GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solutions to Assignment 1.

1. (a) To construct an eigenket of 77, we take the combination
k) = e ™), (1)
where k = (k. ky, k.). Now
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(b) The action of H on the state |r) is
Hlr) = Eo|f) =AY [|f = @) + |+ @)] (3)
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so that the action of H on |k) is
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where
E(k) = E,-2A Z cos(k - a)
a=(z,9,2)
= E, —2A(cosk, + cosk, + cosk.) (5)

is the corresponding energy eigenstate.

2. (a) Since momentum operators always commute, any function of these operators also commutes, so that

[rgs ) = lem P =PI = g (6)

Translation operators commute.

(b) Rotations about different axes do not commute, so that

[D(#, ¢), D(#', ¢")] # 0 (7)



(c¢) The inverstion operator reverses the direction of all translation, so that
-1
T =T g (8)
Consequently, the inversion operator does not commute with the translation operator.

[, 73] # 0. (9)

(d) Under the inversion operation, angular momentum operators are invariant, rJr—! = J so that [, j] =0.
Consequently, the inversion operation commutes with functions of the angular momentum operator, and
thus commutes with the rotation operator.

[, D(R)] = 0. (10)
3. Sakurai problem 9. When we time reverse a momentum eigenstate, we reverse the sign of the momentum, in

addition to complex conjugating the state. We therefore expect that the time reversal of ¢(p) is ¢(—p)*. To
show this explicitly,
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4. Sakurai problem 12. We can rewrite the matrix as
2, B 2
H=AS?+ S[S5 + 82] (12)
where S; = S, £15,. Written out explicitly for S =1 we have

A 0 B
H=|0 0 0 (13)
B o0 A

where I have taken h = 1. Taking det[E1 — H] = E((E — A)? — B?) we see that the energy eigenvalues are
E=A+B,0 (14)
The corresponding eigenkets are
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(15)
and for £ =0, |0) = |ms; = 0).

The Hamiltonian is invariant under time-reversal, since ©SO~! = S is unchanged by time-reversal. Since
O|my) = (i)*™7| — my), we have

O|+) = F|£), 010) = |0), (16)

i.e the lower and upper eigenstates are odd-parity under time reversal, whereas the central state is even-parity
under time-reversal.



5. Sakurai, chapter 4, Q 6. This is a tricky problem. There are two ways you could do it: (i) solving the complete
problem but to exponential accuracy or (ii) by directly calculating the matrix elements between the states on
the left, and right hand side. I shall illustrate method (ii). To begin, let us consider the problem when the
length a is infinitely large. In this case, the wavefunction for the left, and right hand ground-states are

0 (x >a+Db)
Yr(x) = (zlYr) ={ Asinfk(a+b-2)] (e <z<D)
Ber* (x <a)
0 (x < —a—"0)
Yr(x) = (z|Yr) =< Asinfk(a+b+2)] (-b<z< —a) (17)
Be™"* (x > —a)

where k = \/QET'”(VO +E)= \/%Tm‘/;
Now the tricky bit is that we need to construct orthogonalized wavefunctions. To do this, we construct

. 1
lYr) = 0= [nlon ([¥r) — W) (WLlvR)]

L) = |vr) (18)

These states are now orthogonal and normalized.

We shall now approximate the complete wavefunction in the form

1) = ag|Yr) + arldr) (19)

Applying the Hamiltonian to this expression, and demanding that H|¢) = Elu), we obtain the eigenvalue
equation Hypop = Eay, (a,b € {R, L}), where

_ [(r|HYR) (r|HPL)
Hov = | 0 [HIdm)  (GulHlos) | (20)

To evaluate this matrix, it is helpful to realize that the complete Hamiltonian can be written
H=Hr+V,=Hp+ Vg (21)

where Hp, is the Hamiltonian for the left-hand well and Hp is the Hamiltonian for the right-hand well and

Ve = —Volb(x—a)—060(x—a-0),
Vi = =Vo[f(x+a+b)—0(z+a), (22)
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Fig. 1.: Showing ¢ r(z) and the potential Vi (x).



With this set-up, we note that Hy, rltr r) = Eo|¢r,r) , where E, is the energy of an isolated well. If you now
compute the matrix element (¢Yr|H|11), you obtain

) __ - (r|Valvr)
(DrlH|L) = EWW* - [(Golom) P
_ (Vr|VR|YL)
1— [(YL|YR)?
~ (Yr|VRr|YL). >

In the last step, we have noted that |(¢p|¢r)| is exponentially smaller than unity, so that terms containing
this quantity have been dropped. The splitting between the two states is then going to be simply

+A = £[(Yr|Vr|L)] (24)

Now to calculate this, we need to compute the exponential tail in ;. Applying continuity of the wavefunction
and continuity of the logarithmic derivative, we obtain

Asinkb = Be"®, ktan(kb) = —k (25)

To leading exponential accuracy, this gives
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Carrying out the integral, we then obtain
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The splitting between the two levels is then
h2
AE =20 = —ge™ (28)

where k = ,/QET’”VO for large V.
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Fig. 2.: Showing the even and odd wavefunctions for the symmetric potential well.



