GRADUATE QUANTUM MECHANICS: 502 Spring 2002
Solutions to assignment 3.

1. (Solution to Sakurai, problem 4, ch 5) The isotropic Harmonic oscillator in two dimensions
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can be re-written as
H, =hw(a'a+b'b+1) (2)
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are the annihilation operators for modes in the z and y directions, respectively. The eigenvalues of the number
operators n, = a'a and n, = bb are non-negative integers. The corresponding eigenkets |n,,n;) are energy
eigenkets, with energy

En n, = hw(l 4+ ng +np) (4)
(a) The ground-state is then
|0,0) E, =hw (5)

and the first excited state is doubly degenerate, corresponding to |1,0) and |0,1), with energy Ejp =
E01 = 2hw.

(b) The perturbation to the Hamiltonian can be written
h
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We apply non-degenerate perturbation theory to the ground-state, to obtain
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Next we apply degenerate perturbation theory to the degenerate excited states |1,0) and |0,1). In this
manifold of states, the perturbation has matrix elements
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To zeroth order, the new energy eigenkets are the eigenkets of V,;, given by
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with energy eigenvalues
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To solve this problem exactly, we merely have to rotate our spatial axes through 45°, writing
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we may cast the Hamiltonian in the form
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where n; = afa and n_ = 373. The ground-state energy is now
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confirming (8). The excited states have one « or § quanta, and have energies
1
Ey=FE,+hvt = §(hw+ + hw_) 4+ hw
To leading order in ¢, this gives
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confirming (11).
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Let us now construct the new ground-state in terms of the unperturbed ground-state. We first note that

]0,0)" = 5]0,0) =0
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With a bit of work, by rewriting (14) in terms of the original creation and annihilation operators, you

may confirm that
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Note that u3 —v% = 1. Now to construct the new ground-state, consider the state |1)) = gAalal |0). Now
since [a, eA“T“T] = 24ateA?’ e’ it follows that

where

(ua + vaT)eAaT“T |0) = (2Au + v)a‘LeA"T“T |0) (22)
so that
(ua + val)e 27e"'@'|0) = 0 (23)

Using this result, we can satisfy conditions (19) by writing
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Expanding this expression to leading order, gives
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Now to leading order, uy = 1+ O(6?), v = +§/2 + O(63). Substituting into the above expression, we
obtain

10,0) = |0,0) — 6a’b|0,0) = [0,0) — 6]1,1) + O(6?) (26)

which confirms the perturbative result (7). Finally, the eigenkets of the excited states are obtained by
creating quanta:
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confirming (10).
In the degenerate manifold of p-states,
V = \z? —y?) (28)
has the matrix elements
(mIA(z® = y?)[m') = e(m|J7 = Jj|m) = §<m|<ﬁ — J2|m/) (29)

where |m) = |l = 1,m), and we have used the Wigner Eckart theorem to relate the matrix elements to
those of the angular momentum operator. The quantity “c” is a constant. From the above, we see that
the two only non-vanishing matrix elements are

(V] =1) = (=1]V[1) = AV, (30)



where V,, is real, due to time-reversal invariance. The zeroth order energy eigenstates are the eigenstates
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showing that the degeneracy of the p-states is completely removed.
(b) Under the time-reversal transformation,
O, my) = ()*™ [l, —mq) = (=1)™ |, —m) (33)
so that
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which means that
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proving that the energy eigenstates are eigenkets of the time-reversal operator.
3. Sakurai 5.17
(a) Let us write the Hamiltonian as H = H, + CV, where
H, = AL*+BL,
L,—L_
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The eigenkets of H, are simultaneous eigenkets of L2 and L., |[lm), with energy Ej,, = Ahzl(l +1)+ Bhm.
We can apply non-degenerate perturbation theory. Now since V is off-diagonal in the |lm) basis, the first
order energy shift vanishes, and we are left with
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