
GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solution to Assignment 5

1. In two dimensions, the number of electrons in a volume of phase space L2d2k is given by

dN = L2 d2k

(2π)2
.

Writing d2k = kdkdφ in polar co-ordinates, the number of electrons per unit energy is then given by

dN = L2 1
(2π)2

k(dk/dE)dEdφ = ρ(E)dEdφ

Now E = h̄2k2/2m, so that dk/dE = m/(h̄2k) and so the density of states per unit energy, per unit angle is
independent of energy and angle, and given by

ρ(E, φ) = ρ = L2 m

h2
.

where h = 2πh̄ is Planck’s constant.

2. Solution to Sakurai problem 38, Ch. 2.

From the Golden rule, we know that the rate of transition from initial to final state is

dwj→[f ] =
2π
h̄

∑
f∈dΩ

e2

m2
A2

o|〈f |ei~q·~xε̂ · p̂|j〉|2δ(Ef − Ej − h̄ω).

Here Ao is the amplitude of the vector potential, which has polarization vector ε̂, and is given by ~A(~x, t) =
2Ao cos(~q · ~x − ωt)ε̂r. We can obtain the differential scattering cross-section by normalizing this with respect
to the energy flux of the radiation field, given by

S =
1
2π

(
4π
µ0

)
ω2

c
A2

o.

We then obtain

dσ =
dwj→[f ]

S
=

4π2h̄

m2ω
α

∑
f∈dΩ

|〈f |ei~q·~xε̂ · p̂|j〉|2δ(Ef − Ej − h̄ω)

where α = e2cgs/h̄c is the fine structure constant. The sum over final states |f〉is given by

∑
f∈dΩ

{. . .} = L3

∫
k2

fdkf

(2π)3
dΩ{. . .}δ(Ef − Ej − h̄ω)

= L3

∫
mkf

(2π)3h̄2 dΩdEf{. . .}δ(Ef − Ej − h̄ω).

= L3 mkf

(2π)3h̄2 {. . .}dΩ
∣∣∣∣
Ef=Ei+h̄ω

(1)

The matrix element can be evaluated as

|〈f |ei~q·~xε̂ · p̂|j〉|2 =
h̄

L
3
2

∫
d3xei(~q−~kf )·~x(−ih̄ε̂ · ~∇)ψj(x)

1



=
h̄

L
3
2

∫
d3xψj(x)(ih̄ε̂ · ~∇)[ei(~q−~kf )·~x]

=
h̄

L
3
2
(ε̂ · ~Q)

∫
d3xψj(x)e−i ~Q·~x

=
h̄

L3/2
(ε̂ · ~Q)φj( ~Q), (2)

where ~Q = ~kf − ~q and

φj( ~Q) =
∫
d3xψj(x)e−i ~Q·~x

is the Fourier transform of the initial state. Putting these two results together, we obtain the differential
scattering cross section

dσ =
4π2h̄

m2ω
α

∫
(h̄ε̂ · ~Q)2|φj( ~Q)|2 mkf

(2π)3h̄2 dEδ(Ef − Ej − h̄ω)dΩ

=
e2cgs

2πmωc
(ε̂ · ~Q)2kf |φj( ~Q)|2 (3)

To finish the job, we need to compute the Fourier transform of the initial state, which is the ground state of
the 3D harmonic oscillator

ψj(~x) =
1

(2π∆x)
3
2
e−(x2+y2+z2)/4(∆x)2 ,

where (∆x)2 = h̄
2mω . Since the Fourier transform of a Gaussian is a Gaussian,

∫
dxeiqxe−x2/2σ2

=
√

2πσ2e−q2σ2/2,

carrying out the 3D Fourier transform in Cartesian co-ordinates, d3x = dxdydz, we obtain

φj(Q) = (2∆x)
3
2 e−Q2∆x2

,

so that the differential scattering cross section is

dσ

dΩ
=

e2cgs

2πmωc
(ε̂ · ~Q)2kf

(
2h̄
mω

) 3
2

exp

(
− h̄Q

2

mω

)
.

It is always good to try to simplify expressions like this. First note that the energy of the final state is given
by

Ef =
h̄2k2

f

2m
= h̄ω + 3

h̄ωo

2
where ωo is the frequency of the harmonic oscillator. Now in practice, since the velocity of the photon is much
faster than that of the outgoing electron (for comparable energies), the momentum of the outgoing electron
must be much greater than the momentum of the incoming photon, i.e kf >> q and ~Q ≈ ~kf , so that h̄2Q2

2m ≈ Ef .
Furthermore, if we take the direction of the incoming photon to be along the z axis and the polarization vector
of the incoming radiation to lie along the x direction, then ε̂ · ~Q = kfx = kf sin θ cosφ, so that the differential
scattering cross-section can be written in the compact form

dσ

dΩ
= σo cos2 φ sin2 θ

where

σo =
e2cgs

2πmωc

(
4Ef

h̄ω

) 3
2

exp
(
−2Ef

h̄ω

)
.
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3. (a) The energy of the n-th one-particle state in the harmonic oscillator potential is

h̄ω(n− 1/2), (4)

where the “−1/2”, rather than +1/2 is there because we are n = 1, 2, 3 . . ., since we start counting from
the first state. For a spin 1/2 particle, each one-particle state is doubly occupied, with a spin up and a
spin down particle. Assuming that the number of particles N is even, the first N/2 levels are then filled
in the ground-state, so that the ground-state energy is

Eg = 2
∑

n=1,N/2

h̄ω(n− 1/2) =
1
2
h̄ωN(N + 1) (5)

For a system with a discrete energy level structure, the position of the Fermi energy is actually a bit tricky.
If we take the Fermi energy to be the zero temperature limit of the chemical potential, then this will lie
half way between the last occupied leve and the first occupied level. The Fermi energy is then

εF = h̄ω(N − 1)/2 + h̄ω/2 =
N

2
h̄ω (6)

(b) On reflection, I was not sure what Sakurai intended by the second half of this question. In the large N
limit, we can take the leading order N dependence, so that the ground-state and Fermi energies are given
by

Eg =
1
2
h̄ωN2, εF =

N

2
h̄ω (7)

4. The list is endless!- Here are my three suggestions:

• Our ability to stand on the floor. The exclusion principle is responsible for the strong repulsive force
between atoms which come into close contact, and without this effect we would literally fall through the
floor! When atoms try to occupy the same volume, the Exclusion principle forces the electrons in the
atom to move to higher orbitals, causing a rapid rise in the energy of the atom. If there were no exclusion
principle, atoms would be able to pass through one-another just like classical galaxies.

• Chemistry! The diversity in the properties of atoms, and the richness of chemistry which results, is all a
consequence of the exclusion principle. If electrons were bosons, then they would all occupy the lowest
n = 1 orbital. The physics and symmetries of all atoms would then be remarkably similar and dull.

• Electrical properties of metals and semiconductors rely on the exclusion principle. The exclusion principle
causes electrons to occupy states up to a finite Fermi energy. In a typical metal, the Fermi energy is
of order 10, 000K, far in excess of the ambient temperature. The robust, high conductivity of metals,
together with their tiny electronic specific heat, is all a consequence of this high Fermi energy.

5. This was a tricky little question. Since the system has an axial symmetry about the z-axis, the z− component
of the angular moment is conserved. Suppose that the state of the system has Jz = h̄mz, then under a 1200

rotation, the wavefunction of the system transforms as follows:

|mz〉 → e−i 2π
3 Jz/h̄|mz〉 = e−imz

2π
3 |mz〉 (8)

Now we can achieve a rotation through 1200 by carrying out three exchanges of the particles around the
equilateral triangle. Since the particles are bosons, each exchange leaves the wavefunction unchanged, thus we
must have

e−imz
2π
3 |mz〉 = |mz〉 (9)

which is only possible if mz is a multiple of three.
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