GRADUATE QUANTUM MECHANICS: 502 Spring 2002

Solutions to Take-home final.

1. If the electron were a j = 3/2 particle, then each hydrogenic orbital would acquire a 25 + 1 = 4 fold spin degeneracy, so
that a state with orbital angular momentum [ could hold up to 4(2] 4 1) electrons, thus an 1s or 2s -state could hold
up to 4 electrons, and a 2p-state, could hold up to 4 x (5) = 20 electrons. The sequence of shell structure would be
1542542p293s* ... and clearly, the periodic table would be dramatically different.

(a) The configuration of a hypothetical Ne (Z=10) atom made up of such ”electrons” would be
1s*2s%2p?

Notice that the filled shell configuration 1s%2s? is singly degenerate, the configuration 15*2s*2p' will have a
degeneracy of 4 x 3 = 12, and the configuration 1s%2s%2p? will be highly degenerate, with a 12 x 11/2 = 66 -fold
degeneracy.

The exclusion principle restricts the possible spin and angular momentum configurations, so that the spin wave-
function and the spatial wavefunction have opposite parity under particle exchange. The possible states are then

S, L) = |3,1) (21 states)
= |2,2) (25 states)
= [2,0) (5 states)
= |1,1) (9 states)
= 10,2) (5 states)
= 10,0) (1 state) (1)

making a total of 66.

(b) The state with the maximum spin, i.e S = 3 will have the lowest Coulomb energy, which selects the first of these
possibilities, with S = 3, L = 1. Spin -orbit interactions will align the spin and orbital angular momenta in opposite

directions, producing a state with .JJ = 2. In spectroscopic notation, the ground-state is thus 2t1L; = 7P,.
2. If a particle moving in 1D is subjected to a pulse travelling at speed ¢, represented by a time-dependent potential,
V(t) = Ad(z — ct),

then, in the interaction representation, the state after time ¢ is given by [¢) = >, a;(?)[4). If, at time ¢t = —oo0, [¢)) = i),
then in the distant future, to first order in A, the amplitudes a; (j # ¢) are given by

VI .
a; = _ﬁ/ dt’<j|V|i>ezwjit,
i | |
_ / ' dow’s () s () AS (i — ct' et Fa=POt
h —00
A e o
T he 7oodx“j($)ui(x)enu(Ej Ei) )

2

o0 .
—00

(b) The first thing to note, is that energy is conserved in this transition process. On short-time scales, energy
conservation does not hold, because the perturbation is time dependent, but on long time-scales, the energy-time



uncertainty relation AEAt ~ 1 allows for the energy of the final state to be defined with arbitrary accuracy. The
difference in energy

Ej — Ei = hw
is provided by the absorption of a quantum of energy from the delta function pulse.

The delta-function perturbation can be regarded as a superposition of plane waves, with an infinitely broad
frequency spectrum. We may write

" 27c

1 ° )
V- / dw A(w) e/ ()

A(w) = A is independent of frequency. Had we written the potential in the above form, then the integral over
time would have given

/dt/ei(wjifw)t =270 (w — wji)

In other words, if we are considering transitions from state 7 to state j only the component of the wave with a
frequency that matches the the excitation energy

E, - E
h
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will cause transitions. The transition probability from state i to state j is

A Wyi ? - * 2 (E.—E)z 2
Pi—j = ﬁ / dxuj(x)ui(x)enu(Ey E;)
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and it depends only on the intensity of radiation at frequency w = wj;.
Finally, notice that if @;(p) = (p|j) is the momentum-space wavefunction, then w;(z) = [ %eimﬂ(p) then the

transition probability becomes

A(wji)Q 2
2

Pi=i = T

J[“>dxa;@a+-wﬂ/c>axp>

In other words, the perturbation at frequency w = wj; also imparts a momentum impulse p = wj;/c to the state.

3. If the Hamiltonian of the rotator is
v
—_——~
H = AL? + Bh? cos 2¢ (4)
with A >> B, then we may regard the second term in the Hamiltonian as a perturbation. However, since a state

of definite [ is 2] + 1 fold degenerate, we must use degenerate perturbation theory to calculate the shift in the energy
levels. In the manifold of states of definite I and m, |, m), the Hamiltonian can be written

m,m’

(L, m|H|l,m'y = AR*I(Il + 1)8p.m: + BR2(l,m| cos 2¢|l,m’) (5)

The trick is to evaluate, and diagonalize the perturbation Vi,,,,. The eigenvectors of an/’m determine the energy
eigenkets in leading order degenerate perturbation theory. Formally, the perturbation matrix is given by

‘%W:/MM%%WMWWmﬂMM¢®



Now since cos2¢ = 1 (e?'? + e2'?), and since Y}, (¢,0)*Y},(¢,0) eim’=m)é the integral over ¢ selects out terms
where m =m/ +2, i.e

l l
Vm/,m = (5m’,m+2 + 5m’7m*2)vm/,m

For the case [ = 0, clearly, the above selection rule guarantees that Vf,jom = 0, so the ground-state energy is a
non-degenerate state with

El=0 = 07 |¢g> = |050>

Evaluating V,fl,’m for the case [ = 1, we obtain

1 o ! 1
Vi =V, = /dQY1*1—€2wY1 1= —7T/ dcis2 = (c = cosf,s =sinf)
’ ’ 2 ’ _1 us 2
so that
0 0 —%
Vim=BR*| 0 0 0 (6)
-0 0

and the energies and corresponding energy eigenstates are given by

- 0 |1,0)
E'=! =24 + BR® x ’ ’ 7
+ +, (L1 F |1, -1)) ™)

For the case [ = 2, we obtain
V22,0 = Vo2 2—V220—V02 2
91 1
Vio/(BR?) = /dQY2 —emygozw/ dc—./ Z\/7 3¢ —1) NG
15 1
V2 /(BR*) = V2 ,/(BR% /dQYm XY, ) = —27r/ de— (8—> ?s? = -5 (8)
; . T
1

0 0 —% O 0

0 0 0o -3 0
V2, .= Bh? —ﬁ 0 0 0 —2—35 (9)

0 -3 0 0 0

1
0 0 ~36 0 0
so that the energies and eigenstates are given by
0, 2(2.2) — [2.-2))
E'=2 = 6An* + Bh® x = 5 (12,1) £12,-1)) (10)
T 3(12,2) + 2, -2) £ v2[20))

4. (a) For a free particle, the solutions to the Schrédinger equation in spherical co-ordinates take the separable form

w(r
u(r,6.6) = "¥i,(0.0)
where the radial function u;(r) satisfies the radial wave-equation

(Kuy — )/ (1)) = 11 + Duy(r).



The case

1 ) ;
1 ikr 11
’U,(T, 6) = _7’ ( + _k‘T) e cos ( )

u(r,0,¢) = \/g “17@ Yio(6, 6)

where u(r) = (1 + kir)e””. The angular dependence is that of a p-wave with azimuthal quantum number m; = 0.
The exponential factor

takes the form

ezkr

describes an outgoing wave, but we must also verify that the detailed radial dependence is correct. By differenti-

ating u; we obtain
" i 2 2i ]
u; = |:— <1+H)+T_2+W:|ez ",

uy/ w k> i\ ik k>
—— +l(l+1 =— (14— )™ =_——
2m +Hil+ )2m7"2 2m + kr € 2mul(r)

so that

(where [ = 1), in other words, u; satisfies the raidal wave equation for | = 1

uy/ w k>
M 1 -
2m i+ )2m7"2 w(r)

proving that we are dealing with with an outgoing p-wave with I =1,m =0 .

Since the low energy scattering phase shift & (k) is proportional to to (ka)?*!, where a is the scattering length,
we need only keep the scattering phase shift from channels with the lowest angular momenta. To obtain the
scattering cross-section accurate to order (ka)? we need only to consider the s and p channels. The general radial
wavefunction has the form

Yi(r) = cos(6;) i (kr) — sin(d;)m (kr)
For [ = 0, this simplifies to the form

sin(kr) cos(kr)

kr

1= (r) = cos(dp) + sin(do)

The condition ¢ (r = a) = 0, implies that tan(ka+d;—9) = 0, so that dg = —ka. For [ = 1, the radial wave-equation
can be written in the form

L1 o b ik bk
_ — 1 1 _ KT 1 o IRT
Y (r) = - [6 L+ )™ + (1= )e
so the condition ¢;—1 (r = a) = 0 implies that

62i51 (1 + _

so that

1. (1+ika
o1 = —ka+ —1
! a+2in<1—ika)

(ka)®
a)

Expanding this for small ka, we obtain d; = —
Now the scattering amplitude is given by

f0) =

| =

2(21 +1)e™ sin
1



which for our case simplifies to
0o o} ) 101 o K}
F() =< Zm 03¢ I:m Lcosf+ ...

For small scattering phase shifts, we can expand this as

1 2
— {(50 - 55(2) +i03) + 341 cos 0]

k

So the differential scattering cross-section is then

do - 2 (58 1 2 51
a - |£(9)] N 13 1—350+6 % cos 6
- a2[1+(ka)2(2cost9—%)]. (12)

5. If we seek solutions to the Dirac equation in the form
W(t) = WP E—Et)/h _ (;) (B T—Et)/h

then the Dirac equation takes the form
EV = [co’z’-ﬁ—l— ﬁch] v

where p’is the momentum operator. Written out more explicitly gives

(E—=mc)x—d-pp = 0
(E4+me*)p—G-px = 0 (13)
From the second of these equations we obtain
o= "L
 E+me? X

and substituting into the first equation, we obtain

(E2 —m2ct — p202)X =0
so that E = iE(p), where E(p) = v/m2c* + p2c2.

(a) Now for a spin-up solution, we take y = <é>, so that if p = (0,0,p) and we take the positive energy solution,

()
0

E = E(p), then

so the wave-function takes the form

1
T, = ﬂs 2) i (FT—Eb)/h
L2 E,+mc?
0
1
2
- L [Bptme 0| citza-Ety/m (14)
L2 2EP Echrmc2
0

where the normalization constant is chosen to give ¢ = 1/L3.



E(p), and writing x =

To obtain the negative energy solution, we repeat the above process, choosing £ = —
G- p/(E — mc?), so that now with ¢ = (é), we obtain
o
N 0™ i(P-34+Ept)/h
Uy, = 5 . i BT+ Ept)/
0
__cp
1 £+ > E;,(J)rmc2
_ p T Mc i(F-T+Ept)/h
R 2F, 1 © (15)
0
(b) If
@
= 1 0 ip-T,
VEO) =g | g 7"
0
then the overlaps with the positive and negative energy solutions are respectively,
1
E, +mc?\?
+ — ol - P
W) = ¥yt = (P ) (ot b5 )
1
E, +mc?\? cp
- = Ul g = (22 - 16
W) = Wl = (F50) (50t (16)
so that the wavefunction at later times is given by
[$(8)) = ") (T [)e PP 4 |pT) (p~ ) et
or
1 ~E Jcrzr)nc2
2 P
1 (t)) = Ep +mc L N T CO e—iBot/h 4 (g _ o P 0 i Ept/h
2E,L3 E,+mc?) | e E, + mc? 1
0 0
The probabilities to be in the positive and negative energy states are given by
E, + mc? 2
+ 2
P ( 2E, )‘ +6E +m02
—— E, + mc? 3 cp 2
b= Ep + mc?

(17)
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