GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solution to Assignment 6

1. (a) To control the operator G = 1/(E — H,) we must introduce a convergence factor
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where h2k§/2m. The poles of the integral occur at k = £(ko + #0). Carrying out the integral by contour
integration, we must be careful to close the contour in the upper half complex plane for x > z’ and the
lower-half plane for z < 2’. This then gives
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This describes a wave that is moving outwards from the point of origin z’. Had we chosen —id, rather

than 446 in the denominator of Greens function we would have found that the Green-function described

an incoming wave. By using the +id scheme, we obtain the correct form for the scattered wave. The
Lippmann Schwinger equation now becomes
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For = < 0, this equation describes an incoming and reflected wave. For > a, /() describes an incoming
and transmitted wave.
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(b) For the special case of an attractive delta-function potential
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the integral equation becomes
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Setting z = 0 in this expression , we obtain
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where
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is the t-matrix scattering amplitude.

To see how to convert the t-matrix into the S-matrix, let us note that a plane wave in one dimension can
be decomposed into a “symmetric” and “antisymmetric” scattering channel, as follows:
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When scattering takes place, the out-going waves will pick up a phase shift, so asymptotically far from
the scattering center, we expect
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If we expand this expression out, we find that
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For the problem considered here, the scattering potential is symmetric under parity inversion, so that
d_ = 0 is zero and there is no scattering in the antisymmetric channel. (¢~ (k) = 0). The S-matrix in the
symmetric scattering channel is then
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(c) Notice that the t-matrix and S-matrix has a singular pole at kg = iy/2. The corresponding energy is then
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which corresponds to the single binding energy of a delta-function attractive well.

2. (Sakurai Chapter 7, Problem 3) In the potential
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where V,, may be positive or negative, the radial wavefunction in the channel with angular momentum [ is given
by
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By matching the logarithmic derivative of the wavefunction at r = R, we obtain
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where I have used the shorthand notation z = kR, & = /::R, Ji = Ji(x), g = ji(Z) and so on. Now at low
energies (kK — 0), the quantity in square brackets goes to a constant. Since

! (20— 1!
; ~ S ~ 22
@)~ G ) PRSI (22)
the prefactor becomes
- kR 20+1
J o _ ( ) (23)

m (21 + 1)[(20 — 1)!1)2
so that at very low energies we may restrict our attention to the s-channel (1=0).

(a) Now for small values of z and Z,
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From this result, we may compute the scattering cross-section, which is dominated by the s-wave scattering
amplitude and given by
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(b) To calculate the angular dependence of the scattering cross-section at higher energies, we need to include

the | = 1 p-wave scattering. The differential scattering cross-section is given by
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Expanding the scattering amplitude in partial waves, we have
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where it has been truncated beyond [ = 1. Thus to leading order, the low-energy differential scattering
cross-section is given by
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To calculate the p-wave phase shift, we use equation (21). At low energies, we have
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So we see that 6; = %50 at low energies. Inserting these results into (29) , we obtain finally that
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These results represent the leading quadratic O(V)? contribution to the scattering cross-section, they will
be completely captured by the low energy limit of the Born Scattering cross-section.




