
GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solutions to Take-home final.

1. If the electron were a j = 3/2 particle, then each hydrogenic orbital would acquire a 2j+1 = 4 fold spin degeneracy, so
that a state with orbital angular momentum l could hold up to 4(2l + 1) electrons, thus an 1s or 2s -state could hold
up to 4 electrons, and a 2p-state, could hold up to 4 × (5) = 20 electrons. The sequence of shell structure would be
1s42s42p203s4 . . . and clearly, the periodic table would be dramatically different.

(a) The configuration of a hypothetical Ne (Z=10) atom made up of such ”electrons” would be

1s42s42p2

Notice that the filled shell configuration 1s42s4 is singly degenerate, the configuration 1s42s42p1 will have a
degeneracy of 4× 3 = 12, and the configuration 1s42s42p2 will be highly degenerate, with a 12× 11/2 = 66 -fold
degeneracy.
The exclusion principle restricts the possible spin and angular momentum configurations, so that the spin wave-
function and the spatial wavefunction have opposite parity under particle exchange. The possible states are then

|S,L〉 = |3, 1〉 (21 states)
= |2, 2〉 (25 states)
= |2, 0〉 (5 states)
= |1, 1〉 (9 states)
= |0, 2〉 (5 states)
= |0, 0〉 (1 state) (1)

making a total of 66.

(b) The state with the maximum spin, i.e S = 3 will have the lowest Coulomb energy, which selects the first of these
possibilities, with S = 3, L = 1. Spin -orbit interactions will align the spin and orbital angular momenta in opposite
directions, producing a state with J = 2. In spectroscopic notation, the ground-state is thus 2S+1LJ = 7P2.

2. If a particle moving in 1D is subjected to a pulse travelling at speed c, represented by a time-dependent potential,

V (t) = Aδ(x − ct),

then, in the interaction representation, the state after time t is given by |ψ〉 =
∑

j aj(t)|j〉. If, at time t = −∞, |ψ〉 = |i〉,
then in the distant future, to first order in A, the amplitudes aj (j 6= i) are given by

aj = − i

h̄

∫ ∞

−∞
dt′〈j|V |i〉eiωjit′

= − i

h̄

∫ ∞

−∞
dt′dxu∗j (x)ui(x)Aδ(x − ct′)e

i
h̄ (Ej−Ei)t

′

= − iA
h̄c

∫ ∞

−∞
dxu∗j (x)ui(x)e

i
h̄c (Ej−Ei)x (2)

(a) The probability to be in state j 6= i is thus

pj(t = +∞) = |aj |2 =
A2

(h̄c)2

∣∣∣∣
∫ ∞

−∞
dxu∗j (x)ui(x)e

i
h̄c (Ej−Ei)x

∣∣∣∣2

(b) The first thing to note, is that energy is conserved in this transition process. On short-time scales, energy
conservation does not hold, because the perturbation is time dependent, but on long time-scales, the energy-time
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uncertainty relation ∆E∆t ∼ 1 allows for the energy of the final state to be defined with arbitrary accuracy. The
difference in energy

Ej − Ei = h̄ω

is provided by the absorption of a quantum of energy from the delta function pulse.
The delta-function perturbation can be regarded as a superposition of plane waves, with an infinitely broad
frequency spectrum. We may write

V =
1

2πc

∫ ∞

−∞
dωA(ω)eiω[(x/c)−t] (3)

A(ω) = A is independent of frequency. Had we written the potential in the above form, then the integral over
time would have given ∫

dt′ei(ωji−ω)t′ = 2πδ(ω − ωji)

In other words, if we are considering transitions from state i to state j only the component of the wave with a
frequency that matches the the excitation energy

ω =
Ej − Ei

h̄

will cause transitions. The transition probability from state i to state j is

pi→j =
A(ωji)2

(h̄c)2

∣∣∣∣
∫ ∞

−∞
dxu∗j (x)ui(x)e

i
h̄c (Ej−Ei)x

∣∣∣∣2 .
and it depends only on the intensity of radiation at frequency ω = ωji.

Finally, notice that if ũj(p) = 〈p|j〉 is the momentum-space wavefunction, then uj(x) =
∫ dp√

2π
eipxũ(p) then the

transition probability becomes

pi→j =
A(ωji)2

(h̄c)2

∣∣∣∣
∫ ∞

−∞
dxũ∗j (p+ ωji/c)ũi(p)

∣∣∣∣2
In other words, the perturbation at frequency ω = ωji also imparts a momentum impulse p = ωji/c to the state.

3. If the Hamiltonian of the rotator is

H = AL2 +

V︷ ︸︸ ︷
Bh̄2 cos 2φ (4)

with A >> B, then we may regard the second term in the Hamiltonian as a perturbation. However, since a state
of definite l is 2l + 1 fold degenerate, we must use degenerate perturbation theory to calculate the shift in the energy
levels. In the manifold of states of definite l and m, |l,m〉, the Hamiltonian can be written

〈l,m|H |l,m′〉 = Ah̄2l(l + 1)δm.m′ +

Vm,m′︷ ︸︸ ︷
Bh̄2〈l,m| cos 2φ|l,m′〉 (5)

The trick is to evaluate, and diagonalize the perturbation Vmm′ . The eigenvectors of V l
m′,m determine the energy

eigenkets in leading order degenerate perturbation theory. Formally, the perturbation matrix is given by

V l
m,m′ =

∫
dφd cos θ()Y l

m(φ, θ))∗ cos 2φY l
m(φ, θ)
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Now since cos 2φ = 1
2 (e2iφ + e−2iφ), and since Y l

m(φ, θ)∗Y l
m′(φ, θ) ∝ ei(m′−m)φ, the integral over φ selects out terms

where m = m′ ± 2, i.e
V l

m′,m = (δm′,m+2 + δm′,m−2)V l
m′,m

For the case l = 0, clearly, the above selection rule guarantees that V l=0
m′,m = 0, so the ground-state energy is a

non-degenerate state with
El=0 = 0, |ψg〉 = |0, 0〉

Evaluating V l
m′,m for the case l = 1, we obtain

V 1
1,−1 = V 1

−1,1 =
∫
dΩY ∗

11

1
2
e2iφY1,−1 = −π

∫ 1

−1

dc
3
8π
s2 = −1

2
, (c ≡ cos θ, s ≡ sin θ)

so that

V 1
m′,m = Bh̄2


 0 0 − 1

2
0 0 0
− 1

2 0 0


 (6)

and the energies and corresponding energy eigenstates are given by

El=1 = 2Ah̄2 +Bh̄2 ×
{

0, |1, 0〉
± 1

2 ,
1√
2
(|1, 1〉 ∓ |1,−1〉) (7)

For the case l = 2, we obtain

V 2
2,0 = V 2

0,−2 = V 2
−2,0 = V 2

0,−2

V 2
2,0/(Bh̄

2) =
∫
dΩY ∗

22

1
2
e2iφY2,0 = π

∫ 1

−1

dc
1
4

√
15
2π
s2

1
4

√
5
π

(3c2 − 1) = − 1
2
√

6

V 2
1,−1/(Bh̄

2) = V 2
−1,1/(Bh̄

2) =
∫
dΩY ∗

21

1
2
e2iφY2,−1 = −2π

∫ 1

−1

dc
1
2

(
15
8π

)
c2s2 = −1

2
(8)

V 2
m′,m = Bh̄2




0 0 − 1
2
√

6
0 0

0 0 0 − 1
2 0

− 1
2
√

6
0 0 0 − 1

2
√

6

0 − 1
2 0 0 0

0 0 − 1
2
√

6
0 0


 (9)

so that the energies and eigenstates are given by

El=2 = 6Ah̄2 +Bh̄2 ×




0, 1√
2
(|2, 2〉 − |2,−2〉)

∓ 1
2 ,

1√
2
(|2, 1〉 ± |2,−1〉)

∓ 1√
12
, 1

2 (|2, 2〉+ |2,−2〉 ± √2|20〉)
(10)

4. (a) For a free particle, the solutions to the Schrödinger equation in spherical co-ordinates take the separable form

u(r, θ, φ) =
ul(r)
r

Ylm(θ, φ)

where the radial function ul(r) satisfies the radial wave-equation

(k2ul − u′′l (r)) = l(l + 1)ul(r).
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The case

u(r, θ) =
1
r

(
1 +

i

kr

)
eikr cos θ (11)

takes the form

u(r, θ, φ) =

√
4π
3
ul(r)
r

Y10(θ, φ)

where ul(r) = (1 + i
kr )eikr . The angular dependence is that of a p-wave with azimuthal quantum number ml = 0.

The exponential factor
eikr

describes an outgoing wave, but we must also verify that the detailed radial dependence is correct. By differenti-
ating ul we obtain

u′′l =
[
−

(
1 +

i

kr

)
+

2
r2

+
2i
kr3

]
eikr,

so that

− u′′l
2m

+ l(l+ 1)
ul

2mr2
=

k2

2m

(
1 +

i

kr

)
eikr =

k2

2m
ul(r)

(where l = 1), in other words, ul satisfies the raidal wave equation for l = 1

− u′′l
2m

+ l(l + 1)
ul

2mr2
=

k2

2m
ul(r)

proving that we are dealing with with an outgoing p-wave with l = 1,m = 0 .

(b) Since the low energy scattering phase shift δl(k) is proportional to to (ka)2l+1, where a is the scattering length,
we need only keep the scattering phase shift from channels with the lowest angular momenta. To obtain the
scattering cross-section accurate to order (ka)2 we need only to consider the s and p channels. The general radial
wavefunction has the form

ψl(r) = cos(δl)jl(kr)− sin(δl)ηl(kr)

For l = 0, this simplifies to the form

ψl=0(r) = cos(δ0)
sin(kr)
kr

+ sin(δ0)
cos(kr)
kr

The condition ψl(r = a) = 0, implies that tan(ka+δl=0) = 0, so that δ0 = −ka. For l = 1, the radial wave-equation
can be written in the form

ψl=1(r) =
1
r

[
e2iδ1(1 +

i

kr
)eikr + (1− i

kr
)e−ikr

]
so the condition ψl=1(r = a) = 0 implies that

e2iδ1(1 +
i

ka
) = −(1− i

ka
)e−ika

so that

δ1 = −ka+
1
2i

ln
(

1 + ika

1− ika

)
Expanding this for small ka, we obtain δ1 = − (ka)3

3 .
Now the scattering amplitude is given by

f(θ) =
1
k

∑
l

(2l + 1)eiδl sin δl
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which for our case simplifies to

f(θ) =
eiδo sin δ0

k
+

3eiδ1 sin δ1
k

cos θ + . . .

For small scattering phase shifts, we can expand this as

1
k

[
(δ0 − 2

3
δ20 + iδ20) + 3δ1 cos θ

]
So the differential scattering cross-section is then

dσ

dΩ
= |f(θ)|2 ≈ δ20

k2

[
1− 1

3
δ20 + 6

(
δ1
δ0

)
cos θ

]
= a2[1 + (ka)2(2 cos θ − 1

3
)]. (12)

5. If we seek solutions to the Dirac equation in the form

ψ(t) = Ψei(~p·~x−Et)/h̄ =
(
χ
φ

)
ei(~p·~x−Et)/h̄

then the Dirac equation takes the form
EΨ =

[
c~α · ~p+ βmc2

]
Ψ

where ~p is the momentum operator. Written out more explicitly gives

(E −mc2)χ− ~σ · ~pφ = 0
(E +mc2)φ − ~σ · ~pχ = 0. (13)

From the second of these equations we obtain

φ =
~σ · ~p

E +mc2
χ

and substituting into the first equation, we obtain

(E2 −m2c4 − p2c2)χ = 0

so that E = ±E(p), where E(p) =
√
m2c4 + p2c2.

(a) Now for a spin-up solution, we take χ =
(

1
0

)
, so that if ~p = (0, 0, p) and we take the positive energy solution,

E = E(p), then

φ =
(

cp
E+mc2

0

)
so the wave-function takes the form

Ψ1p =
N
L

3
2




1
0
cp

Ep+mc2

0


 ei(~p·~x−Et)/h̄

=
1
L

3
2

√
Ep +mc2

2Ep




1
0
cp

Ep+mc2

0


 ei(~p·~x−Ept)/h̄ (14)

where the normalization constant is chosen to give ψ†ψ = 1/L3.
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To obtain the negative energy solution, we repeat the above process, choosing E = −E(p), and writing χ =

~σ · ~p/(E −mc2)φ, so that now with φ =
(

1
0

)
, we obtain

Ψ2p =
N
L

3
2




cp
−Ep−mc2

0
1
0


 ei(~p·~x+Ept)/h̄

=
1
L

3
2

√
Ep +mc2

2Ep



− cp

Ep+mc2

0
1
0


 ei(~p·~x+Ept)/h̄ (15)

(b) If

ψ(~x, 0) =
1

L3/2



α
0
β
0


 ei~p·~x/h̄

then the overlaps with the positive and negative energy solutions are respectively,

〈p+|ψ〉 = Ψ†
1pψ|t=0 =

(
Ep +mc2

2Ep

) 1
2

(
α+ β

cp

Ep +mc2

)

〈p−|ψ〉 = Ψ†
2pψ|t=0 =

(
Ep +mc2

2Ep

) 1
2

(
β − α

cp

Ep +mc2

)
(16)

so that the wavefunction at later times is given by

|ψ(t)〉 = |p+〉〈p+|ψ〉e−iEpt/h̄r + |p−〉〈p−|ψ〉eiEpt/h̄r

or

|ψ(t)〉 =
Ep +mc2

2EpL
3
2
eipz/h̄


(

α+ β
cp

Ep +mc2

) 


1
0
cp

Ep+mc2

0


 e−iEpt/h̄ +

(
β − α

cp

Ep +mc2

) 

− cp

Ep+mc2

0
1
0


 eiEpt/h̄


 (17)

The probabilities to be in the positive and negative energy states are given by

p+ =
(
Ep +mc2

2Ep

) ∣∣∣∣α+ β
cp

Ep +mc2

∣∣∣∣2
p− =

(
Ep +mc2

2Ep

) ∣∣∣∣β − α
cp

Ep +mc2

∣∣∣∣2 (18)
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