left(\mathrm{A}_{\mathrm{y}}\right)$ are just scalar numbers.).

For unit vectors one has $\hat{\mathrm{x}} \bullet \hat{\mathrm{y}}=0 \quad \hat{\mathrm{x}} \bullet \hat{\mathrm{x}}=|\hat{\mathrm{x}}|^{2}=1 \quad \hat{y} \bullet \hat{y}=|\hat{y}|^{2}=1$
Therefore $\quad \hat{\mathrm{x}} \bullet \overrightarrow{\mathrm{A}}=\mathrm{A}_{\mathrm{x}} \quad \hat{y} \bullet \overrightarrow{\mathrm{~A}}=\mathrm{A}_{\mathrm{y}}$
Thus the dot product with a unit vector can be obtain ("project out") the component of the vector in the direction of the unit vector.

Advanced (not required for this course) topic. For physics, engineering, math, ... majors "An introduction to generalized vector spaces and Fourier analysis" see below http://www.physics.rutgers.edu/~croft/lectures/zFOURIER\ ANALYSIS.pdf

