
GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solution to assignment I.

1. (a) We expand the trace using a complete set of states and rearrange the terms to obtain:

Tr(XY ) =
∑
a

〈a|XY |a〉 =
∑
a,b

〈a|X
1︷ ︸︸ ︷

|b〉〈b| Y |a〉

=
∑
a,b

〈b|Y
1︷ ︸︸ ︷

|a〉〈a|X|b〉 =
∑

b

〈b|Y X|b〉 = Tr(Y X) (1)

(b) Between any two states |a〉 and |b〉, we have

〈a|(XY )|b〉∗ = 〈b|(XY )†|a〉 (2)

We can also write this as

[(〈a|X) (Y |b〉)]∗ =
(
〈b|Y †) (

X†|a〉
)

= 〈b|Y †X†|a〉 (3)

Comparing the two expressions, we deduce that (XY )† = Y †X†.
(c) In the eigenket basis, for any function G(Â) that can be written as a Taylor series, if Â〈a| =

a〈a| then G[Â]|a〉 = G[a]|a〉. Thus since the basis is complete,

exp[if(Â)] =
∑
a

exp[if(Â)]|a〉〈a| =
∑
a

exp[if(â)]|a〉〈a| (4)

(d) By substituting ψa(x) = 〈x|a〉, ψ∗a(y) = 〈a|y〉we have∑
a

ψ∗a(y)ψa(x) =
∑
a

〈a|y〉〈x|a〉 =
∑
a

〈x|a〉〈a|y〉 = 〈x|y〉 = δ(3)(x− y) (5)

2. Since the states |1〉 and |2〉 are the eigenkets of some observable, they provide an orthonormal
basis. In this basis, the Hamiltonian becomes

H =
(
h11 h12

h12 h22

)
(6)

Note that since H must be Hermitian, this means that h12 is real. If |ψ〉 =
∑

a=1,2 ψa|a〉 is an
eigenket of H, then ∑

Habψb = Eψa (7)

We can then go ahead and derive the eigenvalues from the determinantly equation det(H−E1) = 0,
back-substituting into the above expression to derive the eigenvectors ψa. An alternative approach
is to write H in the form

H = a+~b · ~σ (8)
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where ~σ = (σx, σy, σz) are the Pauli matrices. Since Tr[σaσb] = 2δab, and Trσa = 0, we can obtain

a =
1
2
Tr[H1] =

1
2
(h11 + h22) (9)

and

~b =
1
2
Tr[H~σ] = (h12, 0,

1
2
(h11 − h22)) (10)

We can write ~b = bn̂ where n̂ is the unit vector n̂ = ~b/|b| and b ≡ |b|. We can then write

H = a+ bn̂ · ~σ. (11)

Written in the above form, it is easy to see that the eigenvalues of H are

E = a± b =
1
2
(h11 + h22)±

√
[
1
2
(h11 − h22)]2 + h2

12 (12)

corresponding to the two eigenkets of the spin operator n̂ · ~σ,

(n̂ · ~σ)|n̂;±〉 = ±|n̂;±〉 (13)

From the information in the question, these two states are given by

|n; +〉 = cos
β

2
|1〉 ± eiα sin

β

2
|2〉

|n;−〉 = − sin
β

2
|1〉 ± eiα cos

β

2
|2〉 (14)

where α and β are the polar co-ordinates of the unit vector n̂ = (sin β cosα, sin β sinα, cos β). The
question gave the result for the upper state, we have chosen the lower state |n̂;−〉 to be orthogonal
to this |n̂; +〉. Since ny = 0, we deduce that α = 0. We also have cos β = bz/b, from which we
deduce that

cos
β

2
=

[
1 + cos β

2

] 1
2

=
[
1 + bz/b

2

] 1
2

sin
β

2
=

[
1 − cos β

2

] 1
2

=
[
1− bz/b

2

] 1
2

(15)

The final expression for the two eigenkets is then

|+〉 =

{
1
2

[
1 +

(h11 − h22)

[(h11 − h22)2 + (2h12)2]
1
2

]}1
2

|1〉 +

{
1
2

[
1 − (h11 − h22)

[(h11 − h22)2 + (2h12)2]
1
2

]} 1
2

|2〉

|−〉 =

{
1
2

[
1 − (h11 − h22)

[(h11 − h22)2 + (2h12)2]
1
2

]}1
2

|1〉 −
{

1
2

[
1 +

(h11 − h22)

[(h11 − h22)2 + (2h12)2]
1
2

]} 1
2

|2〉
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3. First let us expand

F (p) =
∑

n=0,∞
fnp

n (16)

as a Taylor series. To find the commutator with q, we need to know

[q, F (p)] =
∑

n=0,∞
fn[q, pn] (17)

Now using the result [A,BC] = B[A,C] + [A,B]C, we may deduce that

[q, p2] = p[q, p] + [q, p]p = 2(ih̄)p,
[q, p3] = p[q, p2] + [q, p]p2 = 3(ih̄)p2 (18)

and by induction,

[q, pn] = ih̄npn−1 (19)

so that

[q, F (p)] = ih̄
∑

n=0,∞
fnnp

n−1 == ih̄F ′[p̂] (20)

where we have made the crucial identification,
∑

n=0,∞ fnnp
n−1 = F ′(p), where F ′(p) is the first

derivative of the function F (p).

4. The short answer is no! In order to make sure that the spurious fields B1 are small compared
with the dipole fields, one must make sure that the momentum of the electron is zero, within a
certain tolerance ∆p. But to measure the field B2, one needs to make sure that the position r is
known sufficiently accurately so that the uncertainty in B2 is much smaller than B2. These two
requirements imply that ∆x∆p << h̄/2. But the uncertainty relation implies the exact opposite,
and for this reason, the measurement is not possible on a free electron.

To see this more explicitly, note that B1 << B2 implies

evr << µe (21)

But since ∆v << v and ∆x << r, this implies, ∆v∆x << (µe/e) or ∆x∆p << (mµe/e) =
h̄/2, where we have substituted µe = eh̄/2m. This directly contradicts the uncertainty principle
∆x∆p ≥ h̄/2.
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