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!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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emerges, as shown in Fig. 1(b) and as pointed out in
Ref. [12]. In the present case, the F-channel phase ismasked
by the AF-spin phase around half-filling because of the
lower transition temperature. In real systems, however,
one may encounter possible suppression of the AF-spin
order caused, e.g., by geometrical frustration, or substantial
next-nearest neighbor hopping. In such a case, the
F-channel order may be stabilized. Because of its unique
and interesting property to be described below, this Letter
concentrates mainly on the F-channel phase from now on.

Let us define the spin and channel moments:

mspin ¼
X

!

hn!" "n!#i; (2)

mchan ¼
X

"

hn1" "n2"i; (3)

where n!" is the local number operator of conduction
electrons with channel ! and spin ". The lower panels of
Fig. 1 show calculated results of the moments. The spin
moment at nc ¼ 2 in the AF-spin phase becomes maxi-
mum with the highest transition temperature Tspin, and
gradually decreases away from half-filling. In the case
of the F-channel phase, on the contrary, the channel mo-
ment mchan becomes finite only away from half-filling, and
remains tiny. Even though the transition temperature Tchan

takes the maximum at nc ¼ 2, we observe mchan ¼ 0.
Hence, the channel moment is not a proper order
parameter.

Let us identify the proper order parameter in the F-
channel phase. It has been found that the double occupancy
hn!"n!#i in the ordered phase becomes different between
! ¼ 1 and ! ¼ 2 [12]. We propose, however, that the
fundamental order parameter involves the localized spin,
and hence the Kondo effect. The small difference in double
occupation is a consequence of the fundamental order
parameter. We shall demonstrate that the proper order para-
meter leads to identifying an odd-frequency order. As
shown in Fig. 2(a), the local spin correlations hSi # sci!i

become different below Tchan. Namely each localized
spin tends to form the Kondo singlet selectively with one
of the two conduction bands. The order parameter is hence
given by

! $ hSi # ðsci1 " sci2Þi; (4)

which is independent of site index i. Since ! grows
continuously below the transition temperature, the phase
transition is of second order. Note that the order parameter
! is a composite quantity, and cannot be described by a
one-body mean field such as hSii or hsci1 " sci2i.
A real-space image of the electronic state is illustrated in

Fig. 2(b). For channel ! ¼ 1, the effective Kondo coupling
tends to zero, while for ! ¼ 2 the coupling tends to infin-
ity. Thus the F-channel phase is the mixture of weak- and
strong-coupling limits depending on channels. This state
therefore cannot be accessible by perturbation theory from
either limit.
The peculiar character of the F-channel phase appears

also in the single-particle spectrum. We have derived
the single-particle spectrum explicitly from the imaginary
part of the Green function. Since the self-energy is local in
the DMFT, the wave vector enters only through "k. We
introduce the parameter # defined by "k ¼ "D cos#, and
visualize the spectrum as if the system were in one dimen-
sion. Accordingly the single-particle spectrum is written
as Að#; !Þ. Figures 2(c1) and 2(c2) show the spectra of
conduction electrons with ! ¼ 1 and ! ¼ 2, respectively.
The spectrum of the channel ! ¼ 1 displays the Fermi-
liquid behavior. Here the mass enhancement factor is
estimated asm'=m ( 1:95 from analysis of the self-energy.
As shown in Fig. 2(c2), on the contrary, another channel
! ¼ 2 acquires the insulating character. The spectrum is
almost the same as that of the ordinary Kondo insulator.
Thus, the F-channel phase consists of a Fermi liquid with
! ¼ 1 plus Kondo insulator with ! ¼ 2. Hence the phase

FIG. 2 (color online). (a) Temperature dependence of local
correlation functions, and (b) schematic picture of the F-channel
phase. The arrows on the thin lines show conduction electrons,
and the shaded ovals show the Kondo singlets centered on each
lattice site. (c) Single-particle spectra of conduction electrons
with ! ¼ 1 and 2 in this phase are shown in (c1) and (c2),
respectively.

FIG. 1 (color online). Phase diagram of the two-channel KL
near half-filling for (a) AF-spin and (b) F-channel ordered
phases. In (b), we neglect the AF-spin order for all nc. The
lower panels show spin and channel moments close to the ground
state, as defined by Eqs. (2) and (3). The full moment is
normalized to unity.
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk

Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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fore any background subtraction. (B) Angular dependent quantum oscillation measure-
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(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed
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ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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Motivation: Kondo Lattice Physics

Heavy Fermions and the Kondo Lattice 5.9

metal with resistivity 200µ⌦cm, into a superconducting state.

Each of these materials has qualitatively the same same high temperature Curie Weiss mag-
netism and the same Kondo resistivity at high temperatures, due to incoherent scattering o↵ the
local moments. However at low temperatures the scattering o↵ the magnetic Ce ions becomes
coherent and new properties develop.

Fig. 6: (a) Resistivity of CexLa1�xCu6. Dilute Ce atoms in LaCu6 exhibit a classic “Kondo”
resistivity, but as the Ce concentration becomes dense, elastic scattering o↵ each Ce atom leads
to the development of a coherent heavy fermion metal. (b) Resistivities of four heavy fermion
materials showing the development of coherence. A variety of antiferromagnetic magnetic,
Fermi liquid, superconducting and insulating states are formed (see text).

2 Kondo insulators: the simplest heavy fermions

In many ways, the Kondo insulator is the simplest ground-state of the Kondo lattice. The
first Kondo insulator (KI), SmB6was discovered almost fifty years ago [19] and today there
are several known examples including Ce3Bi4Pt3. At room temperature, these KIs are metals
containing a dense array of magnetic moments, yet on cooling they develop a narrow gap due
the formation of Kondo singlets which screen the local moments [20–23]. We can gain a lot of
insight by examining the strong coupling limit in which the dispersion of the conduction sea is
much smaller than the Kondo coupling J. Consider a simple tight-binding Kondo lattice

H = �t
X

(i, j)�

(c†i�c j� + H.c) + J
X

j,↵�

~� j · ~S j, ~� j ⌘ (c† j�~��↵c j↵) (12)

in which t/J << 1 is a small parameter. In this limit, the inter-site hopping is a perturbation to
the on-site Kondo interaction,

H
t/J!0�! J

X

j,↵�

~� j · ~S j + O(t), (13)
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
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(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two
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where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy
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where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.
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an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter
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The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points
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where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
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z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .
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I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type
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quantities and a sizable ordering entropy (S > 1
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however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.
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theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Fig. 1. Tetragonal crystal structure of NpPd5Al2.
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Motivation: Kondo Lattice Physics

Sometimes, spin 
fractionalization appears 
to coincide with a phase 
transition. 

URu2Si2 
Hastatic order?

an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter

Ψ =

⎛

⎝

Ψ↑

Ψ↓

⎞

⎠ . (2)

The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points

along the c-axis

ΨA ∼

⎛

⎝

1

0

⎞

⎠ , ΨB ∼

⎛

⎝

0

1

⎞

⎠ (3)

corresponding to time-reversed configurations on alternating layers A and B, leading to a

large staggered Ising moment. For the HO state, the spinor points in the basal plane

ΨA ∼
1√
2

⎛

⎝

e−iφ/2

eiφ/2

⎞

⎠ , ΨB ∼
1√
2

⎛

⎝

−e−iφ/2

eiφ/2

⎞

⎠ , (4)

where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter

Ψ =

⎛

⎝

Ψ↑

Ψ↓

⎞

⎠ . (2)

The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points

along the c-axis

ΨA ∼
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⎝
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⎞

⎠ , ΨB ∼

⎛

⎝
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⎞

⎠ (3)

corresponding to time-reversed configurations on alternating layers A and B, leading to a

large staggered Ising moment. For the HO state, the spinor points in the basal plane

ΨA ∼
1√
2

⎛

⎝

e−iφ/2

eiφ/2

⎞

⎠ , ΨB ∼
1√
2

⎛

⎝
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⎞

⎠ , (4)

where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type

NpPd5Al2  TC = 4.5K

dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Fig. 2. (a) Temperature dependence of the electrical resistivity and (b) the
resistivity under vaious constant magnetic fields in NpPd5Al2.
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an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter

Ψ =

⎛

⎝

Ψ↑

Ψ↓

⎞

⎠ . (2)

The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points

along the c-axis

ΨA ∼
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⎠ , ΨB ∼

⎛

⎝
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⎞

⎠ (3)

corresponding to time-reversed configurations on alternating layers A and B, leading to a

large staggered Ising moment. For the HO state, the spinor points in the basal plane

ΨA ∼
1√
2

⎛

⎝

e−iφ/2

eiφ/2

⎞

⎠ , ΨB ∼
1√
2

⎛

⎝

−e−iφ/2

eiφ/2

⎞

⎠ , (4)

where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
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z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Fig. 2. (a) Temperature dependence of the electrical resistivity and (b) the
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where m)c=m
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a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter

Ψ =

⎛

⎝

Ψ↑

Ψ↓

⎞

⎠ . (2)

The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points

along the c-axis

ΨA ∼

⎛

⎝

1

0

⎞

⎠ , ΨB ∼

⎛

⎝

0

1

⎞

⎠ (3)

corresponding to time-reversed configurations on alternating layers A and B, leading to a

large staggered Ising moment. For the HO state, the spinor points in the basal plane

ΨA ∼
1√
2

⎛

⎝

e−iφ/2

eiφ/2

⎞

⎠ , ΨB ∼
1√
2

⎛

⎝

−e−iφ/2

eiφ/2

⎞

⎠ , (4)

where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
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I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter

Ψ =

⎛

⎝

Ψ↑

Ψ↓

⎞

⎠ . (2)

The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points

along the c-axis

ΨA ∼
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corresponding to time-reversed configurations on alternating layers A and B, leading to a

large staggered Ising moment. For the HO state, the spinor points in the basal plane
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where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .
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I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type

Kondo effect and SC coincide.
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Fig. 1. Tetragonal crystal structure of NpPd5Al2.
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Fig. 2. (a) Temperature dependence of the electrical resistivity and (b) the
resistivity under vaious constant magnetic fields in NpPd5Al2.
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URu2Si2 
Hastatic order?

an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b). Then the quasi-

particle hybridization has two components, Ψσ, that determine the mixing of the excited

Kramers doublet into the ground-state. These two amplitudes form a spinor defining the

“hastatic” order parameter

Ψ =

⎛

⎝

Ψ↑

Ψ↓

⎞

⎠ . (2)

The presence of distinct up/down hybridization components indicates that Ψ carries the

global spin quantum number; its development must now break double time-reversal and

spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition from the hidden order

(HO) state to an antiferromagnet (AFM) [31]. These two states are remarkably close in

energy and share many key features[20, 32, 33] including common Fermi surface pockets;

this motivated the recent proposal that despite the first order transition separating the two

phases, they are linked by “adiabatic continuity,”[32] corresponding to a notional rotation

of the HO in internal parameter space [5, 34]. In the magnetic phase, this spinor points

along the c-axis
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⎞
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corresponding to time-reversed configurations on alternating layers A and B, leading to a

large staggered Ising moment. For the HO state, the spinor points in the basal plane

ΨA ∼
1√
2

⎛
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where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure

Ising character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO

and AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (5)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component

of the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet
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systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
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There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
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a signature feature of URu2Si2 that has been probed by
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is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
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this is to be contrasted with the usual situation in heavy
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integer spin state of the ion. The multipole is generated as
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The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied
with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-
dependent self-energies, which describes an unprecedented interplay between the pseudogap and
superconductivity. We show that these properties are well described by quasiparticles hybridizing with
(hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion
enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and
originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve
many experimental puzzles.
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The critical temperature Tc of superconductors scales
with the strength of the Cooper pairing. In conventional
superconductors, the pairing is phonon mediated and
prominent peaks in the phonon spectra, reproduced in
the imaginary part of the frequency(ω)-dependent super-
conducting gap function ΔðωÞ [Fig. 1(a)] [1], enhance the
pairing gap ReΔðω ¼ 0Þ [2–5] and Tc. In cuprates, how-
ever, which have a Tc much higher than conventional
superconductors, the ω dependence of Δ has not been
established yet, leaving the origin of the high Tcunknown.
The development of cluster dynamical mean-field theory

(CDMFT) [11,12] has enabled us to calculate Δðk;ωÞ for
microscopic cuprate models, reproducing salient features
of cuprates, like the d-wave momentum(k)-dependent
superconducting gap [12–17] and the anomalous metallic
pseudogap phase, experimentally observed above Tc
[12,18–38]. In the latter case, the pseudogap in the spectra
is attributed to a low-energy pole of the normal self-energy
Σnor in the proximity to the Mott insulator [22–29]. The
relationship between the pseudogap and superconductivity
is a central open issue of the high-Tc superconducting
mechanism in the cuprates [6,12,39–43].
In this Letter, we show that the prominent peak in ImΣnor

above Tc is smoothly connected to peaks in ImΣano and
ImΔ [Fig. 1(b)], which have been shown to enhance the
pairing gap [6–10,44]. This suggests an unprecedented
direct relationship between the pseudogap and supercon-
ductivity. We elucidate why the self-energy peaks are
elusive in spectroscopic experiments. We propose that all
these properties are well accounted for by a hybridization of
the quasiparticles with a hidden fermionic excitation, rather
than bosons as in a conventional superconductor.
Following the previous works [6–10,12,13,18–45], we

study a standard model for cuprates, the two-dimensional
Hubbard model,

H ¼
X

kσ

ϵðkÞc†kσckσ þ U
X

i

ni↑ni↓; ð1Þ

where ckσ (c†kσ) annihilates (creates) an electron of spin σ
with momentum k and niσ is the density operator for
spin σ at site i on a square lattice. U ¼ 8t is the onsite
Coulomb repulsion, and ϵðkÞ ¼ −2tðcos k x þ cos k y Þ −
4t0 cos k x cos k y − μ with t ¼ 1 (t0 ¼ −0.2t) denoting the
(next-)nearest-neighbor transfer integral and μ being the
chemical potential.
Within the CDMFT [11], the model (1) is mapped onto

an effective impurity model consisting of a 2 × 2 interact-
ing-site cluster and eight noninteracting bath sites
[8,16,43], solved with a finite-temperature (T) extension
of the exact-diagonalization method [46]. This method
provides precise real-frequency properties, which are
crucial to reach our main conclusions. The 2 × 2 cluster
is the largest available within this approach, yet capable of
reproducing the essential properties of the cuprates and
of larger-cluster calculations [6,10,38,42,45].

FIG. 1. (a) A scheme for the ω dependence of the gap
function in conventional superconductors. ωph is the phonon
frequency and Δ0 is the gap-edge energy [2–5]. (b) Anomalous
self-energy and (c) the gap function at k ¼ kAN ≡ ðπ; 0Þ
calculated with the CDMFT for the 2D Hubbard model [6–10]
at x ¼ 0.05 and T ¼ 0.01.
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Order Parameter Fractionalization Hypothesis

2-channel Kondo Lattice

J

J

emerges, as shown in Fig. 1(b) and as pointed out in
Ref. [12]. In the present case, the F-channel phase ismasked
by the AF-spin phase around half-filling because of the
lower transition temperature. In real systems, however,
one may encounter possible suppression of the AF-spin
order caused, e.g., by geometrical frustration, or substantial
next-nearest neighbor hopping. In such a case, the
F-channel order may be stabilized. Because of its unique
and interesting property to be described below, this Letter
concentrates mainly on the F-channel phase from now on.

Let us define the spin and channel moments:

mspin ¼
X

!

hn!" "n!#i; (2)

mchan ¼
X

"

hn1" "n2"i; (3)

where n!" is the local number operator of conduction
electrons with channel ! and spin ". The lower panels of
Fig. 1 show calculated results of the moments. The spin
moment at nc ¼ 2 in the AF-spin phase becomes maxi-
mum with the highest transition temperature Tspin, and
gradually decreases away from half-filling. In the case
of the F-channel phase, on the contrary, the channel mo-
ment mchan becomes finite only away from half-filling, and
remains tiny. Even though the transition temperature Tchan

takes the maximum at nc ¼ 2, we observe mchan ¼ 0.
Hence, the channel moment is not a proper order
parameter.

Let us identify the proper order parameter in the F-
channel phase. It has been found that the double occupancy
hn!"n!#i in the ordered phase becomes different between
! ¼ 1 and ! ¼ 2 [12]. We propose, however, that the
fundamental order parameter involves the localized spin,
and hence the Kondo effect. The small difference in double
occupation is a consequence of the fundamental order
parameter. We shall demonstrate that the proper order para-
meter leads to identifying an odd-frequency order. As
shown in Fig. 2(a), the local spin correlations hSi # sci!i

become different below Tchan. Namely each localized
spin tends to form the Kondo singlet selectively with one
of the two conduction bands. The order parameter is hence
given by

! $ hSi # ðsci1 " sci2Þi; (4)

which is independent of site index i. Since ! grows
continuously below the transition temperature, the phase
transition is of second order. Note that the order parameter
! is a composite quantity, and cannot be described by a
one-body mean field such as hSii or hsci1 " sci2i.
A real-space image of the electronic state is illustrated in

Fig. 2(b). For channel ! ¼ 1, the effective Kondo coupling
tends to zero, while for ! ¼ 2 the coupling tends to infin-
ity. Thus the F-channel phase is the mixture of weak- and
strong-coupling limits depending on channels. This state
therefore cannot be accessible by perturbation theory from
either limit.
The peculiar character of the F-channel phase appears

also in the single-particle spectrum. We have derived
the single-particle spectrum explicitly from the imaginary
part of the Green function. Since the self-energy is local in
the DMFT, the wave vector enters only through "k. We
introduce the parameter # defined by "k ¼ "D cos#, and
visualize the spectrum as if the system were in one dimen-
sion. Accordingly the single-particle spectrum is written
as Að#; !Þ. Figures 2(c1) and 2(c2) show the spectra of
conduction electrons with ! ¼ 1 and ! ¼ 2, respectively.
The spectrum of the channel ! ¼ 1 displays the Fermi-
liquid behavior. Here the mass enhancement factor is
estimated asm'=m ( 1:95 from analysis of the self-energy.
As shown in Fig. 2(c2), on the contrary, another channel
! ¼ 2 acquires the insulating character. The spectrum is
almost the same as that of the ordinary Kondo insulator.
Thus, the F-channel phase consists of a Fermi liquid with
! ¼ 1 plus Kondo insulator with ! ¼ 2. Hence the phase

FIG. 2 (color online). (a) Temperature dependence of local
correlation functions, and (b) schematic picture of the F-channel
phase. The arrows on the thin lines show conduction electrons,
and the shaded ovals show the Kondo singlets centered on each
lattice site. (c) Single-particle spectra of conduction electrons
with ! ¼ 1 and 2 in this phase are shown in (c1) and (c2),
respectively.

FIG. 1 (color online). Phase diagram of the two-channel KL
near half-filling for (a) AF-spin and (b) F-channel ordered
phases. In (b), we neglect the AF-spin order for all nc. The
lower panels show spin and channel moments close to the ground
state, as defined by Eqs. (2) and (3). The full moment is
normalized to unity.

PRL 107, 247202 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

247202-2

Hisono, Otsuki & Kuromoto, PRL 107, 247202 (2011)

P. Chandra, P. Coleman, Y. Komijani

Composite order Fractionalized

 = h
⇣
 †1~� 1 �  †2~� 2

⌘
· ~S i

cf Emery and Kivelson 1993

/ |V1|2 � |V2|2

⌃��0 (2, 1)
|2�1|!1������! V�(2)V�0 (1)g(2 � 1)

ODLRO in Space Time



Order Parameter Fractionalization Hypothesis

2-channel Kondo Lattice

J

J

emerges, as shown in Fig. 1(b) and as pointed out in
Ref. [12]. In the present case, the F-channel phase ismasked
by the AF-spin phase around half-filling because of the
lower transition temperature. In real systems, however,
one may encounter possible suppression of the AF-spin
order caused, e.g., by geometrical frustration, or substantial
next-nearest neighbor hopping. In such a case, the
F-channel order may be stabilized. Because of its unique
and interesting property to be described below, this Letter
concentrates mainly on the F-channel phase from now on.

Let us define the spin and channel moments:

mspin ¼
X

!

hn!" "n!#i; (2)

mchan ¼
X

"

hn1" "n2"i; (3)

where n!" is the local number operator of conduction
electrons with channel ! and spin ". The lower panels of
Fig. 1 show calculated results of the moments. The spin
moment at nc ¼ 2 in the AF-spin phase becomes maxi-
mum with the highest transition temperature Tspin, and
gradually decreases away from half-filling. In the case
of the F-channel phase, on the contrary, the channel mo-
ment mchan becomes finite only away from half-filling, and
remains tiny. Even though the transition temperature Tchan

takes the maximum at nc ¼ 2, we observe mchan ¼ 0.
Hence, the channel moment is not a proper order
parameter.

Let us identify the proper order parameter in the F-
channel phase. It has been found that the double occupancy
hn!"n!#i in the ordered phase becomes different between
! ¼ 1 and ! ¼ 2 [12]. We propose, however, that the
fundamental order parameter involves the localized spin,
and hence the Kondo effect. The small difference in double
occupation is a consequence of the fundamental order
parameter. We shall demonstrate that the proper order para-
meter leads to identifying an odd-frequency order. As
shown in Fig. 2(a), the local spin correlations hSi # sci!i

become different below Tchan. Namely each localized
spin tends to form the Kondo singlet selectively with one
of the two conduction bands. The order parameter is hence
given by

! $ hSi # ðsci1 " sci2Þi; (4)

which is independent of site index i. Since ! grows
continuously below the transition temperature, the phase
transition is of second order. Note that the order parameter
! is a composite quantity, and cannot be described by a
one-body mean field such as hSii or hsci1 " sci2i.
A real-space image of the electronic state is illustrated in

Fig. 2(b). For channel ! ¼ 1, the effective Kondo coupling
tends to zero, while for ! ¼ 2 the coupling tends to infin-
ity. Thus the F-channel phase is the mixture of weak- and
strong-coupling limits depending on channels. This state
therefore cannot be accessible by perturbation theory from
either limit.
The peculiar character of the F-channel phase appears

also in the single-particle spectrum. We have derived
the single-particle spectrum explicitly from the imaginary
part of the Green function. Since the self-energy is local in
the DMFT, the wave vector enters only through "k. We
introduce the parameter # defined by "k ¼ "D cos#, and
visualize the spectrum as if the system were in one dimen-
sion. Accordingly the single-particle spectrum is written
as Að#; !Þ. Figures 2(c1) and 2(c2) show the spectra of
conduction electrons with ! ¼ 1 and ! ¼ 2, respectively.
The spectrum of the channel ! ¼ 1 displays the Fermi-
liquid behavior. Here the mass enhancement factor is
estimated asm'=m ( 1:95 from analysis of the self-energy.
As shown in Fig. 2(c2), on the contrary, another channel
! ¼ 2 acquires the insulating character. The spectrum is
almost the same as that of the ordinary Kondo insulator.
Thus, the F-channel phase consists of a Fermi liquid with
! ¼ 1 plus Kondo insulator with ! ¼ 2. Hence the phase

FIG. 2 (color online). (a) Temperature dependence of local
correlation functions, and (b) schematic picture of the F-channel
phase. The arrows on the thin lines show conduction electrons,
and the shaded ovals show the Kondo singlets centered on each
lattice site. (c) Single-particle spectra of conduction electrons
with ! ¼ 1 and 2 in this phase are shown in (c1) and (c2),
respectively.

FIG. 1 (color online). Phase diagram of the two-channel KL
near half-filling for (a) AF-spin and (b) F-channel ordered
phases. In (b), we neglect the AF-spin order for all nc. The
lower panels show spin and channel moments close to the ground
state, as defined by Eqs. (2) and (3). The full moment is
normalized to unity.

PRL 107, 247202 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

247202-2

Hisono, Otsuki & Kuromoto, PRL 107, 247202 (2011)

P. Chandra, P. Coleman, Y. Komijani

Composite order Fractionalized

 = h
⇣
 †1~� 1 �  †2~� 2

⌘
· ~S i

cf Emery and Kivelson 1993

/ |V1|2 � |V2|2

⌃��0 (2, 1)
|2�1|!1������! V�(2)V�0 (1)g(2 � 1)

ODLRO in Space Time

� | | |
   
�
⇤(x) = V�

↵↵0 (x) f↵0 (x)



Order Parameter Fractionalization Hypothesis
P. Chandra, PC, Y. Komijani, A. Toth

2-channel Kondo Lattice

J

J

Composite Order

Kondo

Majorana

2-channel

HF
(~S · ~�)↵� �

(~S · ~�)↵� ��

V f↵

Composite
PairV� f↵ + ��↵̄ f †�↵

Composite
MultipoleV� f↵

Odd-w triplet/
Skyrme Insulator(~� · ~⌘)↵�V�

Hastatic ↵�̂�

 = h
⇣
 †1~� 1 �  †2~� 2

⌘
· ~S i

 = h� 1~��2 2
� · ~S i / (V1�2 � V2�1)

h " #~S i / VT ~��2V

h †(~� · ~S ) i / |V |2

hc†~�
⇣
~I · ~⌧
⌘

ci /  †~�  

⌃��0 (2, 1)
|2�1|!1������! V�(2)V�0 (1)g(2 � 1)

ODLRO in Space Time

� | | |
   
�
⇤(x) = V�

↵↵0 (x) f↵0 (x)



Hidden Order

Composite Order

Kondo

Majorana

2-channel

HF
(~S · ~�)↵� �

(~S · ~�)↵� ��

V f↵

Composite
PairV� f↵ + ��↵̄ f †�↵

Composite
MultipoleV� f↵

Odd-w triplet/
Skyrme Insulator(~� · ~⌘)↵�V�

Hastatic ↵�̂�

 = h
⇣
 †1~� 1 �  †2~� 2

⌘
· ~S i

 = h� 1~��2 2
� · ~S i / (V1�2 � V2�1)

h " #~S i / VT ~��2V

h †(~� · ~S ) i / |V |2

hc†~�
⇣
~I · ~⌧
⌘

ci /  †~�  

Order Parameter Fractionalization Hypothesis
P. Chandra, PC, Y. Komijani � | | |

   
�
⇤(x) = V�

↵↵0 (x) f↵0 (x)



Hidden Order

�

Composite Order

Kondo

Majorana

2-channel

HF
(~S · ~�)↵� �

(~S · ~�)↵� ��

V f↵

Composite
PairV� f↵ + ��↵̄ f †�↵

Composite
MultipoleV� f↵

Odd-w triplet/
Skyrme Insulator(~� · ~⌘)↵�V�

Hastatic ↵�̂�

 = h
⇣
 †1~� 1 �  †2~� 2

⌘
· ~S i

 = h� 1~��2 2
� · ~S i / (V1�2 � V2�1)

h " #~S i / VT ~��2V

h †(~� · ~S ) i / |V |2

hc†~�
⇣
~I · ~⌧
⌘

ci /  †~�  

Order Parameter Fractionalization Hypothesis
P. Chandra, PC, Y. Komijani � | | |

   
�
⇤(x) = V�

↵↵0 (x) f↵0 (x)



Hidden Order

�

Ising Quasiparticles and Hidden Order in URu2Si2

Premala Chandra,1 Piers Coleman,1,3 and Rebecca Flint2
1
Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 USA

2
Department of Physics and Astronomy, Iowa State University, 12 Physics Hall, Ames, Iowa 50011 USA and

3
Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.

(Dated: August 24, 2014)

The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type

Chandra, Coleman, Flint, Nature (2013)
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and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41
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heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
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a ‘‘spin zero’’ each time g!effðm !=m e) is an odd integer. A
total of 16 spin zeros are observed on rotating the direction
of the field from H k ½100$ to H k ½001$ [24].

The surprising result here is that, by making rather
simple assumptions [implicit in Eqs. (1) and (2)], the
estimates for g!eff (shown in Fig. 2) made by using two
independent experimental methods are quantitatively con-
sistent over a broad angular range. The comparability of
these estimates both establishes the twofold degeneracy of
the quasiparticles and shows that the superconducting
critical field of URu 2Si2 corresponds to that of a Pauli-
limited paired fermion condensate [25] for all orientations
of the magnetic field—the exception being a narrow range
of angles within % 10& of the [100] axis in Fig. 2 (likely
associated with the dominant role of diamagnetic screening
currents once g!eff is strongly suppressed [23]).

The field orientation dependence of g!eff in Fig. 2 is
notably different from the usual isotropic case of g! ' 2
for band electrons (dotted line), indicating the spin suscep-
tibility of the quasiparticles in URu 2Si2 to differ along the
two distinct crystalline axes. Since the Zeeman splitting of

the quasiparticles is given by the projection M ( Ĥ of the

spin magnetization M ¼ !
" 2

B

2 ðg2a cos#; 0; g2c sin #ÞH along
H ¼ H ðcos#; 0; sin #Þ [where ! is the electronic density

of states], settingM ( Ĥ ¼ !
" Bg

!
eff

2 H defines an effective g
factor

g!eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2csin

2# þ g2acos
2#

q
(3)

that (in the case of a strong anisotropy) traces a figure ‘‘8’’
in polar coordinates. A fit to Eq. (3) in Fig. 2 (solid line)
yields gc ¼ 2:65 , 0:05 and ga ¼ 0:0 , 0:1, implying a
large anisotropy in the spin susceptibility $c

$a
¼ ðgcgaÞ

2.

To obtain a lower bound for the anisotropy, we plot geff
(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [24] versus sin # (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for different
values of $c

$a
¼ ðgcgaÞ

2 made by using Eq. (3). The observation

of a spin zero in Fig. 1 at angles as small as 3& implies a
lower bound $c

$a
* 1000. A smaller anisotropy would be

expected to lead to the observation of fewer spin zeros and
nonlinearity in the plot with an upturn in geff at small
values of sin # (see Ref. [31] and Fig. 4).
A large anisotropy in the magnetic susceptibility is the

behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case of
an isolated magnetic impurity (i.e., an isolated magnetic
moment), Kondo singlets can be considered the result of an
antiferromagnetic coupling between the impurity and

FIG. 1 (color online). Data used for determining the effective g
factor. (a) shows the upper critical field Hc2 of the superconduct-
ing state in URu 2Si2 determined from the projected onset of
resistivity at ' 30 mK (similar to the method adopted by Ohkuni
et al. [24]). An example trace is shown in the inset. (b) shows a
schematic representation of the angle-dependent magnetic quan-
tum oscillations adapted from Fig. 18 of Ref. [24], with the
indices of the spin zeros indicated. The plot pertains to the
dominant % frequency [24], which can be followed uninterrupted
over the entire angular range. In order to show the oscillatory
behavior, the amplitude here is multiplied by - 1 on crossing
each spin zero.

FIG. 2 (color online). A polar plot of the field orientation
dependence of g!eff . The values are estimated by using Eqs. (1)
and (2) represented by open and filled circles, respectively. Also
shown is a fit (solid line) of Eq. (3) to g!eff and the isotropic g

! '
2 (dotted line) expected for conventional band electrons. In
Fig. 1(a), we assume Hc2 ' Hp. In extracting g!eff from the
index assignments of g!effðm !=m effÞ in Fig. 1(b), the weakly
angle-dependent m ! is interpolated from the measured values
in Ref. [24].
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hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
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is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
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bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41
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these estimates both establishes the twofold degeneracy of
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critical field of URu 2Si2 corresponds to that of a Pauli-
limited paired fermion condensate [25] for all orientations
of the magnetic field—the exception being a narrow range
of angles within % 10& of the [100] axis in Fig. 2 (likely
associated with the dominant role of diamagnetic screening
currents once g!eff is strongly suppressed [23]).
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nonlinearity in the plot with an upturn in geff at small
values of sin # (see Ref. [31] and Fig. 4).
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behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case of
an isolated magnetic impurity (i.e., an isolated magnetic
moment), Kondo singlets can be considered the result of an
antiferromagnetic coupling between the impurity and

FIG. 1 (color online). Data used for determining the effective g
factor. (a) shows the upper critical field Hc2 of the superconduct-
ing state in URu 2Si2 determined from the projected onset of
resistivity at ' 30 mK (similar to the method adopted by Ohkuni
et al. [24]). An example trace is shown in the inset. (b) shows a
schematic representation of the angle-dependent magnetic quan-
tum oscillations adapted from Fig. 18 of Ref. [24], with the
indices of the spin zeros indicated. The plot pertains to the
dominant % frequency [24], which can be followed uninterrupted
over the entire angular range. In order to show the oscillatory
behavior, the amplitude here is multiplied by - 1 on crossing
each spin zero.
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dependence of g!eff . The values are estimated by using Eqs. (1)
and (2) represented by open and filled circles, respectively. Also
shown is a fit (solid line) of Eq. (3) to g!eff and the isotropic g
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2 (dotted line) expected for conventional band electrons. In
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In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type
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a ‘‘spin zero’’ each time g!effðm !=m e) is an odd integer. A
total of 16 spin zeros are observed on rotating the direction
of the field from H k ½100$ to H k ½001$ [24].

The surprising result here is that, by making rather
simple assumptions [implicit in Eqs. (1) and (2)], the
estimates for g!eff (shown in Fig. 2) made by using two
independent experimental methods are quantitatively con-
sistent over a broad angular range. The comparability of
these estimates both establishes the twofold degeneracy of
the quasiparticles and shows that the superconducting
critical field of URu 2Si2 corresponds to that of a Pauli-
limited paired fermion condensate [25] for all orientations
of the magnetic field—the exception being a narrow range
of angles within % 10& of the [100] axis in Fig. 2 (likely
associated with the dominant role of diamagnetic screening
currents once g!eff is strongly suppressed [23]).

The field orientation dependence of g!eff in Fig. 2 is
notably different from the usual isotropic case of g! ' 2
for band electrons (dotted line), indicating the spin suscep-
tibility of the quasiparticles in URu 2Si2 to differ along the
two distinct crystalline axes. Since the Zeeman splitting of

the quasiparticles is given by the projection M ( Ĥ of the

spin magnetization M ¼ !
" 2

B

2 ðg2a cos#; 0; g2c sin #ÞH along
H ¼ H ðcos#; 0; sin #Þ [where ! is the electronic density

of states], settingM ( Ĥ ¼ !
" Bg

!
eff

2 H defines an effective g
factor

g!eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2csin

2# þ g2acos
2#

q
(3)

that (in the case of a strong anisotropy) traces a figure ‘‘8’’
in polar coordinates. A fit to Eq. (3) in Fig. 2 (solid line)
yields gc ¼ 2:65 , 0:05 and ga ¼ 0:0 , 0:1, implying a
large anisotropy in the spin susceptibility $c

$a
¼ ðgcgaÞ

2.

To obtain a lower bound for the anisotropy, we plot geff
(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [24] versus sin # (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for different
values of $c

$a
¼ ðgcgaÞ

2 made by using Eq. (3). The observation

of a spin zero in Fig. 1 at angles as small as 3& implies a
lower bound $c

$a
* 1000. A smaller anisotropy would be

expected to lead to the observation of fewer spin zeros and
nonlinearity in the plot with an upturn in geff at small
values of sin # (see Ref. [31] and Fig. 4).
A large anisotropy in the magnetic susceptibility is the

behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case of
an isolated magnetic impurity (i.e., an isolated magnetic
moment), Kondo singlets can be considered the result of an
antiferromagnetic coupling between the impurity and

FIG. 1 (color online). Data used for determining the effective g
factor. (a) shows the upper critical field Hc2 of the superconduct-
ing state in URu 2Si2 determined from the projected onset of
resistivity at ' 30 mK (similar to the method adopted by Ohkuni
et al. [24]). An example trace is shown in the inset. (b) shows a
schematic representation of the angle-dependent magnetic quan-
tum oscillations adapted from Fig. 18 of Ref. [24], with the
indices of the spin zeros indicated. The plot pertains to the
dominant % frequency [24], which can be followed uninterrupted
over the entire angular range. In order to show the oscillatory
behavior, the amplitude here is multiplied by - 1 on crossing
each spin zero.

FIG. 2 (color online). A polar plot of the field orientation
dependence of g!eff . The values are estimated by using Eqs. (1)
and (2) represented by open and filled circles, respectively. Also
shown is a fit (solid line) of Eq. (3) to g!eff and the isotropic g

! '
2 (dotted line) expected for conventional band electrons. In
Fig. 1(a), we assume Hc2 ' Hp. In extracting g!eff from the
index assignments of g!effðm !=m effÞ in Fig. 1(b), the weakly
angle-dependent m ! is interpolated from the measured values
in Ref. [24].
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NpPd5

dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Fig. 1. Tetragonal crystal structure of NpPd5Al2.
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Fig. 2. (a) Temperature dependence of the electrical resistivity and (b) the
resistivity under vaious constant magnetic fields in NpPd5Al2.
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Fig. 3. Temperature dependence of the upper critical field Hc2 for
H k ½100# and [001].
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NpPd5

dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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NpPd5

dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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NpPd5

dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, & dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and & dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and & dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of & dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:

Hc2ð!Þ ¼
Hc2ð! ¼ 90'Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ! þ
m)c
m)a

cos2 !

s ; ð1Þ

where m)c=m
)
a is the mass anisotropy ratio for [001] and

[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m

)
a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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Fig. 1. Tetragonal crystal structure of NpPd5Al2.
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both channels (Φ order). In this way the system escapes
from the non-trivial fixed point of the impurity model,
and goes to the extremes J = 0 and/or J = ∞.

6.2 Diagonal orders
At half-filling of the conduction bands, the staggered

orbital order, namely the antiferro quadrupole (AFQ) or-
der, has the highest transition temperature, as shown in
Fig.8. With much lower density of conduction electrons,
the homogeneous orbital order, namely ferro quadrupole
(FQ) order is most stabilized. These orders are real-
ized by the orbital version of the RKKY interactions,
and the Kondo effect is not essential. In actual Pr sys-
tems with the doublet CEF ground state, the AFQ is
often observed as in PrIr2Zn20.60 On the other hand,
PrTi2Al20 has a ferro quadrupole (FQ) order at zero
pressure.38 Interestingly, the entropy of PrV2Al20 at the
presumed AFQ transition is only ∼ 0.5 ln 2,18 in contrast
to the standard value ln 2 as in the case of PrTi2Al20.
It seems that PrV2Al20 has stronger hybridization than
PrTi2Al20, and it is desirable to study the nature of the
order in more detail.

Fig. 11. Temperature-dependence of the resistivity in PrTi2Al20
under pressure16 (upper panel), and in UBe13 under magnetic
fields17 (lower panel).

Fig. 12. Specific heat and entropy associated with (a) the AF
pseudo-spin, and (b) the composite order Ψz.13 The entropy
includes contribution from conduction electrons. See text for de-
tails.

Suppose that ordinary AFQ is suppressed by some rea-
son, and the composite Ψz order sets in from the para-
magnetic phase. Figure 12 shows the specific heat and
the entropy associated with each transition.13 Numerical
calculation gives the entropy at the AFQ transition is
about 1.35 ln2, while at the Ψz transition about 0.79 ln 2.
Hence, the two diagonal orders may be distinguished by
the entropy. One may naturally ask about the change of
entropy associated with the transition. For this purpose
one can estimate and remove the contribution in the hy-
pothetical disordered state below TF

chan. It turns out that
C(T )/T remains almost constant in the hypothetical dis-
ordered state, and the corresponding entropy amounts to
0.24 ln 2 at TF

chan.
13 Hence the composite order removes

the entropy by (0.79−0.24) ln2 which is close to 0.5 ln 2.
With the homogeneous order Ψz(0), the correlation

⟨Ŝ · ŝσ⟩ of pseudo-spins (orbitals) at each site depends
on σ. As shown in Fig.5(d), spin-down (α = 2) conduc-
tion electrons make the orbital singlet together with the
localized pseudo-spin, while the spin-up (α = 1) elec-
trons remain essentially free. The resultant distribution
of each spin in a unit cell should be different as illustrated
in Fig.13. Although the difference of the spin distribution
is small because it comes from conduction electrons, the
deviation of the form factor from the crystalline sym-
metry may be detected experimentally. The resultant
anomalous Bragg intensity can in principle be probed
by resonant X-ray scattering and spin-polarized neutron
scattering.
The most intriguing candidate material to realize the

Ψ order is URu2Si2 which has a phase transition called
the hidden order (HO) with large anomaly in specific
heat. In spite of great effort of 30 years,61 the HO has
still escaped identification of its order parameter. It is
clear that the 2chKL model cannot faithfully describe
URu2Si2 because the charge fluctuation of f electrons in
URu2Si2 is strong enough to form the hybridized Fermi
surface, which has been observed by de Haas-van Alphen

A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012).
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk

Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk

Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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tangle with the local moments S(x) developing a composite order parameter[22–24]

(�1)
i+j+k h " #S(x)i / l̂(x) + im̂(x), (1)

involving the product of the the pair density  " # and the staggered magnetization (�1)
i+j+k

S(x)

where x = (i, j, k) are the discrete lattice points. The two orthogonal unit vectors (̂l, m̂) define

a triad of orthogonal unit vectors (̂l, m̂, n̂) with principal axis n̂ = l̂ ⇥ m̂. Microscopically, such

an order parameter can arise from an odd-frequency triplet superconductor[25, 26]. The most

important symmetry aspect of the order parameter, is that it only carries spin angular momentum,

because odd frequency pair correlations enforce a triplet order parameter to be spatially even

parity, allowing for an s-wave triplet. In a cubic crystal, this allows for the possibilty of the perfect

SO(3) rotation symmetry required for the failure of superconductivity.

We can use the rotational and gauge symmetries of the order parameter to write down a long-

wavelength action[22, 27]

F =

Z
d4x


⇢?
2
(@µn̂)

2
+
⇢s
2
(!µ � qAµ)

2
+

(Fµ⌫)
2

16⇡

�
. (2)

Here, for clarity of exposition, we have adopted a relativistic notation (x2
µ ⌘ ~x2 � x2

0) which

allows us to demonstrate the break-down of electromagnetic screening and the emergence of a

dielectric[28]. The first two terms describe the free energy of the condensate, where !µ = m̂ · @µl̂

is the rate of precession of the order parameter about the n̂ axis. ⇢s is the superfluid stiffness,

while ⇢? determines the magnetic rigidity. In units where c = 1, q =
2e
~ and Aµ is the vector

potential. The last term is the field energy, where Fµ⌫ = @µA⌫ � @⌫Aµ is the electromagnetic field

tensor. The stiffness coefficients ⇢?, ⇢s are temperature dependent and are obtained by integrating

4
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk

Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk

Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in
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B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)
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• Kondo effect is a hitherto unrecognized form of 

spin fractionalization.             

• Other forms of spin fractionalization are possible 
(cf Kitaev)

• Simultaneous development of Kondo and Order 
suggests order Fractionalization

• Order fractionalization can be induced in the two 
channel Kondo model

• Order fractionalization conjecture
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk

Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-

fore any background subtraction. (B) Angular dependent quantum oscillation measure-

ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals

(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range

11 T < B < 34 T on a third crystal (closed square), to complement previous angular

dependent measurements on different crystals reported in ref. [25] and measured in

the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol

B stands for the applied magnetic induction. The angular dependence of the observed

quantum oscillations is in good agreement with the three-dimensional ellipsoidal model

characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit

lines). (Next page.)

4

~S = � i
2
~⌘ ⇥ ~⌘

<latexit sha1_base64="jJJl4esU0aPGsylCxFiZAHb2npo="></latexit><latexit sha1_base64="+xscn//3eQ4J2uR45tznQXaktuc="></latexit><latexit sha1_base64="+xscn//3eQ4J2uR45tznQXaktuc="></latexit><latexit sha1_base64="+xscn//3eQ4J2uR45tznQXaktuc="></latexit><latexit sha1_base64="WKcph/knaK1lnFcIdsJDaZgojPc=">AAAFJnicdZTNbtQwEMfddoGyfLVw5GLRInHpKqkqCgdQBReORdAPqV4qx5nNuuvYlu00u5i8Bs/AQ3CFIzeEuCAeBWd3VbUJ68jR6D8/e+zx2IkW3Loo+r20vNK5dv3G6s3urdt37t5bW79/aFVhGBwwJZQ5TqgFwSUcOO4EHGsDNE8EHCWj17X/6ByM5Uq+dxMN/Zxmkg84oy5Ip2sROQeG3+EXeAuTgaHM88pvV1OVgKOYOJ6DxRfC6dpG1IumDbeNeG5soHnbP11f+UNSxYocpGOCWnsSR9r1PTWOMwFVlxQWNGUjmsFJMCUN8fp+urUKPw5KigfKhC4dnqqXR3iaWzvJk0Dm1A1t01eLi3xumF+J7t24DmIbS3KDZ33PpS4cSDZb0aAQ2ClcJxSn3ABzYhIMygwPm8JsSEMmXUh7l0gomcpzKlNiqA9dZtNNX9LTzH8gKc0yMFcdych7kgzwqGroeqbrpj6e6eOGXtR8oakxqmy40jK4UlXK/zg9yRzV2lQ+MEKVYHa0I8NEjf3my80KV5hQpzQmJU/BcZGCx2T6VY0oZ4pLAyLMWB9EsIIxAiO34igvFrDQhuMZbKCNt+DniyaetNDdRWjZQp8uQsctdGch2ma3F7If21low8GbXMptXQMkVL4dBlMPqXQqD7ebJuocYu3whdatquZJCZfW40KdcgtbUW/34sSJDdWt3fzvJgLwp80wuhtehLh5/9vG4XYvjnrx22hj79X8bVhFD9Ej9ATFaBftoTdoHx0ghj6jr+gb+t750vnR+dn5NUOXl+ZjHqArrfP3H39+1Is=</latexit>

Majorana 
Fractionalization ?



Thank You!


