
GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solution to Assignment 6

1. (a) To control the operator G = 1/(E −Ho) we must introduce a convergence factor

G± =
1

E −Ho ± iδ
(1)

Let us examine the matrix elements of

G(+)(x− x′) =
h̄2

2m
〈x| 1

E −Ho + iδ
|x′〉. (2)

Expanding in a momentum space basis, we have

G(+)(x− x′) =
h̄2

2m

∫
dk〈x|k〉〈k| 1

E −Ho + iδ
|k〉〈k|x′〉

=
∫
dk

2π
eik(x−x′) 1

k2
o − k2 + iδ

(3)

where h̄2k2
0/2m. The poles of the integral occur at k = ±(k0 + iδ). Carrying out the integral by contour

integration, we must be careful to close the contour in the upper half complex plane for x > x′ and the
lower-half plane for x < x′. This then gives

G+(x − x′) =
−i
2k0

eik0|x−x′| (4)

This describes a wave that is moving outwards from the point of origin x′. Had we chosen −iδ, rather
than +iδ in the denominator of Greens function we would have found that the Green-function described
an incoming wave. By using the +iδ scheme, we obtain the correct form for the scattered wave. The
Lippmann Schwinger equation now becomes

ψ(+)(x) =
eikx

√
2π

+
2m
h̄2

∫
dx′G(+)(x − x′)V (x′)ψ(+)(x′) (5)

For x < 0, this equation describes an incoming and reflected wave. For x > a, ψ(+) describes an incoming
and transmitted wave.

(b) For the special case of an attractive delta-function potential

V (x) = −
(
γh̄2

2m

)
δ(x), (γ > 0), (6)

the integral equation becomes

ψ(+)(x) =
eikx

√
2π

+
iγ

2k0
G(+)(x)ψ(+)(0). (7)

Setting x = 0 in this expression , we obtain

ψ(+)(0) =
1√
2π

2k0

2k0 − iγ
(8)

so that

ψ(+)(x) =
1√
2π

[
eik0x + t(k0)eik0|x|

]
(9)
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where

t(k0) =
iγ

2k0 − iγ
(10)

is the t-matrix scattering amplitude.
To see how to convert the t-matrix into the S-matrix, let us note that a plane wave in one dimension can
be decomposed into a “symmetric” and “antisymmetric” scattering channel, as follows:

eikx =
1
2
[

outgoing︷ ︸︸ ︷
eik|x| + e−ik|x|︸ ︷︷ ︸

incoming

] (symmetric)

+
1
2
sgn(x)[eik|x| − e−ik|x|] (antisymmetric) (11)

When scattering takes place, the out-going waves will pick up a phase shift, so asymptotically far from
the scattering center, we expect

ψ+(x) =
1
2
[

S+(k)=e2iδ+︷ ︸︸ ︷
e2iδ+ eik|x| + e−ik|x|] +

1
2
sgn(x)[

S−(k)=e2iδ−︷ ︸︸ ︷
e2iδ− eik|x| + −e−ik|x|] (12)

If we expand this expression out, we find that

ψ(+)(x) = eikx + t(+)(k)eik|x| + t(−)(k)eik|x|sign(x) (13)

where

t±(k) =
1
2
(S±(k)− 1) =

1
2
[e2iδ± − 1] (14)

For the problem considered here, the scattering potential is symmetric under parity inversion, so that
δ− = 0 is zero and there is no scattering in the antisymmetric channel. (t−(k) = 0). The S-matrix in the
symmetric scattering channel is then

S(+)(k) = 2t(+)(k) + 1 =
2k0 + iγ

2k0 − iγ
(15)

(c) Notice that the t-matrix and S-matrix has a singular pole at k0 = iγ/2. The corresponding energy is then

E = −EB =
h̄2k2

0

2m
= − h̄

2γ2

8m
. (16)

which corresponds to the single binding energy of a delta-function attractive well.

2. (Sakurai Chapter 7, Problem 3) In the potential

V =
{

0, (r > R)
Vo, (r < R) (17)

where Vo may be positive or negative, the radial wavefunction in the channel with angular momentum l is given
by

ψ(r) ∝
{

jl(k̃r), (r < R)
eiδ(cos δljl(kr) − sin δlηl(kr)), (r > R)

(18)
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where

k̃ =

√
k2 − 2mVo

h̄2 (19)

By matching the logarithmic derivative of the wavefunction at r = R, we obtain

k̃R
jl(k̃R)
jl(k̃R)

= kR
cos δlj′l(kR)− sin δlη′l(kR)
cos δljl(kR)− sin δlηl(kR)

(20)

Solving this equation, we obtain

tan δl =
jl(kR)
ηl(kR)

[
xj′l/jl − x̃j̃′l/j̃l
xη′l/ηl − x̃j̃′l/j̃l

]

=
jl(kR)
ηl(kR)

[
d ln jl

d ln x − d ln j̃l

d ln x̃

d ln ηl

d ln x − d ln j̃l

d ln x̃

]
(21)

where I have used the shorthand notation x = kR, x̃ = k̃R, jl ≡ jl(x), j̃l ≡ jl(x̃) and so on. Now at low
energies (k → 0), the quantity in square brackets goes to a constant. Since

jl(x) ∼ xl

(2l + 1)!!
, ηl(x) ∼ − (2l − 1)!!

xl+1
, (22)

the prefactor becomes

jl
ηl
∼ − (kR)2l+1

(2l + 1)[(2l − 1)!!]2
(23)

so that at very low energies we may restrict our attention to the s-channel (l=0).

(a) Now for small values of x and x̃,

jo ≈ 1 −x
2

3!
⇒ d ln jo/d lnx = −x

2

3

ηo ≈ − 1
x

(
1− x2

2

)
⇒ d ln η0/d lnx = −1− x2 (24)

so that

tan δo = −x
[
(x̃2 − x2)/3

−1

]
= x(x̃2 − x2)/3 +O(x3) = −kR

3

(
2mVoR

2

h̄2

)
+O(x3) (25)

From this result, we may compute the scattering cross-section, which is dominated by the s-wave scattering
amplitude and given by

σtot ≈ 4π
k2

sin2 δ0 ≈ 4π
k2

tan2 δ0 =
16π
9

(
mVoR

3

h̄2

)2

(26)

(b) To calculate the angular dependence of the scattering cross-section at higher energies, we need to include
the l = 1 p-wave scattering. The differential scattering cross-section is given by

dσ

dΩ
= |f(θ)|2 (27)
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Expanding the scattering amplitude in partial waves, we have

f(θ) =
1
k

∑
l

(2l+ 1)eiδl sin δlPl(cos θ)

=
1
k

[
eiδo sin δo + 3eiδ1 sin δ1 cos θ

]
(28)

where it has been truncated beyond l = 1. Thus to leading order, the low-energy differential scattering
cross-section is given by

dσ

dΩ
=

1
k2

[
sin2 δo + 6 sin δ1 sin δ0 cos(δ1 − δ0) cos θ

]
=

1
k2

(δo)2 [1 + 6(δ0/δ1) cos θ] (29)

To calculate the p-wave phase shift, we use equation (21). At low energies, we have

j1(x) =
sin(x)
x2

− cos(x)
x

≈ x

3

[
1− x2

10

]
⇒ d ln j1

d ln x
= 1− x2

5
+O(x4) (30)

Similarly,

η1(x) = −cos(x)
x2

− sin(x)
x

≈ − 1
x2
− 1

2
⇒ d ln η1

d lnx
= −2 + x2 +O(x4) (31)

so that the p-wave scattering phase shift is

tan δ1 =
j1
η1

[
d ln j1
d ln x − d ln j̃1

d ln x̃

d ln η1
d ln x − d ln j̃1

d ln x̃

]
=
x2

45
(x̃2 − x2)

=
(kR)2

45

(
−2mVoR

2

h̄2

)
=
kR

15
tan δ0 (32)

So we see that δ1 = kR
15 δ0 at low energies. Inserting these results into (29) , we obtain finally that

dσ

dΩ
≈ δ2o
k2

[
1 +

2
5
kR cos θ

]
(33)

or

dσ

dΩ
= A+B cos θ (34)

where

A =
σtot

4π
=

4
9

(
mVoR

3

h̄2

)2

B

A
=

2
5
kR (35)

These results represent the leading quadratic O(V )2 contribution to the scattering cross-section, they will
be completely captured by the low energy limit of the Born Scattering cross-section.
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