
   Qu-Transitions

P. Coleman
(CMT, Rutgers)

IIT Kanpur
Feb 7, 2010.

Friday, February 12, 2010



   Qu-Transitions
“Phase transitions in the quantum era”

P. Coleman
(CMT, Rutgers)

IIT Kanpur
Feb 7, 2010.

Friday, February 12, 2010



• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.
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Translation of Newton’s  Principia, which they have 
held in proof form for ten years.
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1758 in Paris: 72 years after “Principia”

Marquise Emilie du Châtelet
(1707-1749)

Mathematical Physicist:
Translator and interpreter of Principia.

Classical revolution is still in full sway. 

"ce beau probleme astronomico-geometrique"
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Resolution of the controversy (and the missing
factor of a half) required a further 60-80 years.  

Classical revolution is still in full sway. 

"ce beau probleme astronomico-geometrique"
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108 years after Planck, many 
surprises later, the quantum era is in full sway.
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“With a heavy heart, I have been 
converted  to the idea that 
Fermi -Dirac, not Einstein-Bose 
is the correct statistics. I wish to 
write a short note on its 
application to paramagnetism.”

W. Pauli,  in letter to 
Schrödinger,  Dec 1926.
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David Pines in 
musicofthequantum.rutgers.edu

108 years after Planck, many 
surprises later, the quantum era is in full sway.

Friday, February 12, 2010

http://musicofthequantum.rutgers.edu
http://musicofthequantum.rutgers.edu


   
Quantum zero point fluctuations: 

Friday, February 12, 2010



   
Quantum zero point fluctuations: 
major unsolved problem of the quantum era.

Friday, February 12, 2010



   
Quantum zero point fluctuations: 

•73% of the mass of the 
cosmos is “Dark Energy”: an 
unidentified form of zero point 
energy,  causing the expansion 
to accelerate. 

major unsolved problem of the quantum era.
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Quantum zero point fluctuations: 

•Zero point fluctuations
profoundly  transform
matter, endowing it with marked
tendency to develop new forms of
order.

major unsolved problem of the quantum era.
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• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.

• Classical vs quantum criticality.
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Classical 
Criticality

Custers et al (2002)
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Custers et al (2002)

Classical 
Critical Point

Oxygen. (Voronel et al 1963).

Michael Fisher

Classical 
Criticality

Friday, February 12, 2010



“New insights into physics often  come from revisiting areas 
once thought to be closed.”       Michael Fisher. 

Custers et al (2002)

Classical 
Critical Point

Oxygen. (Voronel et al 1963).

Michael Fisher

Classical 
Criticality

Anatoly LarkinBen WidomLeo Kadanoff Ken Wilson

Friday, February 12, 2010



“New insights into physics often  come from revisiting areas 
once thought to be closed.”       Michael Fisher. 

Custers et al (2002)

Classical 
Critical Point

Oxygen. (Voronel et al 1963).

Michael Fisher

Classical 
Criticality

Anatoly LarkinBen WidomLeo Kadanoff Ken Wilson

“20th Century Revolution”

Friday, February 12, 2010



“New insights into physics often  come from revisiting areas 
once thought to be closed.”       Michael Fisher. 

Custers et al (2002)

Michael Fisher

Critical matter

Anatoly LarkinBen WidomLeo Kadanoff Ken Wilson

Classical 
Criticality

“20th Century Revolution”

Classical 
Critical Point

Friday, February 12, 2010



“New insights into physics often  come from revisiting areas 
once thought to be closed.”       Michael Fisher. 

Custers et al (2002)

Michael Fisher

Critical matter

Anatoly LarkinBen WidomLeo Kadanoff Ken Wilson

Classical 
Criticality

- universal

“20th Century Revolution”

Classical 
Critical Point

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

Phase transition  
driven by zero point motion.

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

[H,ψ] �= 0

.

ψ =
��

Seven − Sodd

�

.

Phase transition  
driven by zero point motion.

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

[H,ψ] �= 0

Quantum Fluctuations

.

ψ =
��

Seven − Sodd

�

.

Phase transition  
driven by zero point motion.

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

[H,ψ] �= 0

Quantum Fluctuations

.

ψ =
��

Seven − Sodd

�

.

Phase transition  
driven by zero point motion.

What happens when the time
and length scale of zero point 
quantum fluctuations diverges?

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

[H,ψ] �= 0

Quantum Fluctuations

QCP

.

ψ =
��

Seven − Sodd

�

.

Phase transition  
driven by zero point motion.

What happens when the time
and length scale of zero point 
quantum fluctuations diverges?

Friday, February 12, 2010



Quantum 
Phase-Transition

Custers et al (2002)

[H,ψ] �= 0

Quantum Fluctuations

QCP

.

ψ =
��

Seven − Sodd

�

.

Phase transition  
driven by zero point motion.

Quantum Critical matter

What happens when the time
and length scale of zero point 
quantum fluctuations diverges?

Friday, February 12, 2010



• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.

• Peierls’ question.
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Landau: interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.
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Landau, JETP 3, 920 (1957)

He-3 (1950/60s)
(Fairbanks, many others) Landau: interactions  can be turned on 
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• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.

• Heavy electron Quantum Criticality
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Kondo effect (a digression)
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Kondo effect (a digression)

“Kondo”

Kondo KHR-2 HV, the robot that 
plays soccer, fights with other 
bots and dances salsa
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Kondo effect (a digression)

Kondo (1962)
+ .....

Spins asymptotically free

“Nozieres Local Fermi liquid”
 (Nozieres 76)

+

“Kondo Temperature”

χ ∼ 1/T

χ TK

T

1
TK

TK

Spins absorbed into singlet ground-state
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Kondo Lattice Model
(Kasuya, 1951)

DONIACH’S
Hypothesis.
Doniach (1977)
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Kondo Lattice Model
(Kasuya, 1951)

DONIACH’S
Hypothesis.
Doniach (1977)

>

TK = D exp[−1/2Jρ]

QC

The main result ... is that there should be a second-order transition 
at zero temperature, as the exchange coupling is varied, between 
an antiferromagnetic ground state for weak J and a Kondo-like 
state in which the local moments are quenched.
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Kondo Lattice Model
(Kasuya, 1951)
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Hypothesis.
Doniach (1977)
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TK = D exp[−1/2Jρ]
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Large Fermi surface of composite Fermions
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Heavy Fermion Metals Review: cond-mat/0612006

UBe13
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Heavy Fermion Metals Review: cond-mat/0612006

UBe13

Coherent  
Heavy Fermi Liquid
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• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.

• Heavy electron Quantum Criticality:

Experiments
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Heavy Fermion
Materials

H. Von Lohneyson (1996)

Quantum Criticality: 
divergent specific 
heat capacity

Quantum Critical
Point
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Gegenwart et al (2002)
T-Linear T-Linear

T2 T2

T2

Divergence of
Interaction and 
Effective Mass
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“How do fermions get heavy and die?”  PC, Pepin, Si and Ramazashvili, J. 
Cond Matt. ,13},  R723 (2001). 

anticipated an abrupt change in FS when a composite heavy electron 
undergoes a Kondo “breakdown”.
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S. Paschen et al, Nature 432, 881 (2004)
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S. Paschen et al, Nature 432, 881 (2004)

Jump in the Hall constant at a field tuned QCP.
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Data: Tuson Park
Figure rendition: Mathias Graf

Reconstruction of the Fermi Surface
and mass divergence

Tuson Park, (2007).
CeRhIn5
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• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.

• Heavy electron Quantum Criticality:

“Black hole in the phase diagram”
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Friday, February 12, 2010



Pc P

AFM
metal

“Black Hole in the Phase 
Diagram”. 

Zachary Fisk

Friday, February 12, 2010



Pc P

AFM
metal

“Black Hole in the Phase 
Diagram”. 

Zachary Fisk

Friday, February 12, 2010



Pc P

AFM
metal

P.C and A. Schofield, Nature (2005)

“Black Hole in the Phase 
Diagram”. 

Zachary Fisk

Friday, February 12, 2010



Pc P

AFM
metal

P.C and A. Schofield, Nature (2005)

“Black Hole in the Phase 
Diagram”. 

\ “PHASE

HORIZON”

Zachary Fisk

Friday, February 12, 2010



Pc P

AFM
metal

P.C and A. Schofield, Nature (2005)

N

“Black Hole in the Phase 
Diagram”. 

\ “PHASE

HORIZON”

Zachary Fisk

Friday, February 12, 2010



Pc P

AFM
metal

P.C and A. Schofield, Nature (2005)

“Black Hole in the Phase 
Diagram”. 

 D

\ “PHASE

HORIZON”

Zachary Fisk

Friday, February 12, 2010



Pc P

AFM
metal

P.C and A. Schofield, Nature (2005)

A

“Black Hole in the Phase 
Diagram”. 

\ “PHASE

HORIZON”

Zachary Fisk

Friday, February 12, 2010



Pc P
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John Hertz: Critical droplet is  Quantum if 

P.C and A. Schofield, Nature (2005)

A

“Black Hole in the Phase 
Diagram”. 

\ “PHASE

HORIZON”

Zachary Fisk
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Feynman Hertz

Quantum Criticality: 
Casimir effect in time

QCP

Temperature NOT a tuning Parameter,  

but a finite size effect in time. 

(Hertz, PRB, 14, 1165 (1973). 

Finite size

ωn = 2πkBT × n, ξτ =
�

kBT
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Quantum Critical
Bubble

Temperature: 
Boundary condition 
in time.
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Temperature: 
Boundary condition 
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Quantum Critical
Bubble
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AFM
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(Q) Quantum critical region:
interior of correlation bubble.

Feynman Hertz

(Q)

Quantum Critical
Bubble

Temperature: 
Boundary condition 
in time.
Sachdev (1999), Continentino (2001), Palova (2009).
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Physics Below the upper
Critical Dimension.
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M. C. Aronson et al, PRL 75, 725 (1995).
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• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.

• Heavy electron Quantum Criticality:

Failure of the 
Standard model
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Standard Model:  Quantum SDW?

•Moriya, Doniach, Schrieffer (60s)
•Hertz (76)
•Millis (93)

F.S. instability

Fermi 
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HertzDoniach Schrieffer Millis Moriya
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Standard Model:  Quantum SDW?

•Moriya, Doniach, Schrieffer (60s)
•Hertz (76)
•Millis (93)

If   d + z = d + 2 > 4 :
"4  terms “irrelevent”
Critical modes are Gaussian.
T is not the only  energy scale. 

Time counts as z =2 scaling dimensions
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Singular potential is rapidly modulated:
only affects electrons along hot-lines.

Predicts:  

Landau’s Fermi Liquid Should
Survive at a Quantum Critical Point.
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• Local quantum  criticality 
(Si, Ingersent, Smith, Rabello, Nature  2001):  
Spin is the critical mode,
Fluctuations critical in time.

Requires a two dimensional spin fluid

New Ideas
t

H
Si, Ingersent
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(Si, Ingersent, Smith, Rabello, Nature  2001):  
Spin is the critical mode,
Fluctuations critical in time.

Requires a two dimensional spin fluid

New Ideas

Schroeder et al, Nature 407,351(2000).

Locality of critical fluctuations

T.0.75(K0.75)
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Si, Ingersent
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• Deconfined Criticality: Two diverging length-
scales. (Hermele et al 2004; Senthil et al, Science 
2004).

t

H

Critical Matter

Free  spinons

Magnetic  order

New Ideas

Senthil Sachdev Vishwanath

Si, Ingersent
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Requires a two dimensional spin fluid
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P. Gegenwart, T. Westerkamp et al., Science 315, 5814 (2007) 
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New Ideas

•Large N Approaches.          
•(PC et al JCM, 2001, Rech et al 2005, 
•Lebanon et al 2006, Pepin 2006, 2008, 
•Paul Pepin, Norman 2008).

Pepin
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M Cubrovic, J Zaanen, K Schalm - Science, 2009

 Liu  McGreevy

Friday, February 12, 2010



• Qu-era: revolutions always have a second part.
• Classical vs quantum criticality.
• Peierls’ question.
• Heavy electron Quantum Criticality
• New Ideas: breakup of the electron.
• Qu-frustration.• Qu-frustration.
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Qu- frustration
• Frustration and Kondo have different effects.
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f~1/S

“Doniach”  TK/JH

AFM

SLM

Large FS 
Heavy Fermi Liquid

S. Nakatsuji et al, Nature Physics (2008).
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f~1/S

“Doniach”  TK/JH

AFM

SLM

Large FS 
Heavy Fermi Liquid

?

S. Nakatsuji et al, Nature Physics (2008).

!-YbAlB4

Experimental Support

Non-Fermi liquid at B=0.
Small field restores Fermi liquid behavior.

Critical Phase?  

See:
A. Nevidomskyy & PC PRL (2009).
T. Senthil, S.Sachdev, M.Vojta,PRL 90,
216403; PRB 69, 035111 (2004);
P. W.Anderson, arXiv:0810.0279 (2008)
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