
GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solutions to Assignment 1.

1. (a) To construct an eigenket of τ~a, we take the combination

|~k〉 =
∑

~r

e−i~k·~r|~r〉, (1)

where ~k = (kx, ky, kz). Now

τ |~k〉 =
∑

~r

e−i~k·~rτ~a|~r〉

=
∑

~r

e−i~k·~r|~r + ~a〉

=
∑
~r′
e−i~k·(~r′−~a)|~r〉

= ei~k·a|~k〉. (2)

(b) The action of H on the state |r〉 is

H |r〉 = Eo|~r〉 −∆
∑

~a=(x̂,ŷ,ẑ)

[|~r − ~a〉+ |~r + ~a〉] (3)

so that the action of H on |~k〉 is

H |~k〉 =
∑

~r

e−i~k·~rH |~r〉

=
∑

~r

e−i~k·~r


Eo|~r〉 −∆

∑
~a=(x̂,ŷ,ẑ)

[|~r − ~a〉



=
∑

~r

e−i~k·~r


Eo −∆

∑
~a=(x̂,ŷ,ẑ)

(ei~k·~a + e−i~k·~a)


 |~r〉

= E(~k)|~k〉. (4)

where

E(~k) = Eo − 2∆
∑

~a=(x̂,ŷ,ẑ)

cos(~k · a)

= Eo − 2∆(cos kx + cos ky + cos kz) (5)

is the corresponding energy eigenstate.

2. (a) Since momentum operators always commute, any function of these operators also commutes, so that

[τ~d, τ~d′ ] = [e−i~P ·~d/h̄, e−i~P ·~d′/h̄] = 0 (6)

Translation operators commute.

(b) Rotations about different axes do not commute, so that

[D(n̂, φ), D(n̂′, φ′)] 6= 0 (7)
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(c) The inverstion operator reverses the direction of all translation, so that

πτ~dπ
−1 = τ−~d (8)

Consequently, the inversion operator does not commute with the translation operator.

[π, τ~d] 6= 0. (9)

(d) Under the inversion operation, angular momentum operators are invariant, π ~Jπ−1 = ~J so that [π, ~J ] = 0.
Consequently, the inversion operation commutes with functions of the angular momentum operator, and
thus commutes with the rotation operator.

[π,D(R)] = 0. (10)

3. Sakurai problem 9. When we time reverse a momentum eigenstate, we reverse the sign of the momentum, in
addition to complex conjugating the state. We therefore expect that the time reversal of φ(p) is φ(−p)∗. To
show this explicitly,

〈p|Θ|α〉 = 〈p|Θ
(∫

dDp′|p′〉φ(p′)
)

= 〈p|
∫
dDp′Θ|p′〉φ∗(p′)

= 〈p|
∫
dDp′| − p′〉φ∗(p′)

=
∫
dDp′

δ(D)(p+p′)︷ ︸︸ ︷
〈p| − p′〉 φ∗(p′) = φ∗(−p) (11)

4. Sakurai problem 12. We can rewrite the matrix as

H = AS2
z +

B

2
[S2

+ + S2
−] (12)

where S± = Sx ± iSy. Written out explicitly for S = 1 we have

H ≡

A 0 B

0 0 0
B 0 A


 (13)

where I have taken h̄ = 1. Taking det[E1−H ] = E((E −A)2 −B2) we see that the energy eigenvalues are

E = A±B, 0 (14)

The corresponding eigenkets are

|±〉 =
|+ 1〉 ± | − 1〉√

2
, (E = A±B)

(15)

and for E = 0, |0〉 = |ms = 0〉.
The Hamiltonian is invariant under time-reversal, since Θ~SΘ−1 = ~S is unchanged by time-reversal. Since
Θ|mJ〉 = (i)2mJ | −mJ 〉, we have

Θ|±〉 = ∓|±〉, Θ|0〉 = |0〉, (16)

i.e the lower and upper eigenstates are odd-parity under time reversal, whereas the central state is even-parity
under time-reversal.
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5. Sakurai, chapter 4, Q 6. This is a tricky problem. There are two ways you could do it: (i) solving the complete
problem but to exponential accuracy or (ii) by directly calculating the matrix elements between the states on
the left, and right hand side. I shall illustrate method (ii). To begin, let us consider the problem when the
length a is infinitely large. In this case, the wavefunction for the left, and right hand ground-states are

ψR(x) = 〈x|ψR〉 =




0 (x > a+ b)
A sin[k(a+ b− x)] (a < x < b)
Beκx (x < a)

ψL(x) = 〈x|ψL〉 =




0 (x < −a− b)
A sin[k(a+ b+ x)] (−b < x < −a)
Be−κx (x > −a)

(17)

where κ =
√

2m
h̄2 (Vo + E) ≈

√
2m
h̄2 Vo.

Now the tricky bit is that we need to construct orthogonalized wavefunctions. To do this, we construct

|ψ̃R〉 =
1

[1− |〈ψL|ψR〉|2] 1
2
[|ψR〉 − |ψL〉〈ψL|ψR〉]

|ψ̃L〉 = |ψL〉 (18)

These states are now orthogonal and normalized.

We shall now approximate the complete wavefunction in the form

|ψ〉 = αR|ψ̃R〉+ αL|ψ̃L〉 (19)

Applying the Hamiltonian to this expression, and demanding that H |ψ〉 = E|ψ〉, we obtain the eigenvalue
equation Habαb = Eαb, (a, b ∈ {R,L}), where

Hab ≡
[ 〈ψ̃R|H |ψ̃R〉 〈ψ̃R|H |ψ̃L〉
〈ψ̃L|H |ψ̃R〉 〈ψ̃L|H |ψ̃L〉

]
. (20)

To evaluate this matrix, it is helpful to realize that the complete Hamiltonian can be written

H = HR + VL = HL + VR (21)

where HL is the Hamiltonian for the left-hand well and HR is the Hamiltonian for the right-hand well and

VR = −Vo[θ(x− a)− θ(x − a− b)],
VL = −Vo[θ(x+ a+ b)− θ(x + a)], (22)

Vo

Vo
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ψ(  )x

-(a+b) -a
-

V  (x)

x

(a+b) x

V(x)

a

L

Fig. 1.: Showing ψR(x) and the potential VL(x).
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With this set-up, we note that HL,R|ψL,R〉 = Eo|ψL,R〉 , where Eo is the energy of an isolated well. If you now
compute the matrix element 〈ψ̃R|H |ψ̃L〉, you obtain

〈ψ̃R|H |ψ̃L〉 = E〈ψ̃R|ψ̃L〉+
〈ψ̃R|VR|ψL〉√
1− |〈ψL|ψR〉|2

=
〈ψ̃R|VR|ψL〉√
1− |〈ψL|ψR〉|2

≈ 〈ψR|VR|ψL〉. (23)

In the last step, we have noted that |〈ψL|ψR〉| is exponentially smaller than unity, so that terms containing
this quantity have been dropped. The splitting between the two states is then going to be simply

±∆ = ±|〈ψR|VR|ψL〉| (24)

Now to calculate this, we need to compute the exponential tail in ψL. Applying continuity of the wavefunction
and continuity of the logarithmic derivative, we obtain

A sin kb = Beκa, k tan(kb) = −κ (25)

To leading exponential accuracy, this gives

A =

√
2
b
,

k =
π

b

[
1 +

1
κb

]
,

B =

√
2
b

π

κb
e−κa (26)

Carrying out the integral, we then obtain

〈ψR|VR|ψL〉 = −Vo

∫ a+b

a

dx

√
2
b

sin[k(a+ b− x)]Be−κx

= −Vo

(
2
b

) (
ko

κ
e−κ(2a+b)

) ∫ b

0

dx sin[kx]eκx

= −Vo

(
2
b

) (
ko

κ
e−κ(2a+b)

) ∫ b

0

dxIme(κ+ik)x

≈ −Vo

(
2
b

) (
ko

κ
e−κ(2a)

)
Im

≈2ko/κ︷ ︸︸ ︷[
eikb

κ+ ik

]

≈ −Vo

(
4k2

o

bκ3

)
e−κ2a

=
2
κb

(
h̄2π2

mb2

)
e−2κa (27)

The splitting between the two levels is then

∆E = 2∆ =
h2

mκb3
e−2κa (28)

where κ =
√

2m
h̄2 Vo for large Vo.
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Fig. 2.: Showing the even and odd wavefunctions for the symmetric potential well.
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